6d409a5ecb7c9ddf76692276d1ced40883281577
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <inttypes.h>
34
35 typedef uint8_t u8;
36 typedef uint16_t u16;
37 typedef uint32_t u32;
38 typedef uint64_t u64;
39 typedef uint64_t mali_ptr;
40
41 /* Applies to tiler_gl_enables */
42
43 #define MALI_OCCLUSION_QUERY (1 << 3)
44 #define MALI_OCCLUSION_PRECISE (1 << 4)
45
46 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
47 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
48 * disagree about how to do viewport flipping, so the blob actually sets this
49 * for GL_CW but then has a negative viewport stride */
50
51 #define MALI_FRONT_CCW_TOP (1 << 5)
52
53 #define MALI_CULL_FACE_FRONT (1 << 6)
54 #define MALI_CULL_FACE_BACK (1 << 7)
55
56 /* Flags apply to unknown2_3? */
57
58 #define MALI_HAS_MSAA (1 << 0)
59
60 /* Execute fragment shader per-sample if set (e.g. to implement gl_SampleID
61 * reads) */
62 #define MALI_PER_SAMPLE (1 << 2)
63 #define MALI_CAN_DISCARD (1 << 5)
64
65 /* Applies on SFBD systems, specifying that programmable blending is in use */
66 #define MALI_HAS_BLEND_SHADER (1 << 6)
67
68 /* func is mali_func */
69 #define MALI_DEPTH_FUNC(func) (func << 8)
70 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
71 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
72
73 #define MALI_DEPTH_WRITEMASK (1 << 11)
74
75 #define MALI_DEPTH_CLIP_NEAR (1 << 12)
76 #define MALI_DEPTH_CLIP_FAR (1 << 13)
77
78 /* Next flags to unknown2_4 */
79 #define MALI_STENCIL_TEST (1 << 0)
80
81 #define MALI_ALPHA_TO_COVERAGE (1 << 1)
82
83 #define MALI_NO_DITHER (1 << 9)
84 #define MALI_DEPTH_RANGE_A (1 << 12)
85 #define MALI_DEPTH_RANGE_B (1 << 13)
86 #define MALI_NO_MSAA (1 << 14)
87
88 /* Stencil test state is all encoded in a single u32, just with a lot of
89 * enums... */
90
91 struct mali_stencil_test {
92 unsigned ref : 8;
93 unsigned mask : 8;
94 enum mali_func func : 3;
95 enum mali_stencil_op sfail : 3;
96 enum mali_stencil_op dpfail : 3;
97 enum mali_stencil_op dppass : 3;
98 unsigned zero : 4;
99 } __attribute__((packed));
100
101 #define MALI_MASK_R (1 << 0)
102 #define MALI_MASK_G (1 << 1)
103 #define MALI_MASK_B (1 << 2)
104 #define MALI_MASK_A (1 << 3)
105
106 enum mali_nondominant_mode {
107 MALI_BLEND_NON_MIRROR = 0,
108 MALI_BLEND_NON_ZERO = 1
109 };
110
111 enum mali_dominant_blend {
112 MALI_BLEND_DOM_SOURCE = 0,
113 MALI_BLEND_DOM_DESTINATION = 1
114 };
115
116 enum mali_dominant_factor {
117 MALI_DOMINANT_UNK0 = 0,
118 MALI_DOMINANT_ZERO = 1,
119 MALI_DOMINANT_SRC_COLOR = 2,
120 MALI_DOMINANT_DST_COLOR = 3,
121 MALI_DOMINANT_UNK4 = 4,
122 MALI_DOMINANT_SRC_ALPHA = 5,
123 MALI_DOMINANT_DST_ALPHA = 6,
124 MALI_DOMINANT_CONSTANT = 7,
125 };
126
127 enum mali_blend_modifier {
128 MALI_BLEND_MOD_UNK0 = 0,
129 MALI_BLEND_MOD_NORMAL = 1,
130 MALI_BLEND_MOD_SOURCE_ONE = 2,
131 MALI_BLEND_MOD_DEST_ONE = 3,
132 };
133
134 struct mali_blend_mode {
135 enum mali_blend_modifier clip_modifier : 2;
136 unsigned unused_0 : 1;
137 unsigned negate_source : 1;
138
139 enum mali_dominant_blend dominant : 1;
140
141 enum mali_nondominant_mode nondominant_mode : 1;
142
143 unsigned unused_1 : 1;
144
145 unsigned negate_dest : 1;
146
147 enum mali_dominant_factor dominant_factor : 3;
148 unsigned complement_dominant : 1;
149 } __attribute__((packed));
150
151 struct mali_blend_equation {
152 /* Of type mali_blend_mode */
153 unsigned rgb_mode : 12;
154 unsigned alpha_mode : 12;
155
156 unsigned zero1 : 4;
157
158 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
159
160 unsigned color_mask : 4;
161 } __attribute__((packed));
162
163 /* Used with channel swizzling */
164 enum mali_channel {
165 MALI_CHANNEL_RED = 0,
166 MALI_CHANNEL_GREEN = 1,
167 MALI_CHANNEL_BLUE = 2,
168 MALI_CHANNEL_ALPHA = 3,
169 MALI_CHANNEL_ZERO = 4,
170 MALI_CHANNEL_ONE = 5,
171 MALI_CHANNEL_RESERVED_0 = 6,
172 MALI_CHANNEL_RESERVED_1 = 7,
173 };
174
175 struct mali_channel_swizzle {
176 enum mali_channel r : 3;
177 enum mali_channel g : 3;
178 enum mali_channel b : 3;
179 enum mali_channel a : 3;
180 } __attribute__((packed));
181
182 /* Compressed per-pixel formats. Each of these formats expands to one to four
183 * floating-point or integer numbers, as defined by the OpenGL specification.
184 * There are various places in OpenGL where the user can specify a compressed
185 * format in memory, which all use the same 8-bit enum in the various
186 * descriptors, although different hardware units support different formats.
187 */
188
189 /* The top 3 bits specify how the bits of each component are interpreted. */
190
191 /* e.g. ETC2_RGB8 */
192 #define MALI_FORMAT_COMPRESSED (0 << 5)
193
194 /* e.g. R11F_G11F_B10F */
195 #define MALI_FORMAT_SPECIAL (2 << 5)
196
197 /* signed normalized, e.g. RGBA8_SNORM */
198 #define MALI_FORMAT_SNORM (3 << 5)
199
200 /* e.g. RGBA8UI */
201 #define MALI_FORMAT_UINT (4 << 5)
202
203 /* e.g. RGBA8 and RGBA32F */
204 #define MALI_FORMAT_UNORM (5 << 5)
205
206 /* e.g. RGBA8I and RGBA16F */
207 #define MALI_FORMAT_SINT (6 << 5)
208
209 /* These formats seem to largely duplicate the others. They're used at least
210 * for Bifrost framebuffer output.
211 */
212 #define MALI_FORMAT_SPECIAL2 (7 << 5)
213 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
214
215 /* If the high 3 bits are 3 to 6 these two bits say how many components
216 * there are.
217 */
218 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
219 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
220
221 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
222 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
223 * bits mean.
224 */
225
226 #define MALI_CHANNEL_4 2
227
228 #define MALI_CHANNEL_8 3
229
230 #define MALI_CHANNEL_16 4
231
232 #define MALI_CHANNEL_32 5
233
234 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
235 * MALI_FORMAT_UNORM, it means a 32-bit float.
236 */
237 #define MALI_CHANNEL_FLOAT 7
238 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
239
240 enum mali_format {
241 /* Not all formats are in fact available, need to query dynamically to
242 * check. Factory settings for Juno enables only ETC2 and ASTC, no
243 * DXT/RGTC formats.
244 * */
245
246 /* 0x0 invalid */
247 MALI_ETC2_RGB8 = MALI_FORMAT_COMPRESSED | 0x1,
248 MALI_ETC2_R11_UNORM = MALI_FORMAT_COMPRESSED | 0x2,
249 MALI_ETC2_RGBA8 = MALI_FORMAT_COMPRESSED | 0x3,
250 MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
251 /* 0x5 reserved */
252 MALI_NXR = MALI_FORMAT_COMPRESSED | 0x6, /* Nokia eXtended Range */
253 MALI_BC1_UNORM = MALI_FORMAT_COMPRESSED | 0x7, /* DXT1 */
254 MALI_BC2_UNORM = MALI_FORMAT_COMPRESSED | 0x8, /* DXT3 */
255 MALI_BC3_UNORM = MALI_FORMAT_COMPRESSED | 0x9, /* DXT5 */
256 MALI_BC4_UNORM = MALI_FORMAT_COMPRESSED | 0xA, /* RGTC1_UNORM */
257 MALI_BC4_SNORM = MALI_FORMAT_COMPRESSED | 0xB, /* RGTC1_SNORM */
258 MALI_BC5_UNORM = MALI_FORMAT_COMPRESSED | 0xC, /* RGTC2_UNORM */
259 MALI_BC5_SNORM = MALI_FORMAT_COMPRESSED | 0xD, /* RGTC2_SNORM */
260 MALI_BC6H_UF16 = MALI_FORMAT_COMPRESSED | 0xE,
261 MALI_BC6H_SF16 = MALI_FORMAT_COMPRESSED | 0xF,
262 MALI_BC7_UNORM = MALI_FORMAT_COMPRESSED | 0x10,
263 MALI_ETC2_R11_SNORM = MALI_FORMAT_COMPRESSED | 0x11, /* EAC_SNORM */
264 MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12, /* EAC_SNORM */
265 MALI_ETC2_RGB8A1 = MALI_FORMAT_COMPRESSED | 0x13,
266 MALI_ASTC_3D_LDR = MALI_FORMAT_COMPRESSED | 0x14,
267 MALI_ASTC_3D_HDR = MALI_FORMAT_COMPRESSED | 0x15,
268 MALI_ASTC_2D_LDR = MALI_FORMAT_COMPRESSED | 0x16,
269 MALI_ASTC_2D_HDR = MALI_FORMAT_COMPRESSED | 0x17,
270
271 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
272 MALI_RGB5_X1_UNORM = MALI_FORMAT_SPECIAL | 0x1,
273 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
274 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
275 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
276 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
277 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
278
279 MALI_RGB332_UNORM = MALI_FORMAT_SPECIAL | 0xb,
280 MALI_RGB233_UNORM = MALI_FORMAT_SPECIAL | 0xc,
281
282 MALI_Z24X8_UNORM = MALI_FORMAT_SPECIAL | 0xd,
283 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
284 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
285 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
286 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
287 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
288 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
289 /* Only used for varyings, to indicate the transformed gl_Position */
290 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
291 /* Only used for varyings, to indicate that the write should be
292 * discarded.
293 */
294 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
295
296 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
297 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
298 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
299 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
300 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
301 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
302 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
303 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
304 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
305 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
306 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
307 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
308
309 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
310 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
311 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
312 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
313 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
314 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
315 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
316 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
317 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
318 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
319 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
320 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
321
322 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
323 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
324 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
325 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
326 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
327 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
328 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
329 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
330 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
331 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
332 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
333 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
334 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
335 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
336 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
337 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
338 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
339
340 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
341 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
342 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
343 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
344 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
345 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
346 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
347 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
348 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
349 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
350 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
351 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
352 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
353 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
354 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
355 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
356
357 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
358 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
359 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
360 };
361
362
363 /* Applies to midgard1.flags_lo */
364
365 /* Should be set when the fragment shader updates the depth value. */
366 #define MALI_WRITES_Z (1 << 4)
367
368 /* Should the hardware perform early-Z testing? Set if the shader does not use
369 * discard, alpha-to-coverage, shader depth writes, and if the shader has no
370 * side effects (writes to global memory or images) unless early-z testing is
371 * forced in the shader.
372 */
373
374 #define MALI_EARLY_Z (1 << 6)
375
376 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
377 * fragment shader that uses texturing or derivative functions */
378
379 #define MALI_HELPER_INVOCATIONS (1 << 7)
380
381 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
382 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
383 * it might read depth/stencil in particular, also set MALI_READS_ZS */
384
385 #define MALI_READS_ZS (1 << 8)
386
387 /* The shader might write to global memory (via OpenCL, SSBOs, or images).
388 * Reading is okay, as are ordinary writes to the tilebuffer/varyings. Setting
389 * incurs a performance penalty. On a fragment shader, this bit implies there
390 * are side effects, hence it interacts with early-z. */
391 #define MALI_WRITES_GLOBAL (1 << 9)
392
393 #define MALI_READS_TILEBUFFER (1 << 10)
394
395 /* Applies to midgard1.flags_hi */
396
397 /* Should be set when the fragment shader updates the stencil value. */
398 #define MALI_WRITES_S (1 << 2)
399
400 /* Mode to suppress generation of Infinity and NaN values by clamping inf
401 * (-inf) to MAX_FLOAT (-MIN_FLOAT) and flushing NaN to 0.0
402 *
403 * Compare suppress_inf/suppress_nan flags on the Bifrost clause header for the
404 * same functionality.
405 *
406 * This is not conformant on GLES3 or OpenCL, but is optional on GLES2, where
407 * it works around app bugs (e.g. in glmark2-es2 -bterrain with FP16).
408 */
409 #define MALI_SUPPRESS_INF_NAN (1 << 3)
410
411 /* Flags for bifrost1.unk1 */
412
413 /* Shader uses less than 32 registers, partitioned as [R0, R15] U [R48, R63],
414 * allowing for full thread count. If clear, the full [R0, R63] register set is
415 * available at half thread count */
416 #define MALI_BIFROST_FULL_THREAD (1 << 9)
417
418 /* Enable early-z testing (presumably). This flag may not be set if the shader:
419 *
420 * - Uses blending
421 * - Uses discard
422 * - Writes gl_FragDepth
423 *
424 * This differs from Midgard which sets the MALI_EARLY_Z flag even with
425 * blending, although I've begun to suspect that flag does not in fact enable
426 * EARLY_Z alone. */
427 #define MALI_BIFROST_EARLY_Z (1 << 15)
428
429 /* First clause type is ATEST */
430 #define MALI_BIFROST_FIRST_ATEST (1 << 26)
431
432 /* The raw Midgard blend payload can either be an equation or a shader
433 * address, depending on the context */
434
435 union midgard_blend {
436 mali_ptr shader;
437
438 struct {
439 struct mali_blend_equation equation;
440 float constant;
441 };
442 };
443
444 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
445 * ZERO) */
446
447 #define MALI_BLEND_LOAD_TIB (0x1)
448
449 /* A blend shader is used to blend this render target */
450 #define MALI_BLEND_MRT_SHADER (0x2)
451
452 /* On MRT Midgard systems (using an MFBD), each render target gets its own
453 * blend descriptor */
454
455 #define MALI_BLEND_SRGB (0x400)
456
457 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
458 #define MALI_BLEND_NO_DITHER (0x800)
459
460 struct midgard_blend_rt {
461 /* Flags base value of 0x200 to enable the render target.
462 * OR with 0x1 for blending (anything other than REPLACE).
463 * OR with 0x2 for programmable blending
464 * OR with MALI_BLEND_SRGB for implicit sRGB
465 */
466
467 u64 flags;
468 union midgard_blend blend;
469 } __attribute__((packed));
470
471 /* On Bifrost systems (all MRT), each render target gets one of these
472 * descriptors */
473
474 enum bifrost_shader_type {
475 BIFROST_BLEND_F16 = 0,
476 BIFROST_BLEND_F32 = 1,
477 BIFROST_BLEND_I32 = 2,
478 BIFROST_BLEND_U32 = 3,
479 BIFROST_BLEND_I16 = 4,
480 BIFROST_BLEND_U16 = 5,
481 };
482
483 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
484
485 struct bifrost_blend_rt {
486 /* This is likely an analogue of the flags on
487 * midgard_blend_rt */
488
489 u16 flags; // = 0x200
490
491 /* Single-channel blend constants are encoded in a sort of
492 * fixed-point. Basically, the float is mapped to a byte, becoming
493 * a high byte, and then the lower-byte is added for precision.
494 * For the original float f:
495 *
496 * f = (constant_hi / 255) + (constant_lo / 65535)
497 *
498 * constant_hi = int(f / 255)
499 * constant_lo = 65535*f - (65535/255) * constant_hi
500 */
501 u16 constant;
502
503 struct mali_blend_equation equation;
504
505 /*
506 * - 0x19 normally
507 * - 0x3 when this slot is unused (everything else is 0 except the index)
508 * - 0x11 when this is the fourth slot (and it's used)
509 * - 0 when there is a blend shader
510 */
511 u16 unk2;
512
513 /* increments from 0 to 3 */
514 u16 index;
515
516 union {
517 struct {
518 /* So far, I've only seen:
519 * - R001 for 1-component formats
520 * - RG01 for 2-component formats
521 * - RGB1 for 3-component formats
522 * - RGBA for 4-component formats
523 */
524 u32 swizzle : 12;
525 enum mali_format format : 8;
526
527 /* Type of the shader output variable. Note, this can
528 * be different from the format.
529 * enum bifrost_shader_type
530 */
531 u32 zero1 : 4;
532 u32 shader_type : 3;
533 u32 zero2 : 5;
534 };
535
536 /* Only the low 32 bits of the blend shader are stored, the
537 * high 32 bits are implicitly the same as the original shader.
538 * According to the kernel driver, the program counter for
539 * shaders is actually only 24 bits, so shaders cannot cross
540 * the 2^24-byte boundary, and neither can the blend shader.
541 * The blob handles this by allocating a 2^24 byte pool for
542 * shaders, and making sure that any blend shaders are stored
543 * in the same pool as the original shader. The kernel will
544 * make sure this allocation is aligned to 2^24 bytes.
545 */
546 u32 shader;
547 };
548 } __attribute__((packed));
549
550 /* Descriptor for the shader. Following this is at least one, up to four blend
551 * descriptors for each active render target */
552
553 struct mali_shader_meta {
554 mali_ptr shader;
555 u16 sampler_count;
556 u16 texture_count;
557 u16 attribute_count;
558 u16 varying_count;
559
560 union {
561 struct {
562 u32 uniform_buffer_count : 4;
563 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
564 } bifrost1;
565 struct {
566 unsigned uniform_buffer_count : 4;
567 unsigned flags_lo : 12;
568
569 /* vec4 units */
570 unsigned work_count : 5;
571 unsigned uniform_count : 5;
572 unsigned flags_hi : 6;
573 } midgard1;
574 };
575
576 /* Same as glPolygoOffset() arguments */
577 float depth_units;
578 float depth_factor;
579
580 u32 unknown2_2;
581
582 /* Generated from SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT. See
583 * 13.8.3 ("Multisample Fragment Operations") in the OpenGL ES 3.2
584 * specification. Only matters when multisampling is enabled. */
585 u16 coverage_mask;
586
587 u16 unknown2_3;
588
589 u8 stencil_mask_front;
590 u8 stencil_mask_back;
591 u16 unknown2_4;
592
593 struct mali_stencil_test stencil_front;
594 struct mali_stencil_test stencil_back;
595
596 union {
597 struct {
598 u32 unk3 : 7;
599 /* On Bifrost, some system values are preloaded in
600 * registers R55-R62 by the thread dispatcher prior to
601 * the start of shader execution. This is a bitfield
602 * with one entry for each register saying which
603 * registers need to be preloaded. Right now, the known
604 * values are:
605 *
606 * Vertex/compute:
607 * - R55 : gl_LocalInvocationID.xy
608 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
609 * - R57 : gl_WorkGroupID.x
610 * - R58 : gl_WorkGroupID.y
611 * - R59 : gl_WorkGroupID.z
612 * - R60 : gl_GlobalInvocationID.x
613 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
614 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
615 *
616 * Fragment:
617 * - R55 : unknown, never seen (but the bit for this is
618 * always set?)
619 * - R56 : unknown (bit always unset)
620 * - R57 : gl_PrimitiveID
621 * - R58 : gl_FrontFacing in low bit, potentially other stuff
622 * - R59 : u16 fragment coordinates (used to compute
623 * gl_FragCoord.xy, together with sample positions)
624 * - R60 : gl_SampleMask (used in epilog, so pretty
625 * much always used, but the bit is always 0 -- is
626 * this just always pushed?)
627 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
628 * varying interpolation.
629 * - R62 : unknown (bit always unset).
630 *
631 * Later GPUs (starting with Mali-G52?) support
632 * preloading float varyings into r0-r7. This is
633 * indicated by setting 0x40. There is no distinction
634 * here between 1 varying and 2.
635 */
636 u32 preload_regs : 8;
637 /* In units of 8 bytes or 64 bits, since the
638 * uniform/const port loads 64 bits at a time.
639 */
640 u32 uniform_count : 7;
641 u32 unk4 : 10; // = 2
642 } bifrost2;
643 struct {
644 u32 unknown2_7;
645 } midgard2;
646 };
647
648 u32 padding;
649
650 /* Blending information for the older non-MRT Midgard HW. Check for
651 * MALI_HAS_BLEND_SHADER to decide how to interpret.
652 */
653
654 union midgard_blend blend;
655 } __attribute__((packed));
656
657 /* This only concerns hardware jobs */
658
659 /* Possible values for job_descriptor_size */
660
661 #define MALI_JOB_32 0
662 #define MALI_JOB_64 1
663
664 struct mali_job_descriptor_header {
665 u32 exception_status;
666 u32 first_incomplete_task;
667 u64 fault_pointer;
668 u8 job_descriptor_size : 1;
669 enum mali_job_type job_type : 7;
670 u8 job_barrier : 1;
671 u8 unknown_flags : 7;
672 u16 job_index;
673 u16 job_dependency_index_1;
674 u16 job_dependency_index_2;
675 u64 next_job;
676 } __attribute__((packed));
677
678 /* These concern exception_status */
679
680 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
681 * kernel */
682
683 enum mali_exception_access {
684 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
685 * fault so it's just unused */
686 MALI_EXCEPTION_ACCESS_NONE = 0,
687
688 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
689 MALI_EXCEPTION_ACCESS_READ = 2,
690 MALI_EXCEPTION_ACCESS_WRITE = 3
691 };
692
693 /* Details about write_value from panfrost igt tests which use it as a generic
694 * dword write primitive */
695
696 #define MALI_WRITE_VALUE_ZERO 3
697
698 struct mali_payload_write_value {
699 u64 address;
700 u32 value_descriptor;
701 u32 reserved;
702 u64 immediate;
703 } __attribute__((packed));
704
705 /*
706 * Mali Attributes
707 *
708 * This structure lets the attribute unit compute the address of an attribute
709 * given the vertex and instance ID. Unfortunately, the way this works is
710 * rather complicated when instancing is enabled.
711 *
712 * To explain this, first we need to explain how compute and vertex threads are
713 * dispatched. This is a guess (although a pretty firm guess!) since the
714 * details are mostly hidden from the driver, except for attribute instancing.
715 * When a quad is dispatched, it receives a single, linear index. However, we
716 * need to translate that index into a (vertex id, instance id) pair, or a
717 * (local id x, local id y, local id z) triple for compute shaders (although
718 * vertex shaders and compute shaders are handled almost identically).
719 * Focusing on vertex shaders, one option would be to do:
720 *
721 * vertex_id = linear_id % num_vertices
722 * instance_id = linear_id / num_vertices
723 *
724 * but this involves a costly division and modulus by an arbitrary number.
725 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
726 * num_instances threads instead of num_vertices * num_instances, which results
727 * in some "extra" threads with vertex_id >= num_vertices, which we have to
728 * discard. The more we pad num_vertices, the more "wasted" threads we
729 * dispatch, but the division is potentially easier.
730 *
731 * One straightforward choice is to pad num_vertices to the next power of two,
732 * which means that the division and modulus are just simple bit shifts and
733 * masking. But the actual algorithm is a bit more complicated. The thread
734 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
735 * to dividing by a power of two. This is possibly using the technique
736 * described in patent US20170010862A1. As a result, padded_num_vertices can be
737 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
738 * since we need less padding.
739 *
740 * padded_num_vertices is picked by the hardware. The driver just specifies the
741 * actual number of vertices. At least for Mali G71, the first few cases are
742 * given by:
743 *
744 * num_vertices | padded_num_vertices
745 * 3 | 4
746 * 4-7 | 8
747 * 8-11 | 12 (3 * 4)
748 * 12-15 | 16
749 * 16-19 | 20 (5 * 4)
750 *
751 * Note that padded_num_vertices is a multiple of four (presumably because
752 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
753 * at least one more than num_vertices, which seems like a quirk of the
754 * hardware. For larger num_vertices, the hardware uses the following
755 * algorithm: using the binary representation of num_vertices, we look at the
756 * most significant set bit as well as the following 3 bits. Let n be the
757 * number of bits after those 4 bits. Then we set padded_num_vertices according
758 * to the following table:
759 *
760 * high bits | padded_num_vertices
761 * 1000 | 9 * 2^n
762 * 1001 | 5 * 2^(n+1)
763 * 101x | 3 * 2^(n+2)
764 * 110x | 7 * 2^(n+1)
765 * 111x | 2^(n+4)
766 *
767 * For example, if num_vertices = 70 is passed to glDraw(), its binary
768 * representation is 1000110, so n = 3 and the high bits are 1000, and
769 * therefore padded_num_vertices = 9 * 2^3 = 72.
770 *
771 * The attribute unit works in terms of the original linear_id. if
772 * num_instances = 1, then they are the same, and everything is simple.
773 * However, with instancing things get more complicated. There are four
774 * possible modes, two of them we can group together:
775 *
776 * 1. Use the linear_id directly. Only used when there is no instancing.
777 *
778 * 2. Use the linear_id modulo a constant. This is used for per-vertex
779 * attributes with instancing enabled by making the constant equal
780 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
781 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
782 * The shift field specifies the power of two, while the extra_flags field
783 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
784 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
785 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
786 * shift = 3. Note that we must exactly follow the hardware algorithm used to
787 * get padded_num_vertices in order to correctly implement per-vertex
788 * attributes.
789 *
790 * 3. Divide the linear_id by a constant. In order to correctly implement
791 * instance divisors, we have to divide linear_id by padded_num_vertices times
792 * to user-specified divisor. So first we compute padded_num_vertices, again
793 * following the exact same algorithm that the hardware uses, then multiply it
794 * by the GL-level divisor to get the hardware-level divisor. This case is
795 * further divided into two more cases. If the hardware-level divisor is a
796 * power of two, then we just need to shift. The shift amount is specified by
797 * the shift field, so that the hardware-level divisor is just 2^shift.
798 *
799 * If it isn't a power of two, then we have to divide by an arbitrary integer.
800 * For that, we use the well-known technique of multiplying by an approximation
801 * of the inverse. The driver must compute the magic multiplier and shift
802 * amount, and then the hardware does the multiplication and shift. The
803 * hardware and driver also use the "round-down" optimization as described in
804 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
805 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
806 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
807 * presumably this simplifies the hardware multiplier a little. The hardware
808 * first multiplies linear_id by the multiplier and takes the high 32 bits,
809 * then applies the round-down correction if extra_flags = 1, then finally
810 * shifts right by the shift field.
811 *
812 * There are some differences between ridiculousfish's algorithm and the Mali
813 * hardware algorithm, which means that the reference code from ridiculousfish
814 * doesn't always produce the right constants. Mali does not use the pre-shift
815 * optimization, since that would make a hardware implementation slower (it
816 * would have to always do the pre-shift, multiply, and post-shift operations).
817 * It also forces the multplier to be at least 2^31, which means that the
818 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
819 * given the divisor d, the algorithm the driver must follow is:
820 *
821 * 1. Set shift = floor(log2(d)).
822 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
823 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
824 * magic_divisor = m - 1 and extra_flags = 1.
825 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
826 *
827 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
828 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
829 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
830 * (*NOT the row stride*). Size is set to the size of the image itself.
831 *
832 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
833 * use particular fixed addresses with modified structures.
834 */
835
836 enum mali_attr_mode {
837 MALI_ATTR_UNUSED = 0,
838 MALI_ATTR_LINEAR = 1,
839 MALI_ATTR_POT_DIVIDE = 2,
840 MALI_ATTR_MODULO = 3,
841 MALI_ATTR_NPOT_DIVIDE = 4,
842 MALI_ATTR_IMAGE = 5,
843 };
844
845 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
846
847 #define MALI_ATTR_VERTEXID (0x22)
848 #define MALI_ATTR_INSTANCEID (0x24)
849 #define MALI_VARYING_FRAG_COORD (0x25)
850 #define MALI_VARYING_FRONT_FACING (0x26)
851
852 /* This magic "pseudo-address" is used as `elements` to implement
853 * gl_PointCoord. When read from a fragment shader, it generates a point
854 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
855 * require an affine transformation in the shader. */
856
857 #define MALI_VARYING_POINT_COORD (0x61)
858
859 /* Used for comparison to check if an address is special. Mostly a guess, but
860 * it doesn't really matter. */
861
862 #define MALI_RECORD_SPECIAL (0x100)
863
864 union mali_attr {
865 /* This is used for actual attributes. */
866 struct {
867 /* The bottom 3 bits are the mode */
868 mali_ptr elements : 64 - 8;
869 u32 shift : 5;
870 u32 extra_flags : 3;
871 u32 stride;
872 u32 size;
873 };
874 /* The entry after an NPOT_DIVIDE entry has this format. It stores
875 * extra information that wouldn't fit in a normal entry.
876 */
877 struct {
878 u32 unk; /* = 0x20 */
879 u32 magic_divisor;
880 u32 zero;
881 /* This is the original, GL-level divisor. */
882 u32 divisor;
883 };
884 } __attribute__((packed));
885
886 struct mali_attr_meta {
887 /* Vertex buffer index */
888 u8 index;
889
890 unsigned unknown1 : 2;
891 unsigned swizzle : 12;
892 enum mali_format format : 8;
893
894 /* Always observed to be zero at the moment */
895 unsigned unknown3 : 2;
896
897 /* When packing multiple attributes in a buffer, offset addresses by
898 * this value. Obscurely, this is signed. */
899 int32_t src_offset;
900 } __attribute__((packed));
901
902 #define FBD_MASK (~0x3f)
903
904 /* MFBD, rather than SFBD */
905 #define MALI_MFBD (0x1)
906
907 /* ORed into an MFBD address to specify the fbx section is included */
908 #define MALI_MFBD_TAG_EXTRA (0x2)
909
910 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
911 * They also seem to be the same between Bifrost and Midgard. They're shared in
912 * fused payloads.
913 */
914
915 /* Applies to unknown_draw */
916
917 #define MALI_DRAW_INDEXED_UINT8 (0x10)
918 #define MALI_DRAW_INDEXED_UINT16 (0x20)
919 #define MALI_DRAW_INDEXED_UINT32 (0x30)
920 #define MALI_DRAW_INDEXED_SIZE (0x30)
921 #define MALI_DRAW_INDEXED_SHIFT (4)
922
923 #define MALI_DRAW_VARYING_SIZE (0x100)
924
925 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
926 * use the last vertex. This is the default in DX and VK, but not in GL. */
927
928 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
929
930 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
931
932 struct mali_vertex_tiler_prefix {
933 /* This is a dynamic bitfield containing the following things in this order:
934 *
935 * - gl_WorkGroupSize.x
936 * - gl_WorkGroupSize.y
937 * - gl_WorkGroupSize.z
938 * - gl_NumWorkGroups.x
939 * - gl_NumWorkGroups.y
940 * - gl_NumWorkGroups.z
941 *
942 * The number of bits allocated for each number is based on the *_shift
943 * fields below. For example, workgroups_y_shift gives the bit that
944 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
945 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
946 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
947 * value is one more than the stored value, since if any of the values
948 * are zero, then there would be no invocations (and hence no job). If
949 * there were 0 bits allocated to a given field, then it must be zero,
950 * and hence the real value is one.
951 *
952 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
953 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
954 * where vertex count is the number of vertices.
955 */
956 u32 invocation_count;
957
958 /* Bitfield for shifts:
959 *
960 * size_y_shift : 5
961 * size_z_shift : 5
962 * workgroups_x_shift : 6
963 * workgroups_y_shift : 6
964 * workgroups_z_shift : 6
965 * workgroups_x_shift_2 : 4
966 */
967 u32 invocation_shifts;
968
969 u32 draw_mode : 4;
970 u32 unknown_draw : 22;
971
972 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
973 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
974 * something to do with how many quads get put in the same execution
975 * engine, which is a balance (you don't want to starve the engine, but
976 * you also want to distribute work evenly).
977 */
978 u32 workgroups_x_shift_3 : 6;
979
980
981 /* Negative of min_index. This is used to compute
982 * the unbiased index in tiler/fragment shader runs.
983 *
984 * The hardware adds offset_bias_correction in each run,
985 * so that absent an index bias, the first vertex processed is
986 * genuinely the first vertex (0). But with an index bias,
987 * the first vertex process is numbered the same as the bias.
988 *
989 * To represent this more conviniently:
990 * unbiased_index = lower_bound_index +
991 * index_bias +
992 * offset_bias_correction
993 *
994 * This is done since the hardware doesn't accept a index_bias
995 * and this allows it to recover the unbiased index.
996 */
997 int32_t offset_bias_correction;
998 u32 zero1;
999
1000 /* Like many other strictly nonzero quantities, index_count is
1001 * subtracted by one. For an indexed cube, this is equal to 35 = 6
1002 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
1003 * for an indexed draw, index_count is the number of actual vertices
1004 * rendered whereas invocation_count is the number of unique vertices
1005 * rendered (the number of times the vertex shader must be invoked).
1006 * For non-indexed draws, this is just equal to invocation_count. */
1007
1008 u32 index_count;
1009
1010 /* No hidden structure; literally just a pointer to an array of uint
1011 * indices (width depends on flags). Thanks, guys, for not making my
1012 * life insane for once! NULL for non-indexed draws. */
1013
1014 u64 indices;
1015 } __attribute__((packed));
1016
1017 /* Point size / line width can either be specified as a 32-bit float (for
1018 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
1019 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1020 * payload, the contents of varying_pointer will be intepreted as an array of
1021 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1022 * creating a special MALI_R16F varying writing to varying_pointer. */
1023
1024 union midgard_primitive_size {
1025 float constant;
1026 u64 pointer;
1027 };
1028
1029 struct bifrost_tiler_heap_meta {
1030 u32 zero;
1031 u32 heap_size;
1032 /* note: these are just guesses! */
1033 mali_ptr tiler_heap_start;
1034 mali_ptr tiler_heap_free;
1035 mali_ptr tiler_heap_end;
1036
1037 /* hierarchy weights? but they're still 0 after the job has run... */
1038 u32 zeros[10];
1039 u32 unk1;
1040 u32 unk7e007e;
1041 } __attribute__((packed));
1042
1043 struct bifrost_tiler_meta {
1044 u32 tiler_heap_next_start; /* To be written by the GPU */
1045 u32 used_hierarchy_mask; /* To be written by the GPU */
1046 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
1047 u16 flags;
1048 u16 width;
1049 u16 height;
1050 u64 zero0;
1051 mali_ptr tiler_heap_meta;
1052 /* TODO what is this used for? */
1053 u64 zeros[20];
1054 } __attribute__((packed));
1055
1056 struct bifrost_tiler_only {
1057 /* 0x20 */
1058 union midgard_primitive_size primitive_size;
1059
1060 mali_ptr tiler_meta;
1061
1062 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1063 } __attribute__((packed));
1064
1065 struct mali_vertex_tiler_postfix {
1066 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
1067
1068 /* Both zero for non-instanced draws. For instanced draws, a
1069 * decomposition of padded_num_vertices. See the comments about the
1070 * corresponding fields in mali_attr for context. */
1071
1072 unsigned instance_shift : 5;
1073 unsigned instance_odd : 3;
1074
1075 u8 zero4;
1076
1077 /* Offset for first vertex in buffer */
1078 u32 offset_start;
1079
1080 u64 zero5;
1081
1082 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1083 * output from the vertex shader for tiler jobs.
1084 */
1085
1086 u64 position_varying;
1087
1088 /* An array of mali_uniform_buffer_meta's. The size is given by the
1089 * shader_meta.
1090 */
1091 u64 uniform_buffers;
1092
1093 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
1094 * On Midgard, this is a pointer to an array of pointers to the texture
1095 * descriptors, number of pointers bounded by number of textures. The
1096 * indirection is needed to accomodate varying numbers and sizes of
1097 * texture descriptors */
1098 u64 textures;
1099
1100 /* For OpenGL, from what I've seen, this is intimately connected to
1101 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1102 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1103 * array of sampler descriptors (which are uniform in size) */
1104 u64 sampler_descriptor;
1105
1106 u64 uniforms;
1107 u64 shader;
1108 u64 attributes; /* struct attribute_buffer[] */
1109 u64 attribute_meta; /* attribute_meta[] */
1110 u64 varyings; /* struct attr */
1111 u64 varying_meta; /* pointer */
1112 u64 viewport;
1113 u64 occlusion_counter; /* A single bit as far as I can tell */
1114
1115 /* On Bifrost, this points directly to a mali_shared_memory structure.
1116 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
1117 * tagged), which embeds a mali_shared_memory structure */
1118 mali_ptr shared_memory;
1119 } __attribute__((packed));
1120
1121 struct midgard_payload_vertex_tiler {
1122 struct mali_vertex_tiler_prefix prefix;
1123 struct mali_vertex_tiler_postfix postfix;
1124
1125 union midgard_primitive_size primitive_size;
1126 } __attribute__((packed));
1127
1128 struct bifrost_payload_vertex {
1129 struct mali_vertex_tiler_prefix prefix;
1130 struct mali_vertex_tiler_postfix postfix;
1131 } __attribute__((packed));
1132
1133 struct bifrost_payload_tiler {
1134 struct mali_vertex_tiler_prefix prefix;
1135 struct bifrost_tiler_only tiler;
1136 struct mali_vertex_tiler_postfix postfix;
1137 } __attribute__((packed));
1138
1139 struct bifrost_payload_fused {
1140 struct mali_vertex_tiler_prefix prefix;
1141 struct bifrost_tiler_only tiler;
1142 struct mali_vertex_tiler_postfix tiler_postfix;
1143 u64 padding; /* zero */
1144 struct mali_vertex_tiler_postfix vertex_postfix;
1145 } __attribute__((packed));
1146
1147 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1148 * texture is stored as (63, 63) in these fields. This adjusts for that.
1149 * There's an identical pattern in the framebuffer descriptor. Even vertex
1150 * count fields work this way, hence the generic name -- integral fields that
1151 * are strictly positive generally need this adjustment. */
1152
1153 #define MALI_POSITIVE(dim) (dim - 1)
1154
1155 /* Shared across both command stream and Midgard, and even with Bifrost */
1156
1157 enum mali_texture_type {
1158 MALI_TEX_CUBE = 0x0,
1159 MALI_TEX_1D = 0x1,
1160 MALI_TEX_2D = 0x2,
1161 MALI_TEX_3D = 0x3
1162 };
1163
1164 /* 8192x8192 */
1165 #define MAX_MIP_LEVELS (13)
1166
1167 /* Cubemap bloats everything up */
1168 #define MAX_CUBE_FACES (6)
1169
1170 /* For each pointer, there is an address and optionally also a stride */
1171 #define MAX_ELEMENTS (2)
1172
1173 /* It's not known why there are 4-bits allocated -- this enum is almost
1174 * certainly incomplete */
1175
1176 enum mali_texture_layout {
1177 /* For a Z/S texture, this is linear */
1178 MALI_TEXTURE_TILED = 0x1,
1179
1180 /* Z/S textures cannot be tiled */
1181 MALI_TEXTURE_LINEAR = 0x2,
1182
1183 /* 16x16 sparse */
1184 MALI_TEXTURE_AFBC = 0xC
1185 };
1186
1187 /* Corresponds to the type passed to glTexImage2D and so forth */
1188
1189 struct mali_texture_format {
1190 unsigned swizzle : 12;
1191 enum mali_format format : 8;
1192
1193 unsigned srgb : 1;
1194 unsigned unknown1 : 1;
1195
1196 enum mali_texture_type type : 2;
1197 enum mali_texture_layout layout : 4;
1198
1199 /* Always set */
1200 unsigned unknown2 : 1;
1201
1202 /* Set to allow packing an explicit stride */
1203 unsigned manual_stride : 1;
1204
1205 unsigned zero : 2;
1206 } __attribute__((packed));
1207
1208 struct mali_texture_descriptor {
1209 uint16_t width;
1210 uint16_t height;
1211 uint16_t depth;
1212 uint16_t array_size;
1213
1214 struct mali_texture_format format;
1215
1216 uint16_t unknown3;
1217
1218 /* One for non-mipmapped, zero for mipmapped */
1219 uint8_t unknown3A;
1220
1221 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1222 uint8_t levels;
1223
1224 /* Swizzling is a single 32-bit word, broken up here for convenience.
1225 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1226 * level swizzling, not the internal pixel-level swizzling which is
1227 * below OpenGL's reach */
1228
1229 unsigned swizzle : 12;
1230 unsigned swizzle_zero : 20;
1231
1232 uint32_t unknown5;
1233 uint32_t unknown6;
1234 uint32_t unknown7;
1235 } __attribute__((packed));
1236
1237 /* While Midgard texture descriptors are variable length, Bifrost descriptors
1238 * are fixed like samplers with more pointers to expand if necessary */
1239
1240 struct bifrost_texture_descriptor {
1241 unsigned format_unk : 4; /* 2 */
1242 enum mali_texture_type type : 2;
1243 unsigned zero : 4;
1244 unsigned format_swizzle : 12;
1245 enum mali_format format : 8;
1246 unsigned srgb : 1;
1247 unsigned format_unk3 : 1; /* 0 */
1248
1249 uint16_t width; /* MALI_POSITIVE */
1250 uint16_t height; /* MALI_POSITIVE */
1251
1252 /* OpenGL swizzle */
1253 unsigned swizzle : 12;
1254 enum mali_texture_layout layout : 4;
1255 uint8_t levels : 8; /* Number of levels-1 if mipmapped, 0 if not */
1256 unsigned unk1 : 8;
1257
1258 unsigned levels_unk : 24; /* 0 */
1259 unsigned level_2 : 8; /* Number of levels, again? */
1260
1261 mali_ptr payload;
1262
1263 uint16_t array_size;
1264 uint16_t unk4;
1265
1266 uint16_t depth;
1267 uint16_t unk5;
1268 } __attribute__((packed));
1269
1270 /* filter_mode */
1271
1272 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1273 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1274
1275 /* TODO: What do these bits mean individually? Only seen set together */
1276
1277 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1278 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1279
1280 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1281 * sampler_t flag. For typical OpenGL textures, this is always set. */
1282
1283 #define MALI_SAMP_NORM_COORDS (1 << 5)
1284
1285 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1286 * be cleaned up a lot. */
1287
1288 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1289
1290 static inline int16_t
1291 FIXED_16(float x, bool allow_negative)
1292 {
1293 /* Clamp inputs, accounting for float error */
1294 float max_lod = (32.0 - (1.0 / 512.0));
1295 float min_lod = allow_negative ? -max_lod : 0.0;
1296
1297 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1298
1299 return (int) (x * 256.0);
1300 }
1301
1302 struct mali_sampler_descriptor {
1303 uint16_t filter_mode;
1304
1305 /* Fixed point, signed.
1306 * Upper 7 bits before the decimal point, although it caps [0-31].
1307 * Lower 8 bits after the decimal point: int(round(x * 256)) */
1308
1309 int16_t lod_bias;
1310 int16_t min_lod;
1311 int16_t max_lod;
1312
1313 /* All one word in reality, but packed a bit. Comparisons are flipped
1314 * from OpenGL. */
1315
1316 enum mali_wrap_mode wrap_s : 4;
1317 enum mali_wrap_mode wrap_t : 4;
1318 enum mali_wrap_mode wrap_r : 4;
1319 enum mali_func compare_func : 3;
1320
1321 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1322 * ES2, controlling seamless cubemapping */
1323 unsigned seamless_cube_map : 1;
1324
1325 unsigned zero : 16;
1326
1327 uint32_t zero2;
1328 float border_color[4];
1329 } __attribute__((packed));
1330
1331 /* Bifrost sampler descriptors look pretty similar */
1332
1333 #define BIFROST_SAMP_MIN_NEAREST (1)
1334 #define BIFROST_SAMP_MAG_LINEAR (1)
1335
1336 struct bifrost_sampler_descriptor {
1337 uint8_t unk1;
1338
1339 enum mali_wrap_mode wrap_r : 4;
1340 enum mali_wrap_mode wrap_t : 4;
1341 enum mali_wrap_mode wrap_s : 4;
1342 uint8_t unk8 : 4;
1343
1344 uint8_t unk2 : 1;
1345 uint8_t norm_coords : 1;
1346 uint8_t unk3 : 1;
1347 uint8_t min_filter : 1;
1348 uint8_t zero1 : 1;
1349 uint8_t mag_filter : 1;
1350 uint8_t mip_filter : 1;
1351
1352 int16_t min_lod;
1353 int16_t max_lod;
1354
1355 uint64_t zero2;
1356 uint64_t zero3;
1357 uint64_t zero4;
1358 } __attribute__((packed));
1359
1360 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1361 * of tile numbers. */
1362
1363 #define MALI_TILE_SHIFT 4
1364 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1365
1366 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1367 * each component. Notice that this provides a theoretical upper bound of (1 <<
1368 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1369 * 65536x65536. Multiplying that together, times another four given that Mali
1370 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1371 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1372 * alone rendering in real-time to such a buffer.
1373 *
1374 * Nice job, guys.*/
1375
1376 /* From mali_kbase_10969_workaround.c */
1377 #define MALI_X_COORD_MASK 0x00000FFF
1378 #define MALI_Y_COORD_MASK 0x0FFF0000
1379
1380 /* Extract parts of a tile coordinate */
1381
1382 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1383 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1384
1385 /* Helpers to generate tile coordinates based on the boundary coordinates in
1386 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1387 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1388 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1389 * problem. */
1390
1391 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1392 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1393 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1394 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1395 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1396
1397 struct mali_payload_fragment {
1398 u32 min_tile_coord;
1399 u32 max_tile_coord;
1400 mali_ptr framebuffer;
1401 } __attribute__((packed));
1402
1403 /* Single Framebuffer Descriptor */
1404
1405 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1406 * configured for 4x. With MSAA_8, it is configured for 8x. */
1407
1408 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1409 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1410 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1411 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1412
1413 /* Fast/slow based on whether all three buffers are cleared at once */
1414
1415 #define MALI_CLEAR_FAST (1 << 18)
1416 #define MALI_CLEAR_SLOW (1 << 28)
1417 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1418
1419 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1420 * within the larget framebuffer descriptor). Analogous to
1421 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1422
1423 /* See pan_tiler.c for derivation */
1424 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1425
1426 /* Flag disabling the tiler for clear-only jobs, with
1427 hierarchical tiling */
1428 #define MALI_TILER_DISABLED (1 << 12)
1429
1430 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1431 * hierarhical tiling. */
1432 #define MALI_TILER_USER 0xFFF
1433
1434 /* Absent any geometry, the minimum size of the polygon list header */
1435 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1436
1437 struct midgard_tiler_descriptor {
1438 /* Size of the entire polygon list; see pan_tiler.c for the
1439 * computation. It's based on hierarchical tiling */
1440
1441 u32 polygon_list_size;
1442
1443 /* Name known from the replay workaround in the kernel. What exactly is
1444 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1445 * specifies a mask of hierarchy weights, which explains some of the
1446 * performance mysteries around setting it. We also see the bottom bit
1447 * of tiler_flags set in the kernel, but no comment why.
1448 *
1449 * hierarchy_mask can have the TILER_DISABLED flag */
1450
1451 u16 hierarchy_mask;
1452 u16 flags;
1453
1454 /* See mali_tiler.c for an explanation */
1455 mali_ptr polygon_list;
1456 mali_ptr polygon_list_body;
1457
1458 /* Names based on we see symmetry with replay jobs which name these
1459 * explicitly */
1460
1461 mali_ptr heap_start; /* tiler heap_free_address */
1462 mali_ptr heap_end;
1463
1464 /* Hierarchy weights. We know these are weights based on the kernel,
1465 * but I've never seen them be anything other than zero */
1466 u32 weights[8];
1467 };
1468
1469 enum mali_block_format {
1470 MALI_BLOCK_TILED = 0x0,
1471 MALI_BLOCK_UNKNOWN = 0x1,
1472 MALI_BLOCK_LINEAR = 0x2,
1473 MALI_BLOCK_AFBC = 0x3,
1474 };
1475
1476 struct mali_sfbd_format {
1477 /* 0x1 */
1478 unsigned unk1 : 6;
1479
1480 /* mali_channel_swizzle */
1481 unsigned swizzle : 12;
1482
1483 /* MALI_POSITIVE */
1484 unsigned nr_channels : 2;
1485
1486 /* 0x4 */
1487 unsigned unk2 : 6;
1488
1489 enum mali_block_format block : 2;
1490
1491 /* 0xb */
1492 unsigned unk3 : 4;
1493 };
1494
1495 /* Shared structure at the start of framebuffer descriptors, or used bare for
1496 * compute jobs, configuring stack and shared memory */
1497
1498 struct mali_shared_memory {
1499 u32 stack_shift : 4;
1500 u32 unk0 : 28;
1501
1502 /* Configuration for shared memory for compute shaders.
1503 * shared_workgroup_count is logarithmic and may be computed for a
1504 * compute shader using shared memory as:
1505 *
1506 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1507 *
1508 * For compute shaders that don't use shared memory, or non-compute
1509 * shaders, this is set to ~0
1510 */
1511
1512 u32 shared_workgroup_count : 5;
1513 u32 shared_unk1 : 3;
1514 u32 shared_shift : 4;
1515 u32 shared_zero : 20;
1516
1517 mali_ptr scratchpad;
1518
1519 /* For compute shaders, the RAM backing of workgroup-shared memory. For
1520 * fragment shaders on Bifrost, apparently multisampling locations */
1521
1522 mali_ptr shared_memory;
1523 mali_ptr unknown1;
1524 } __attribute__((packed));
1525
1526 /* Configures multisampling on Bifrost fragment jobs */
1527
1528 struct bifrost_multisampling {
1529 u64 zero1;
1530 u64 zero2;
1531 mali_ptr sample_locations;
1532 u64 zero4;
1533 } __attribute__((packed));
1534
1535 struct mali_single_framebuffer {
1536 struct mali_shared_memory shared_memory;
1537 struct mali_sfbd_format format;
1538
1539 u32 clear_flags;
1540 u32 zero2;
1541
1542 /* Purposeful off-by-one in these fields should be accounted for by the
1543 * MALI_DIMENSION macro */
1544
1545 u16 width;
1546 u16 height;
1547
1548 u32 zero3[4];
1549 mali_ptr checksum;
1550 u32 checksum_stride;
1551 u32 zero5;
1552
1553 /* By default, the framebuffer is upside down from OpenGL's
1554 * perspective. Set framebuffer to the end and negate the stride to
1555 * flip in the Y direction */
1556
1557 mali_ptr framebuffer;
1558 int32_t stride;
1559
1560 u32 zero4;
1561
1562 /* Depth and stencil buffers are interleaved, it appears, as they are
1563 * set to the same address in captures. Both fields set to zero if the
1564 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1565 * get a zero enable despite the buffer being present; that still is
1566 * disabled. */
1567
1568 mali_ptr depth_buffer; // not SAME_VA
1569 u32 depth_stride_zero : 4;
1570 u32 depth_stride : 28;
1571 u32 zero7;
1572
1573 mali_ptr stencil_buffer; // not SAME_VA
1574 u32 stencil_stride_zero : 4;
1575 u32 stencil_stride : 28;
1576 u32 zero8;
1577
1578 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1579 u32 clear_color_2; // always equal, but unclear function?
1580 u32 clear_color_3; // always equal, but unclear function?
1581 u32 clear_color_4; // always equal, but unclear function?
1582
1583 /* Set to zero if not cleared */
1584
1585 float clear_depth_1; // float32, ditto
1586 float clear_depth_2; // float32, ditto
1587 float clear_depth_3; // float32, ditto
1588 float clear_depth_4; // float32, ditto
1589
1590 u32 clear_stencil; // Exactly as it appears in OpenGL
1591
1592 u32 zero6[7];
1593
1594 struct midgard_tiler_descriptor tiler;
1595
1596 /* More below this, maybe */
1597 } __attribute__((packed));
1598
1599
1600 /* SINGLE to disable multisampling, AVERAGE for
1601 * EXT_multisampled_render_to_texture operation where multiple tilebuffer
1602 * samples are implicitly resolved before writeout, MULTIPLE to write multiple
1603 * samples inline, and LAYERED for ES3-style multisampling with each sample in
1604 * a different buffer.
1605 */
1606
1607 enum mali_msaa_mode {
1608 MALI_MSAA_SINGLE = 0,
1609 MALI_MSAA_AVERAGE = 1,
1610 MALI_MSAA_MULTIPLE = 2,
1611 MALI_MSAA_LAYERED = 3,
1612 };
1613
1614 #define MALI_MFBD_FORMAT_SRGB (1 << 0)
1615
1616 struct mali_rt_format {
1617 unsigned unk1 : 32;
1618 unsigned unk2 : 3;
1619
1620 unsigned nr_channels : 2; /* MALI_POSITIVE */
1621
1622 unsigned unk3 : 4;
1623 unsigned unk4 : 1;
1624 enum mali_block_format block : 2;
1625 enum mali_msaa_mode msaa : 2;
1626 unsigned flags : 2;
1627
1628 unsigned swizzle : 12;
1629
1630 unsigned zero : 3;
1631
1632 /* Disables MFBD preload. When this bit is set, the render target will
1633 * be cleared every frame. When this bit is clear, the hardware will
1634 * automatically wallpaper the render target back from main memory.
1635 * Unfortunately, MFBD preload is very broken on Midgard, so in
1636 * practice, this is a chicken bit that should always be set.
1637 * Discovered by accident, as all good chicken bits are. */
1638
1639 unsigned no_preload : 1;
1640 } __attribute__((packed));
1641
1642 /* Flags for afbc.flags and ds_afbc.flags */
1643
1644 #define MALI_AFBC_FLAGS 0x10009
1645
1646 /* Lossless RGB and RGBA colorspace transform */
1647 #define MALI_AFBC_YTR (1 << 17)
1648
1649 struct mali_render_target {
1650 struct mali_rt_format format;
1651
1652 u64 zero1;
1653
1654 struct {
1655 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1656 * there is an extra metadata buffer that contains 16 bytes per tile.
1657 * The framebuffer needs to be the same size as before, since we don't
1658 * know ahead of time how much space it will take up. The
1659 * framebuffer_stride is set to 0, since the data isn't stored linearly
1660 * anymore.
1661 *
1662 * When AFBC is disabled, these fields are zero.
1663 */
1664
1665 mali_ptr metadata;
1666 u32 stride; // stride in units of tiles
1667 u32 flags; // = 0x20000
1668 } afbc;
1669
1670 mali_ptr framebuffer;
1671
1672 u32 zero2 : 4;
1673 u32 framebuffer_stride : 28; // in units of bytes, row to next
1674 u32 layer_stride; /* For multisample rendering */
1675
1676 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1677 u32 clear_color_2; // always equal, but unclear function?
1678 u32 clear_color_3; // always equal, but unclear function?
1679 u32 clear_color_4; // always equal, but unclear function?
1680 } __attribute__((packed));
1681
1682 /* An optional part of mali_framebuffer. It comes between the main structure
1683 * and the array of render targets. It must be included if any of these are
1684 * enabled:
1685 *
1686 * - Transaction Elimination
1687 * - Depth/stencil
1688 * - TODO: Anything else?
1689 */
1690
1691 /* flags_hi */
1692 #define MALI_EXTRA_PRESENT (0x1)
1693
1694 /* flags_lo */
1695 #define MALI_EXTRA_ZS (0x4)
1696
1697 struct mali_framebuffer_extra {
1698 mali_ptr checksum;
1699 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1700 u32 checksum_stride;
1701
1702 unsigned flags_lo : 4;
1703 enum mali_block_format zs_block : 2;
1704
1705 /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
1706 * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
1707 unsigned zs_samples : 4;
1708 unsigned flags_hi : 22;
1709
1710 union {
1711 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1712 struct {
1713 mali_ptr depth_stencil_afbc_metadata;
1714 u32 depth_stencil_afbc_stride; // in units of tiles
1715 u32 flags;
1716
1717 mali_ptr depth_stencil;
1718
1719 u64 padding;
1720 } ds_afbc;
1721
1722 struct {
1723 /* Depth becomes depth/stencil in case of combined D/S */
1724 mali_ptr depth;
1725 u32 depth_stride_zero : 4;
1726 u32 depth_stride : 28;
1727 u32 depth_layer_stride;
1728
1729 mali_ptr stencil;
1730 u32 stencil_stride_zero : 4;
1731 u32 stencil_stride : 28;
1732 u32 stencil_layer_stride;
1733 } ds_linear;
1734 };
1735
1736
1737 u32 clear_color_1;
1738 u32 clear_color_2;
1739 u64 zero3;
1740 } __attribute__((packed));
1741
1742 /* Flags for mfbd_flags */
1743
1744 /* Enables writing depth results back to main memory (rather than keeping them
1745 * on-chip in the tile buffer and then discarding) */
1746
1747 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1748
1749 /* The MFBD contains the extra mali_framebuffer_extra section */
1750
1751 #define MALI_MFBD_EXTRA (1 << 13)
1752
1753 struct mali_framebuffer {
1754 union {
1755 struct mali_shared_memory shared_memory;
1756 struct bifrost_multisampling msaa;
1757 };
1758
1759 /* 0x20 */
1760 u16 width1, height1;
1761 u32 zero3;
1762 u16 width2, height2;
1763 u32 unk1 : 19; // = 0x01000
1764 u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1765 u32 unk2 : 2; // = 0
1766 u32 rt_count_2 : 3; // no off-by-one
1767 u32 zero4 : 5;
1768 /* 0x30 */
1769 u32 clear_stencil : 8;
1770 u32 mfbd_flags : 24; // = 0x100
1771 float clear_depth;
1772
1773 union {
1774 struct midgard_tiler_descriptor tiler;
1775 struct {
1776 mali_ptr tiler_meta;
1777 u32 zeros[16];
1778 };
1779 };
1780
1781 /* optional: struct mali_framebuffer_extra extra */
1782 /* struct mali_render_target rts[] */
1783 } __attribute__((packed));
1784
1785 #endif /* __PANFROST_JOB_H__ */