7f8e85e0f0a14035bf3441cd202d25b8363e8b98
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <inttypes.h>
34
35 typedef uint8_t u8;
36 typedef uint16_t u16;
37 typedef uint32_t u32;
38 typedef uint64_t u64;
39 typedef uint64_t mali_ptr;
40
41 /* Applies to tiler_gl_enables */
42
43 #define MALI_OCCLUSION_QUERY (1 << 3)
44 #define MALI_OCCLUSION_PRECISE (1 << 4)
45
46 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
47 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
48 * disagree about how to do viewport flipping, so the blob actually sets this
49 * for GL_CW but then has a negative viewport stride */
50
51 #define MALI_FRONT_CCW_TOP (1 << 5)
52
53 #define MALI_CULL_FACE_FRONT (1 << 6)
54 #define MALI_CULL_FACE_BACK (1 << 7)
55
56 /* Flags apply to unknown2_3? */
57
58 #define MALI_HAS_MSAA (1 << 0)
59
60 /* Execute fragment shader per-sample if set (e.g. to implement gl_SampleID
61 * reads) */
62 #define MALI_PER_SAMPLE (1 << 2)
63 #define MALI_CAN_DISCARD (1 << 5)
64
65 /* Applies on SFBD systems, specifying that programmable blending is in use */
66 #define MALI_HAS_BLEND_SHADER (1 << 6)
67
68 /* func is mali_func */
69 #define MALI_DEPTH_FUNC(func) (func << 8)
70 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
71 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
72
73 #define MALI_DEPTH_WRITEMASK (1 << 11)
74
75 #define MALI_DEPTH_CLIP_NEAR (1 << 12)
76 #define MALI_DEPTH_CLIP_FAR (1 << 13)
77
78 /* Next flags to unknown2_4 */
79 #define MALI_STENCIL_TEST (1 << 0)
80
81 #define MALI_ALPHA_TO_COVERAGE (1 << 1)
82
83 #define MALI_NO_DITHER (1 << 9)
84 #define MALI_DEPTH_RANGE_A (1 << 12)
85 #define MALI_DEPTH_RANGE_B (1 << 13)
86 #define MALI_NO_MSAA (1 << 14)
87
88 #define MALI_MASK_R (1 << 0)
89 #define MALI_MASK_G (1 << 1)
90 #define MALI_MASK_B (1 << 2)
91 #define MALI_MASK_A (1 << 3)
92
93 enum mali_nondominant_mode {
94 MALI_BLEND_NON_MIRROR = 0,
95 MALI_BLEND_NON_ZERO = 1
96 };
97
98 enum mali_dominant_blend {
99 MALI_BLEND_DOM_SOURCE = 0,
100 MALI_BLEND_DOM_DESTINATION = 1
101 };
102
103 enum mali_dominant_factor {
104 MALI_DOMINANT_UNK0 = 0,
105 MALI_DOMINANT_ZERO = 1,
106 MALI_DOMINANT_SRC_COLOR = 2,
107 MALI_DOMINANT_DST_COLOR = 3,
108 MALI_DOMINANT_UNK4 = 4,
109 MALI_DOMINANT_SRC_ALPHA = 5,
110 MALI_DOMINANT_DST_ALPHA = 6,
111 MALI_DOMINANT_CONSTANT = 7,
112 };
113
114 enum mali_blend_modifier {
115 MALI_BLEND_MOD_UNK0 = 0,
116 MALI_BLEND_MOD_NORMAL = 1,
117 MALI_BLEND_MOD_SOURCE_ONE = 2,
118 MALI_BLEND_MOD_DEST_ONE = 3,
119 };
120
121 struct mali_blend_mode {
122 enum mali_blend_modifier clip_modifier : 2;
123 unsigned unused_0 : 1;
124 unsigned negate_source : 1;
125
126 enum mali_dominant_blend dominant : 1;
127
128 enum mali_nondominant_mode nondominant_mode : 1;
129
130 unsigned unused_1 : 1;
131
132 unsigned negate_dest : 1;
133
134 enum mali_dominant_factor dominant_factor : 3;
135 unsigned complement_dominant : 1;
136 } __attribute__((packed));
137
138 struct mali_blend_equation {
139 /* Of type mali_blend_mode */
140 unsigned rgb_mode : 12;
141 unsigned alpha_mode : 12;
142
143 unsigned zero1 : 4;
144
145 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
146
147 unsigned color_mask : 4;
148 } __attribute__((packed));
149
150 /* Used with channel swizzling */
151 enum mali_channel {
152 MALI_CHANNEL_RED = 0,
153 MALI_CHANNEL_GREEN = 1,
154 MALI_CHANNEL_BLUE = 2,
155 MALI_CHANNEL_ALPHA = 3,
156 MALI_CHANNEL_ZERO = 4,
157 MALI_CHANNEL_ONE = 5,
158 MALI_CHANNEL_RESERVED_0 = 6,
159 MALI_CHANNEL_RESERVED_1 = 7,
160 };
161
162 struct mali_channel_swizzle {
163 enum mali_channel r : 3;
164 enum mali_channel g : 3;
165 enum mali_channel b : 3;
166 enum mali_channel a : 3;
167 } __attribute__((packed));
168
169 /* Compressed per-pixel formats. Each of these formats expands to one to four
170 * floating-point or integer numbers, as defined by the OpenGL specification.
171 * There are various places in OpenGL where the user can specify a compressed
172 * format in memory, which all use the same 8-bit enum in the various
173 * descriptors, although different hardware units support different formats.
174 */
175
176 /* The top 3 bits specify how the bits of each component are interpreted. */
177
178 /* e.g. ETC2_RGB8 */
179 #define MALI_FORMAT_COMPRESSED (0 << 5)
180
181 /* e.g. R11F_G11F_B10F */
182 #define MALI_FORMAT_SPECIAL (2 << 5)
183
184 /* signed normalized, e.g. RGBA8_SNORM */
185 #define MALI_FORMAT_SNORM (3 << 5)
186
187 /* e.g. RGBA8UI */
188 #define MALI_FORMAT_UINT (4 << 5)
189
190 /* e.g. RGBA8 and RGBA32F */
191 #define MALI_FORMAT_UNORM (5 << 5)
192
193 /* e.g. RGBA8I and RGBA16F */
194 #define MALI_FORMAT_SINT (6 << 5)
195
196 /* These formats seem to largely duplicate the others. They're used at least
197 * for Bifrost framebuffer output.
198 */
199 #define MALI_FORMAT_SPECIAL2 (7 << 5)
200 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
201
202 /* If the high 3 bits are 3 to 6 these two bits say how many components
203 * there are.
204 */
205 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
206 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
207
208 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
209 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
210 * bits mean.
211 */
212
213 #define MALI_CHANNEL_4 2
214
215 #define MALI_CHANNEL_8 3
216
217 #define MALI_CHANNEL_16 4
218
219 #define MALI_CHANNEL_32 5
220
221 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
222 * MALI_FORMAT_UNORM, it means a 32-bit float.
223 */
224 #define MALI_CHANNEL_FLOAT 7
225 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
226
227 enum mali_format {
228 /* Not all formats are in fact available, need to query dynamically to
229 * check. Factory settings for Juno enables only ETC2 and ASTC, no
230 * DXT/RGTC formats.
231 * */
232
233 /* 0x0 invalid */
234 MALI_ETC2_RGB8 = MALI_FORMAT_COMPRESSED | 0x1,
235 MALI_ETC2_R11_UNORM = MALI_FORMAT_COMPRESSED | 0x2,
236 MALI_ETC2_RGBA8 = MALI_FORMAT_COMPRESSED | 0x3,
237 MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
238 /* 0x5 reserved */
239 MALI_NXR = MALI_FORMAT_COMPRESSED | 0x6, /* Nokia eXtended Range */
240 MALI_BC1_UNORM = MALI_FORMAT_COMPRESSED | 0x7, /* DXT1 */
241 MALI_BC2_UNORM = MALI_FORMAT_COMPRESSED | 0x8, /* DXT3 */
242 MALI_BC3_UNORM = MALI_FORMAT_COMPRESSED | 0x9, /* DXT5 */
243 MALI_BC4_UNORM = MALI_FORMAT_COMPRESSED | 0xA, /* RGTC1_UNORM */
244 MALI_BC4_SNORM = MALI_FORMAT_COMPRESSED | 0xB, /* RGTC1_SNORM */
245 MALI_BC5_UNORM = MALI_FORMAT_COMPRESSED | 0xC, /* RGTC2_UNORM */
246 MALI_BC5_SNORM = MALI_FORMAT_COMPRESSED | 0xD, /* RGTC2_SNORM */
247 MALI_BC6H_UF16 = MALI_FORMAT_COMPRESSED | 0xE,
248 MALI_BC6H_SF16 = MALI_FORMAT_COMPRESSED | 0xF,
249 MALI_BC7_UNORM = MALI_FORMAT_COMPRESSED | 0x10,
250 MALI_ETC2_R11_SNORM = MALI_FORMAT_COMPRESSED | 0x11, /* EAC_SNORM */
251 MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12, /* EAC_SNORM */
252 MALI_ETC2_RGB8A1 = MALI_FORMAT_COMPRESSED | 0x13,
253 MALI_ASTC_3D_LDR = MALI_FORMAT_COMPRESSED | 0x14,
254 MALI_ASTC_3D_HDR = MALI_FORMAT_COMPRESSED | 0x15,
255 MALI_ASTC_2D_LDR = MALI_FORMAT_COMPRESSED | 0x16,
256 MALI_ASTC_2D_HDR = MALI_FORMAT_COMPRESSED | 0x17,
257
258 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
259 MALI_RGB5_X1_UNORM = MALI_FORMAT_SPECIAL | 0x1,
260 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
261 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
262 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
263 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
264 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
265
266 MALI_RGB332_UNORM = MALI_FORMAT_SPECIAL | 0xb,
267 MALI_RGB233_UNORM = MALI_FORMAT_SPECIAL | 0xc,
268
269 MALI_Z24X8_UNORM = MALI_FORMAT_SPECIAL | 0xd,
270 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
271 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
272 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
273 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
274 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
275 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
276 /* Only used for varyings, to indicate the transformed gl_Position */
277 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
278 /* Only used for varyings, to indicate that the write should be
279 * discarded.
280 */
281 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
282
283 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
284 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
285 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
286 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
287 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
288 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
289 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
290 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
291 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
292 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
293 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
294 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
295
296 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
297 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
298 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
299 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
300 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
301 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
302 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
303 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
304 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
305 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
306 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
307 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
308
309 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
310 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
311 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
312 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
313 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
314 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
315 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
316 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
317 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
318 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
319 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
320 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
321 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
322 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
323 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
324 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
325 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
326
327 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
328 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
329 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
330 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
331 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
332 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
333 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
334 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
335 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
336 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
337 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
338 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
339 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
340 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
341 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
342 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
343
344 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
345 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
346 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
347 };
348
349
350 /* Applies to midgard1.flags_lo */
351
352 /* Should be set when the fragment shader updates the depth value. */
353 #define MALI_WRITES_Z (1 << 4)
354
355 /* Should the hardware perform early-Z testing? Set if the shader does not use
356 * discard, alpha-to-coverage, shader depth writes, and if the shader has no
357 * side effects (writes to global memory or images) unless early-z testing is
358 * forced in the shader.
359 */
360
361 #define MALI_EARLY_Z (1 << 6)
362
363 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
364 * fragment shader that uses texturing or derivative functions */
365
366 #define MALI_HELPER_INVOCATIONS (1 << 7)
367
368 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
369 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
370 * it might read depth/stencil in particular, also set MALI_READS_ZS */
371
372 #define MALI_READS_ZS (1 << 8)
373
374 /* The shader might write to global memory (via OpenCL, SSBOs, or images).
375 * Reading is okay, as are ordinary writes to the tilebuffer/varyings. Setting
376 * incurs a performance penalty. On a fragment shader, this bit implies there
377 * are side effects, hence it interacts with early-z. */
378 #define MALI_WRITES_GLOBAL (1 << 9)
379
380 #define MALI_READS_TILEBUFFER (1 << 10)
381
382 /* Applies to midgard1.flags_hi */
383
384 /* Should be set when the fragment shader updates the stencil value. */
385 #define MALI_WRITES_S (1 << 2)
386
387 /* Mode to suppress generation of Infinity and NaN values by clamping inf
388 * (-inf) to MAX_FLOAT (-MIN_FLOAT) and flushing NaN to 0.0
389 *
390 * Compare suppress_inf/suppress_nan flags on the Bifrost clause header for the
391 * same functionality.
392 *
393 * This is not conformant on GLES3 or OpenCL, but is optional on GLES2, where
394 * it works around app bugs (e.g. in glmark2-es2 -bterrain with FP16).
395 */
396 #define MALI_SUPPRESS_INF_NAN (1 << 3)
397
398 /* Flags for bifrost1.unk1 */
399
400 /* Shader uses less than 32 registers, partitioned as [R0, R15] U [R48, R63],
401 * allowing for full thread count. If clear, the full [R0, R63] register set is
402 * available at half thread count */
403 #define MALI_BIFROST_FULL_THREAD (1 << 9)
404
405 /* Enable early-z testing (presumably). This flag may not be set if the shader:
406 *
407 * - Uses blending
408 * - Uses discard
409 * - Writes gl_FragDepth
410 *
411 * This differs from Midgard which sets the MALI_EARLY_Z flag even with
412 * blending, although I've begun to suspect that flag does not in fact enable
413 * EARLY_Z alone. */
414 #define MALI_BIFROST_EARLY_Z (1 << 15)
415
416 /* First clause type is ATEST */
417 #define MALI_BIFROST_FIRST_ATEST (1 << 26)
418
419 /* The raw Midgard blend payload can either be an equation or a shader
420 * address, depending on the context */
421
422 union midgard_blend {
423 mali_ptr shader;
424
425 struct {
426 struct mali_blend_equation equation;
427 float constant;
428 };
429 };
430
431 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
432 * ZERO) */
433
434 #define MALI_BLEND_LOAD_TIB (0x1)
435
436 /* A blend shader is used to blend this render target */
437 #define MALI_BLEND_MRT_SHADER (0x2)
438
439 /* On MRT Midgard systems (using an MFBD), each render target gets its own
440 * blend descriptor */
441
442 #define MALI_BLEND_SRGB (0x400)
443
444 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
445 #define MALI_BLEND_NO_DITHER (0x800)
446
447 struct midgard_blend_rt {
448 /* Flags base value of 0x200 to enable the render target.
449 * OR with 0x1 for blending (anything other than REPLACE).
450 * OR with 0x2 for programmable blending
451 * OR with MALI_BLEND_SRGB for implicit sRGB
452 */
453
454 u64 flags;
455 union midgard_blend blend;
456 } __attribute__((packed));
457
458 /* On Bifrost systems (all MRT), each render target gets one of these
459 * descriptors */
460
461 enum bifrost_shader_type {
462 BIFROST_BLEND_F16 = 0,
463 BIFROST_BLEND_F32 = 1,
464 BIFROST_BLEND_I32 = 2,
465 BIFROST_BLEND_U32 = 3,
466 BIFROST_BLEND_I16 = 4,
467 BIFROST_BLEND_U16 = 5,
468 };
469
470 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
471
472 struct bifrost_blend_rt {
473 /* This is likely an analogue of the flags on
474 * midgard_blend_rt */
475
476 u16 flags; // = 0x200
477
478 /* Single-channel blend constants are encoded in a sort of
479 * fixed-point. Basically, the float is mapped to a byte, becoming
480 * a high byte, and then the lower-byte is added for precision.
481 * For the original float f:
482 *
483 * f = (constant_hi / 255) + (constant_lo / 65535)
484 *
485 * constant_hi = int(f / 255)
486 * constant_lo = 65535*f - (65535/255) * constant_hi
487 */
488 u16 constant;
489
490 struct mali_blend_equation equation;
491
492 /*
493 * - 0x19 normally
494 * - 0x3 when this slot is unused (everything else is 0 except the index)
495 * - 0x11 when this is the fourth slot (and it's used)
496 * - 0 when there is a blend shader
497 */
498 u16 unk2;
499
500 /* increments from 0 to 3 */
501 u16 index;
502
503 union {
504 struct {
505 /* So far, I've only seen:
506 * - R001 for 1-component formats
507 * - RG01 for 2-component formats
508 * - RGB1 for 3-component formats
509 * - RGBA for 4-component formats
510 */
511 u32 swizzle : 12;
512 enum mali_format format : 8;
513
514 /* Type of the shader output variable. Note, this can
515 * be different from the format.
516 * enum bifrost_shader_type
517 */
518 u32 zero1 : 4;
519 u32 shader_type : 3;
520 u32 zero2 : 5;
521 };
522
523 /* Only the low 32 bits of the blend shader are stored, the
524 * high 32 bits are implicitly the same as the original shader.
525 * According to the kernel driver, the program counter for
526 * shaders is actually only 24 bits, so shaders cannot cross
527 * the 2^24-byte boundary, and neither can the blend shader.
528 * The blob handles this by allocating a 2^24 byte pool for
529 * shaders, and making sure that any blend shaders are stored
530 * in the same pool as the original shader. The kernel will
531 * make sure this allocation is aligned to 2^24 bytes.
532 */
533 u32 shader;
534 };
535 } __attribute__((packed));
536
537 /* Descriptor for the shader. Following this is at least one, up to four blend
538 * descriptors for each active render target */
539
540 struct mali_shader_meta {
541 mali_ptr shader;
542 u16 sampler_count;
543 u16 texture_count;
544 u16 attribute_count;
545 u16 varying_count;
546
547 union {
548 struct {
549 u32 uniform_buffer_count : 4;
550 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
551 } bifrost1;
552 struct {
553 unsigned uniform_buffer_count : 4;
554 unsigned flags_lo : 12;
555
556 /* vec4 units */
557 unsigned work_count : 5;
558 unsigned uniform_count : 5;
559 unsigned flags_hi : 6;
560 } midgard1;
561 };
562
563 /* Same as glPolygoOffset() arguments */
564 float depth_units;
565 float depth_factor;
566
567 u32 unknown2_2;
568
569 /* Generated from SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT. See
570 * 13.8.3 ("Multisample Fragment Operations") in the OpenGL ES 3.2
571 * specification. Only matters when multisampling is enabled. */
572 u16 coverage_mask;
573
574 u16 unknown2_3;
575
576 u8 stencil_mask_front;
577 u8 stencil_mask_back;
578 u16 unknown2_4;
579
580 struct mali_stencil_packed stencil_front;
581 struct mali_stencil_packed stencil_back;
582
583 union {
584 struct {
585 u32 unk3 : 7;
586 /* On Bifrost, some system values are preloaded in
587 * registers R55-R62 by the thread dispatcher prior to
588 * the start of shader execution. This is a bitfield
589 * with one entry for each register saying which
590 * registers need to be preloaded. Right now, the known
591 * values are:
592 *
593 * Vertex/compute:
594 * - R55 : gl_LocalInvocationID.xy
595 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
596 * - R57 : gl_WorkGroupID.x
597 * - R58 : gl_WorkGroupID.y
598 * - R59 : gl_WorkGroupID.z
599 * - R60 : gl_GlobalInvocationID.x
600 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
601 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
602 *
603 * Fragment:
604 * - R55 : unknown, never seen (but the bit for this is
605 * always set?)
606 * - R56 : unknown (bit always unset)
607 * - R57 : gl_PrimitiveID
608 * - R58 : gl_FrontFacing in low bit, potentially other stuff
609 * - R59 : u16 fragment coordinates (used to compute
610 * gl_FragCoord.xy, together with sample positions)
611 * - R60 : gl_SampleMask (used in epilog, so pretty
612 * much always used, but the bit is always 0 -- is
613 * this just always pushed?)
614 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
615 * varying interpolation.
616 * - R62 : unknown (bit always unset).
617 *
618 * Later GPUs (starting with Mali-G52?) support
619 * preloading float varyings into r0-r7. This is
620 * indicated by setting 0x40. There is no distinction
621 * here between 1 varying and 2.
622 */
623 u32 preload_regs : 8;
624 /* In units of 8 bytes or 64 bits, since the
625 * uniform/const port loads 64 bits at a time.
626 */
627 u32 uniform_count : 7;
628 u32 unk4 : 10; // = 2
629 } bifrost2;
630 struct {
631 u32 unknown2_7;
632 } midgard2;
633 };
634
635 u32 padding;
636
637 /* Blending information for the older non-MRT Midgard HW. Check for
638 * MALI_HAS_BLEND_SHADER to decide how to interpret.
639 */
640
641 union midgard_blend blend;
642 } __attribute__((packed));
643
644 /* This only concerns hardware jobs */
645
646 /* Possible values for job_descriptor_size */
647
648 #define MALI_JOB_32 0
649 #define MALI_JOB_64 1
650
651 struct mali_job_descriptor_header {
652 u32 exception_status;
653 u32 first_incomplete_task;
654 u64 fault_pointer;
655 u8 job_descriptor_size : 1;
656 enum mali_job_type job_type : 7;
657 u8 job_barrier : 1;
658 u8 unknown_flags : 7;
659 u16 job_index;
660 u16 job_dependency_index_1;
661 u16 job_dependency_index_2;
662 u64 next_job;
663 } __attribute__((packed));
664
665 /* These concern exception_status */
666
667 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
668 * kernel */
669
670 enum mali_exception_access {
671 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
672 * fault so it's just unused */
673 MALI_EXCEPTION_ACCESS_NONE = 0,
674
675 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
676 MALI_EXCEPTION_ACCESS_READ = 2,
677 MALI_EXCEPTION_ACCESS_WRITE = 3
678 };
679
680 /* Details about write_value from panfrost igt tests which use it as a generic
681 * dword write primitive */
682
683 #define MALI_WRITE_VALUE_ZERO 3
684
685 struct mali_payload_write_value {
686 u64 address;
687 u32 value_descriptor;
688 u32 reserved;
689 u64 immediate;
690 } __attribute__((packed));
691
692 /*
693 * Mali Attributes
694 *
695 * This structure lets the attribute unit compute the address of an attribute
696 * given the vertex and instance ID. Unfortunately, the way this works is
697 * rather complicated when instancing is enabled.
698 *
699 * To explain this, first we need to explain how compute and vertex threads are
700 * dispatched. This is a guess (although a pretty firm guess!) since the
701 * details are mostly hidden from the driver, except for attribute instancing.
702 * When a quad is dispatched, it receives a single, linear index. However, we
703 * need to translate that index into a (vertex id, instance id) pair, or a
704 * (local id x, local id y, local id z) triple for compute shaders (although
705 * vertex shaders and compute shaders are handled almost identically).
706 * Focusing on vertex shaders, one option would be to do:
707 *
708 * vertex_id = linear_id % num_vertices
709 * instance_id = linear_id / num_vertices
710 *
711 * but this involves a costly division and modulus by an arbitrary number.
712 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
713 * num_instances threads instead of num_vertices * num_instances, which results
714 * in some "extra" threads with vertex_id >= num_vertices, which we have to
715 * discard. The more we pad num_vertices, the more "wasted" threads we
716 * dispatch, but the division is potentially easier.
717 *
718 * One straightforward choice is to pad num_vertices to the next power of two,
719 * which means that the division and modulus are just simple bit shifts and
720 * masking. But the actual algorithm is a bit more complicated. The thread
721 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
722 * to dividing by a power of two. This is possibly using the technique
723 * described in patent US20170010862A1. As a result, padded_num_vertices can be
724 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
725 * since we need less padding.
726 *
727 * padded_num_vertices is picked by the hardware. The driver just specifies the
728 * actual number of vertices. At least for Mali G71, the first few cases are
729 * given by:
730 *
731 * num_vertices | padded_num_vertices
732 * 3 | 4
733 * 4-7 | 8
734 * 8-11 | 12 (3 * 4)
735 * 12-15 | 16
736 * 16-19 | 20 (5 * 4)
737 *
738 * Note that padded_num_vertices is a multiple of four (presumably because
739 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
740 * at least one more than num_vertices, which seems like a quirk of the
741 * hardware. For larger num_vertices, the hardware uses the following
742 * algorithm: using the binary representation of num_vertices, we look at the
743 * most significant set bit as well as the following 3 bits. Let n be the
744 * number of bits after those 4 bits. Then we set padded_num_vertices according
745 * to the following table:
746 *
747 * high bits | padded_num_vertices
748 * 1000 | 9 * 2^n
749 * 1001 | 5 * 2^(n+1)
750 * 101x | 3 * 2^(n+2)
751 * 110x | 7 * 2^(n+1)
752 * 111x | 2^(n+4)
753 *
754 * For example, if num_vertices = 70 is passed to glDraw(), its binary
755 * representation is 1000110, so n = 3 and the high bits are 1000, and
756 * therefore padded_num_vertices = 9 * 2^3 = 72.
757 *
758 * The attribute unit works in terms of the original linear_id. if
759 * num_instances = 1, then they are the same, and everything is simple.
760 * However, with instancing things get more complicated. There are four
761 * possible modes, two of them we can group together:
762 *
763 * 1. Use the linear_id directly. Only used when there is no instancing.
764 *
765 * 2. Use the linear_id modulo a constant. This is used for per-vertex
766 * attributes with instancing enabled by making the constant equal
767 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
768 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
769 * The shift field specifies the power of two, while the extra_flags field
770 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
771 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
772 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
773 * shift = 3. Note that we must exactly follow the hardware algorithm used to
774 * get padded_num_vertices in order to correctly implement per-vertex
775 * attributes.
776 *
777 * 3. Divide the linear_id by a constant. In order to correctly implement
778 * instance divisors, we have to divide linear_id by padded_num_vertices times
779 * to user-specified divisor. So first we compute padded_num_vertices, again
780 * following the exact same algorithm that the hardware uses, then multiply it
781 * by the GL-level divisor to get the hardware-level divisor. This case is
782 * further divided into two more cases. If the hardware-level divisor is a
783 * power of two, then we just need to shift. The shift amount is specified by
784 * the shift field, so that the hardware-level divisor is just 2^shift.
785 *
786 * If it isn't a power of two, then we have to divide by an arbitrary integer.
787 * For that, we use the well-known technique of multiplying by an approximation
788 * of the inverse. The driver must compute the magic multiplier and shift
789 * amount, and then the hardware does the multiplication and shift. The
790 * hardware and driver also use the "round-down" optimization as described in
791 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
792 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
793 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
794 * presumably this simplifies the hardware multiplier a little. The hardware
795 * first multiplies linear_id by the multiplier and takes the high 32 bits,
796 * then applies the round-down correction if extra_flags = 1, then finally
797 * shifts right by the shift field.
798 *
799 * There are some differences between ridiculousfish's algorithm and the Mali
800 * hardware algorithm, which means that the reference code from ridiculousfish
801 * doesn't always produce the right constants. Mali does not use the pre-shift
802 * optimization, since that would make a hardware implementation slower (it
803 * would have to always do the pre-shift, multiply, and post-shift operations).
804 * It also forces the multplier to be at least 2^31, which means that the
805 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
806 * given the divisor d, the algorithm the driver must follow is:
807 *
808 * 1. Set shift = floor(log2(d)).
809 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
810 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
811 * magic_divisor = m - 1 and extra_flags = 1.
812 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
813 *
814 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
815 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
816 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
817 * (*NOT the row stride*). Size is set to the size of the image itself.
818 *
819 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
820 * use particular fixed addresses with modified structures.
821 */
822
823 enum mali_attr_mode {
824 MALI_ATTR_UNUSED = 0,
825 MALI_ATTR_LINEAR = 1,
826 MALI_ATTR_POT_DIVIDE = 2,
827 MALI_ATTR_MODULO = 3,
828 MALI_ATTR_NPOT_DIVIDE = 4,
829 MALI_ATTR_IMAGE = 5,
830 };
831
832 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
833
834 #define MALI_ATTR_VERTEXID (0x22)
835 #define MALI_ATTR_INSTANCEID (0x24)
836 #define MALI_VARYING_FRAG_COORD (0x25)
837 #define MALI_VARYING_FRONT_FACING (0x26)
838
839 /* This magic "pseudo-address" is used as `elements` to implement
840 * gl_PointCoord. When read from a fragment shader, it generates a point
841 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
842 * require an affine transformation in the shader. */
843
844 #define MALI_VARYING_POINT_COORD (0x61)
845
846 /* Used for comparison to check if an address is special. Mostly a guess, but
847 * it doesn't really matter. */
848
849 #define MALI_RECORD_SPECIAL (0x100)
850
851 union mali_attr {
852 /* This is used for actual attributes. */
853 struct {
854 /* The bottom 3 bits are the mode */
855 mali_ptr elements : 64 - 8;
856 u32 shift : 5;
857 u32 extra_flags : 3;
858 u32 stride;
859 u32 size;
860 };
861 /* The entry after an NPOT_DIVIDE entry has this format. It stores
862 * extra information that wouldn't fit in a normal entry.
863 */
864 struct {
865 u32 unk; /* = 0x20 */
866 u32 magic_divisor;
867 u32 zero;
868 /* This is the original, GL-level divisor. */
869 u32 divisor;
870 };
871 } __attribute__((packed));
872
873 struct mali_attr_meta {
874 /* Vertex buffer index */
875 u8 index;
876
877 unsigned unknown1 : 2;
878 unsigned swizzle : 12;
879 enum mali_format format : 8;
880
881 /* Always observed to be zero at the moment */
882 unsigned unknown3 : 2;
883
884 /* When packing multiple attributes in a buffer, offset addresses by
885 * this value. Obscurely, this is signed. */
886 int32_t src_offset;
887 } __attribute__((packed));
888
889 #define FBD_MASK (~0x3f)
890
891 /* MFBD, rather than SFBD */
892 #define MALI_MFBD (0x1)
893
894 /* ORed into an MFBD address to specify the fbx section is included */
895 #define MALI_MFBD_TAG_EXTRA (0x2)
896
897 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
898 * They also seem to be the same between Bifrost and Midgard. They're shared in
899 * fused payloads.
900 */
901
902 /* Applies to unknown_draw */
903
904 #define MALI_DRAW_INDEXED_UINT8 (0x10)
905 #define MALI_DRAW_INDEXED_UINT16 (0x20)
906 #define MALI_DRAW_INDEXED_UINT32 (0x30)
907 #define MALI_DRAW_INDEXED_SIZE (0x30)
908 #define MALI_DRAW_INDEXED_SHIFT (4)
909
910 #define MALI_DRAW_VARYING_SIZE (0x100)
911
912 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
913 * use the last vertex. This is the default in DX and VK, but not in GL. */
914
915 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
916
917 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
918
919 struct mali_vertex_tiler_prefix {
920 /* This is a dynamic bitfield containing the following things in this order:
921 *
922 * - gl_WorkGroupSize.x
923 * - gl_WorkGroupSize.y
924 * - gl_WorkGroupSize.z
925 * - gl_NumWorkGroups.x
926 * - gl_NumWorkGroups.y
927 * - gl_NumWorkGroups.z
928 *
929 * The number of bits allocated for each number is based on the *_shift
930 * fields below. For example, workgroups_y_shift gives the bit that
931 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
932 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
933 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
934 * value is one more than the stored value, since if any of the values
935 * are zero, then there would be no invocations (and hence no job). If
936 * there were 0 bits allocated to a given field, then it must be zero,
937 * and hence the real value is one.
938 *
939 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
940 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
941 * where vertex count is the number of vertices.
942 */
943 u32 invocation_count;
944
945 /* Bitfield for shifts:
946 *
947 * size_y_shift : 5
948 * size_z_shift : 5
949 * workgroups_x_shift : 6
950 * workgroups_y_shift : 6
951 * workgroups_z_shift : 6
952 * workgroups_x_shift_2 : 4
953 */
954 u32 invocation_shifts;
955
956 u32 draw_mode : 4;
957 u32 unknown_draw : 22;
958
959 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
960 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
961 * something to do with how many quads get put in the same execution
962 * engine, which is a balance (you don't want to starve the engine, but
963 * you also want to distribute work evenly).
964 */
965 u32 workgroups_x_shift_3 : 6;
966
967
968 /* Negative of min_index. This is used to compute
969 * the unbiased index in tiler/fragment shader runs.
970 *
971 * The hardware adds offset_bias_correction in each run,
972 * so that absent an index bias, the first vertex processed is
973 * genuinely the first vertex (0). But with an index bias,
974 * the first vertex process is numbered the same as the bias.
975 *
976 * To represent this more conviniently:
977 * unbiased_index = lower_bound_index +
978 * index_bias +
979 * offset_bias_correction
980 *
981 * This is done since the hardware doesn't accept a index_bias
982 * and this allows it to recover the unbiased index.
983 */
984 int32_t offset_bias_correction;
985 u32 zero1;
986
987 /* Like many other strictly nonzero quantities, index_count is
988 * subtracted by one. For an indexed cube, this is equal to 35 = 6
989 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
990 * for an indexed draw, index_count is the number of actual vertices
991 * rendered whereas invocation_count is the number of unique vertices
992 * rendered (the number of times the vertex shader must be invoked).
993 * For non-indexed draws, this is just equal to invocation_count. */
994
995 u32 index_count;
996
997 /* No hidden structure; literally just a pointer to an array of uint
998 * indices (width depends on flags). Thanks, guys, for not making my
999 * life insane for once! NULL for non-indexed draws. */
1000
1001 u64 indices;
1002 } __attribute__((packed));
1003
1004 /* Point size / line width can either be specified as a 32-bit float (for
1005 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
1006 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1007 * payload, the contents of varying_pointer will be intepreted as an array of
1008 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1009 * creating a special MALI_R16F varying writing to varying_pointer. */
1010
1011 union midgard_primitive_size {
1012 float constant;
1013 u64 pointer;
1014 };
1015
1016 struct bifrost_tiler_heap_meta {
1017 u32 zero;
1018 u32 heap_size;
1019 /* note: these are just guesses! */
1020 mali_ptr tiler_heap_start;
1021 mali_ptr tiler_heap_free;
1022 mali_ptr tiler_heap_end;
1023
1024 /* hierarchy weights? but they're still 0 after the job has run... */
1025 u32 zeros[10];
1026 u32 unk1;
1027 u32 unk7e007e;
1028 } __attribute__((packed));
1029
1030 struct bifrost_tiler_meta {
1031 u32 tiler_heap_next_start; /* To be written by the GPU */
1032 u32 used_hierarchy_mask; /* To be written by the GPU */
1033 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
1034 u16 flags;
1035 u16 width;
1036 u16 height;
1037 u64 zero0;
1038 mali_ptr tiler_heap_meta;
1039 /* TODO what is this used for? */
1040 u64 zeros[20];
1041 } __attribute__((packed));
1042
1043 struct bifrost_tiler_only {
1044 /* 0x20 */
1045 union midgard_primitive_size primitive_size;
1046
1047 mali_ptr tiler_meta;
1048
1049 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1050 } __attribute__((packed));
1051
1052 struct mali_vertex_tiler_postfix {
1053 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
1054
1055 /* Both zero for non-instanced draws. For instanced draws, a
1056 * decomposition of padded_num_vertices. See the comments about the
1057 * corresponding fields in mali_attr for context. */
1058
1059 unsigned instance_shift : 5;
1060 unsigned instance_odd : 3;
1061
1062 u8 zero4;
1063
1064 /* Offset for first vertex in buffer */
1065 u32 offset_start;
1066
1067 u64 zero5;
1068
1069 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1070 * output from the vertex shader for tiler jobs.
1071 */
1072
1073 u64 position_varying;
1074
1075 /* An array of mali_uniform_buffer_meta's. The size is given by the
1076 * shader_meta.
1077 */
1078 u64 uniform_buffers;
1079
1080 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
1081 * On Midgard, this is a pointer to an array of pointers to the texture
1082 * descriptors, number of pointers bounded by number of textures. The
1083 * indirection is needed to accomodate varying numbers and sizes of
1084 * texture descriptors */
1085 u64 textures;
1086
1087 /* For OpenGL, from what I've seen, this is intimately connected to
1088 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1089 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1090 * array of sampler descriptors (which are uniform in size) */
1091 u64 sampler_descriptor;
1092
1093 u64 uniforms;
1094 u64 shader;
1095 u64 attributes; /* struct attribute_buffer[] */
1096 u64 attribute_meta; /* attribute_meta[] */
1097 u64 varyings; /* struct attr */
1098 u64 varying_meta; /* pointer */
1099 u64 viewport;
1100 u64 occlusion_counter; /* A single bit as far as I can tell */
1101
1102 /* On Bifrost, this points directly to a mali_shared_memory structure.
1103 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
1104 * tagged), which embeds a mali_shared_memory structure */
1105 mali_ptr shared_memory;
1106 } __attribute__((packed));
1107
1108 struct midgard_payload_vertex_tiler {
1109 struct mali_vertex_tiler_prefix prefix;
1110 struct mali_vertex_tiler_postfix postfix;
1111
1112 union midgard_primitive_size primitive_size;
1113 } __attribute__((packed));
1114
1115 struct bifrost_payload_vertex {
1116 struct mali_vertex_tiler_prefix prefix;
1117 struct mali_vertex_tiler_postfix postfix;
1118 } __attribute__((packed));
1119
1120 struct bifrost_payload_tiler {
1121 struct mali_vertex_tiler_prefix prefix;
1122 struct bifrost_tiler_only tiler;
1123 struct mali_vertex_tiler_postfix postfix;
1124 } __attribute__((packed));
1125
1126 struct bifrost_payload_fused {
1127 struct mali_vertex_tiler_prefix prefix;
1128 struct bifrost_tiler_only tiler;
1129 struct mali_vertex_tiler_postfix tiler_postfix;
1130 u64 padding; /* zero */
1131 struct mali_vertex_tiler_postfix vertex_postfix;
1132 } __attribute__((packed));
1133
1134 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1135 * texture is stored as (63, 63) in these fields. This adjusts for that.
1136 * There's an identical pattern in the framebuffer descriptor. Even vertex
1137 * count fields work this way, hence the generic name -- integral fields that
1138 * are strictly positive generally need this adjustment. */
1139
1140 #define MALI_POSITIVE(dim) (dim - 1)
1141
1142 /* Shared across both command stream and Midgard, and even with Bifrost */
1143
1144 enum mali_texture_type {
1145 MALI_TEX_CUBE = 0x0,
1146 MALI_TEX_1D = 0x1,
1147 MALI_TEX_2D = 0x2,
1148 MALI_TEX_3D = 0x3
1149 };
1150
1151 /* 8192x8192 */
1152 #define MAX_MIP_LEVELS (13)
1153
1154 /* Cubemap bloats everything up */
1155 #define MAX_CUBE_FACES (6)
1156
1157 /* For each pointer, there is an address and optionally also a stride */
1158 #define MAX_ELEMENTS (2)
1159
1160 /* It's not known why there are 4-bits allocated -- this enum is almost
1161 * certainly incomplete */
1162
1163 enum mali_texture_layout {
1164 /* For a Z/S texture, this is linear */
1165 MALI_TEXTURE_TILED = 0x1,
1166
1167 /* Z/S textures cannot be tiled */
1168 MALI_TEXTURE_LINEAR = 0x2,
1169
1170 /* 16x16 sparse */
1171 MALI_TEXTURE_AFBC = 0xC
1172 };
1173
1174 /* Corresponds to the type passed to glTexImage2D and so forth */
1175
1176 struct mali_texture_format {
1177 unsigned swizzle : 12;
1178 enum mali_format format : 8;
1179
1180 unsigned srgb : 1;
1181 unsigned unknown1 : 1;
1182
1183 enum mali_texture_type type : 2;
1184 enum mali_texture_layout layout : 4;
1185
1186 /* Always set */
1187 unsigned unknown2 : 1;
1188
1189 /* Set to allow packing an explicit stride */
1190 unsigned manual_stride : 1;
1191
1192 unsigned zero : 2;
1193 } __attribute__((packed));
1194
1195 struct mali_texture_descriptor {
1196 uint16_t width;
1197 uint16_t height;
1198 uint16_t depth;
1199 uint16_t array_size;
1200
1201 struct mali_texture_format format;
1202
1203 uint16_t unknown3;
1204
1205 /* One for non-mipmapped, zero for mipmapped */
1206 uint8_t unknown3A;
1207
1208 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1209 uint8_t levels;
1210
1211 /* Swizzling is a single 32-bit word, broken up here for convenience.
1212 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1213 * level swizzling, not the internal pixel-level swizzling which is
1214 * below OpenGL's reach */
1215
1216 unsigned swizzle : 12;
1217 unsigned swizzle_zero : 20;
1218
1219 uint32_t unknown5;
1220 uint32_t unknown6;
1221 uint32_t unknown7;
1222 } __attribute__((packed));
1223
1224 /* While Midgard texture descriptors are variable length, Bifrost descriptors
1225 * are fixed like samplers with more pointers to expand if necessary */
1226
1227 struct bifrost_texture_descriptor {
1228 unsigned format_unk : 4; /* 2 */
1229 enum mali_texture_type type : 2;
1230 unsigned zero : 4;
1231 unsigned format_swizzle : 12;
1232 enum mali_format format : 8;
1233 unsigned srgb : 1;
1234 unsigned format_unk3 : 1; /* 0 */
1235
1236 uint16_t width; /* MALI_POSITIVE */
1237 uint16_t height; /* MALI_POSITIVE */
1238
1239 /* OpenGL swizzle */
1240 unsigned swizzle : 12;
1241 enum mali_texture_layout layout : 4;
1242 uint8_t levels : 8; /* Number of levels-1 if mipmapped, 0 if not */
1243 unsigned unk1 : 8;
1244
1245 unsigned levels_unk : 24; /* 0 */
1246 unsigned level_2 : 8; /* Number of levels, again? */
1247
1248 mali_ptr payload;
1249
1250 uint16_t array_size;
1251 uint16_t unk4;
1252
1253 uint16_t depth;
1254 uint16_t unk5;
1255 } __attribute__((packed));
1256
1257 /* filter_mode */
1258
1259 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1260 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1261
1262 /* TODO: What do these bits mean individually? Only seen set together */
1263
1264 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1265 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1266
1267 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1268 * sampler_t flag. For typical OpenGL textures, this is always set. */
1269
1270 #define MALI_SAMP_NORM_COORDS (1 << 5)
1271
1272 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1273 * be cleaned up a lot. */
1274
1275 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1276
1277 static inline int16_t
1278 FIXED_16(float x, bool allow_negative)
1279 {
1280 /* Clamp inputs, accounting for float error */
1281 float max_lod = (32.0 - (1.0 / 512.0));
1282 float min_lod = allow_negative ? -max_lod : 0.0;
1283
1284 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1285
1286 return (int) (x * 256.0);
1287 }
1288
1289 struct mali_sampler_descriptor {
1290 uint16_t filter_mode;
1291
1292 /* Fixed point, signed.
1293 * Upper 7 bits before the decimal point, although it caps [0-31].
1294 * Lower 8 bits after the decimal point: int(round(x * 256)) */
1295
1296 int16_t lod_bias;
1297 int16_t min_lod;
1298 int16_t max_lod;
1299
1300 /* All one word in reality, but packed a bit. Comparisons are flipped
1301 * from OpenGL. */
1302
1303 enum mali_wrap_mode wrap_s : 4;
1304 enum mali_wrap_mode wrap_t : 4;
1305 enum mali_wrap_mode wrap_r : 4;
1306 enum mali_func compare_func : 3;
1307
1308 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1309 * ES2, controlling seamless cubemapping */
1310 unsigned seamless_cube_map : 1;
1311
1312 unsigned zero : 16;
1313
1314 uint32_t zero2;
1315 float border_color[4];
1316 } __attribute__((packed));
1317
1318 /* Bifrost sampler descriptors look pretty similar */
1319
1320 #define BIFROST_SAMP_MIN_NEAREST (1)
1321 #define BIFROST_SAMP_MAG_LINEAR (1)
1322
1323 struct bifrost_sampler_descriptor {
1324 uint8_t unk1;
1325
1326 enum mali_wrap_mode wrap_r : 4;
1327 enum mali_wrap_mode wrap_t : 4;
1328 enum mali_wrap_mode wrap_s : 4;
1329 uint8_t unk8 : 4;
1330
1331 uint8_t unk2 : 1;
1332 uint8_t norm_coords : 1;
1333 uint8_t unk3 : 1;
1334 uint8_t min_filter : 1;
1335 uint8_t zero1 : 1;
1336 uint8_t mag_filter : 1;
1337 uint8_t mip_filter : 1;
1338
1339 int16_t min_lod;
1340 int16_t max_lod;
1341
1342 uint64_t zero2;
1343 uint64_t zero3;
1344 uint64_t zero4;
1345 } __attribute__((packed));
1346
1347 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1348 * of tile numbers. */
1349
1350 #define MALI_TILE_SHIFT 4
1351 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1352
1353 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1354 * each component. Notice that this provides a theoretical upper bound of (1 <<
1355 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1356 * 65536x65536. Multiplying that together, times another four given that Mali
1357 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1358 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1359 * alone rendering in real-time to such a buffer.
1360 *
1361 * Nice job, guys.*/
1362
1363 /* From mali_kbase_10969_workaround.c */
1364 #define MALI_X_COORD_MASK 0x00000FFF
1365 #define MALI_Y_COORD_MASK 0x0FFF0000
1366
1367 /* Extract parts of a tile coordinate */
1368
1369 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1370 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1371
1372 /* Helpers to generate tile coordinates based on the boundary coordinates in
1373 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1374 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1375 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1376 * problem. */
1377
1378 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1379 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1380 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1381 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1382 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1383
1384 struct mali_payload_fragment {
1385 u32 min_tile_coord;
1386 u32 max_tile_coord;
1387 mali_ptr framebuffer;
1388 } __attribute__((packed));
1389
1390 /* Single Framebuffer Descriptor */
1391
1392 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1393 * configured for 4x. With MSAA_8, it is configured for 8x. */
1394
1395 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1396 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1397 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1398 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1399
1400 /* Fast/slow based on whether all three buffers are cleared at once */
1401
1402 #define MALI_CLEAR_FAST (1 << 18)
1403 #define MALI_CLEAR_SLOW (1 << 28)
1404 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1405
1406 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1407 * within the larget framebuffer descriptor). Analogous to
1408 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1409
1410 /* See pan_tiler.c for derivation */
1411 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1412
1413 /* Flag disabling the tiler for clear-only jobs, with
1414 hierarchical tiling */
1415 #define MALI_TILER_DISABLED (1 << 12)
1416
1417 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1418 * hierarhical tiling. */
1419 #define MALI_TILER_USER 0xFFF
1420
1421 /* Absent any geometry, the minimum size of the polygon list header */
1422 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1423
1424 struct midgard_tiler_descriptor {
1425 /* Size of the entire polygon list; see pan_tiler.c for the
1426 * computation. It's based on hierarchical tiling */
1427
1428 u32 polygon_list_size;
1429
1430 /* Name known from the replay workaround in the kernel. What exactly is
1431 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1432 * specifies a mask of hierarchy weights, which explains some of the
1433 * performance mysteries around setting it. We also see the bottom bit
1434 * of tiler_flags set in the kernel, but no comment why.
1435 *
1436 * hierarchy_mask can have the TILER_DISABLED flag */
1437
1438 u16 hierarchy_mask;
1439 u16 flags;
1440
1441 /* See mali_tiler.c for an explanation */
1442 mali_ptr polygon_list;
1443 mali_ptr polygon_list_body;
1444
1445 /* Names based on we see symmetry with replay jobs which name these
1446 * explicitly */
1447
1448 mali_ptr heap_start; /* tiler heap_free_address */
1449 mali_ptr heap_end;
1450
1451 /* Hierarchy weights. We know these are weights based on the kernel,
1452 * but I've never seen them be anything other than zero */
1453 u32 weights[8];
1454 };
1455
1456 enum mali_block_format {
1457 MALI_BLOCK_TILED = 0x0,
1458 MALI_BLOCK_UNKNOWN = 0x1,
1459 MALI_BLOCK_LINEAR = 0x2,
1460 MALI_BLOCK_AFBC = 0x3,
1461 };
1462
1463 struct mali_sfbd_format {
1464 /* 0x1 */
1465 unsigned unk1 : 6;
1466
1467 /* mali_channel_swizzle */
1468 unsigned swizzle : 12;
1469
1470 /* MALI_POSITIVE */
1471 unsigned nr_channels : 2;
1472
1473 /* 0x4 */
1474 unsigned unk2 : 6;
1475
1476 enum mali_block_format block : 2;
1477
1478 /* 0xb */
1479 unsigned unk3 : 4;
1480 };
1481
1482 /* Shared structure at the start of framebuffer descriptors, or used bare for
1483 * compute jobs, configuring stack and shared memory */
1484
1485 struct mali_shared_memory {
1486 u32 stack_shift : 4;
1487 u32 unk0 : 28;
1488
1489 /* Configuration for shared memory for compute shaders.
1490 * shared_workgroup_count is logarithmic and may be computed for a
1491 * compute shader using shared memory as:
1492 *
1493 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1494 *
1495 * For compute shaders that don't use shared memory, or non-compute
1496 * shaders, this is set to ~0
1497 */
1498
1499 u32 shared_workgroup_count : 5;
1500 u32 shared_unk1 : 3;
1501 u32 shared_shift : 4;
1502 u32 shared_zero : 20;
1503
1504 mali_ptr scratchpad;
1505
1506 /* For compute shaders, the RAM backing of workgroup-shared memory. For
1507 * fragment shaders on Bifrost, apparently multisampling locations */
1508
1509 mali_ptr shared_memory;
1510 mali_ptr unknown1;
1511 } __attribute__((packed));
1512
1513 /* Configures multisampling on Bifrost fragment jobs */
1514
1515 struct bifrost_multisampling {
1516 u64 zero1;
1517 u64 zero2;
1518 mali_ptr sample_locations;
1519 u64 zero4;
1520 } __attribute__((packed));
1521
1522 struct mali_single_framebuffer {
1523 struct mali_shared_memory shared_memory;
1524 struct mali_sfbd_format format;
1525
1526 u32 clear_flags;
1527 u32 zero2;
1528
1529 /* Purposeful off-by-one in these fields should be accounted for by the
1530 * MALI_DIMENSION macro */
1531
1532 u16 width;
1533 u16 height;
1534
1535 u32 zero3[4];
1536 mali_ptr checksum;
1537 u32 checksum_stride;
1538 u32 zero5;
1539
1540 /* By default, the framebuffer is upside down from OpenGL's
1541 * perspective. Set framebuffer to the end and negate the stride to
1542 * flip in the Y direction */
1543
1544 mali_ptr framebuffer;
1545 int32_t stride;
1546
1547 u32 zero4;
1548
1549 /* Depth and stencil buffers are interleaved, it appears, as they are
1550 * set to the same address in captures. Both fields set to zero if the
1551 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1552 * get a zero enable despite the buffer being present; that still is
1553 * disabled. */
1554
1555 mali_ptr depth_buffer; // not SAME_VA
1556 u32 depth_stride_zero : 4;
1557 u32 depth_stride : 28;
1558 u32 zero7;
1559
1560 mali_ptr stencil_buffer; // not SAME_VA
1561 u32 stencil_stride_zero : 4;
1562 u32 stencil_stride : 28;
1563 u32 zero8;
1564
1565 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1566 u32 clear_color_2; // always equal, but unclear function?
1567 u32 clear_color_3; // always equal, but unclear function?
1568 u32 clear_color_4; // always equal, but unclear function?
1569
1570 /* Set to zero if not cleared */
1571
1572 float clear_depth_1; // float32, ditto
1573 float clear_depth_2; // float32, ditto
1574 float clear_depth_3; // float32, ditto
1575 float clear_depth_4; // float32, ditto
1576
1577 u32 clear_stencil; // Exactly as it appears in OpenGL
1578
1579 u32 zero6[7];
1580
1581 struct midgard_tiler_descriptor tiler;
1582
1583 /* More below this, maybe */
1584 } __attribute__((packed));
1585
1586
1587 /* SINGLE to disable multisampling, AVERAGE for
1588 * EXT_multisampled_render_to_texture operation where multiple tilebuffer
1589 * samples are implicitly resolved before writeout, MULTIPLE to write multiple
1590 * samples inline, and LAYERED for ES3-style multisampling with each sample in
1591 * a different buffer.
1592 */
1593
1594 enum mali_msaa_mode {
1595 MALI_MSAA_SINGLE = 0,
1596 MALI_MSAA_AVERAGE = 1,
1597 MALI_MSAA_MULTIPLE = 2,
1598 MALI_MSAA_LAYERED = 3,
1599 };
1600
1601 #define MALI_MFBD_FORMAT_SRGB (1 << 0)
1602
1603 struct mali_rt_format {
1604 unsigned unk1 : 32;
1605 unsigned unk2 : 3;
1606
1607 unsigned nr_channels : 2; /* MALI_POSITIVE */
1608
1609 unsigned unk3 : 4;
1610 unsigned unk4 : 1;
1611 enum mali_block_format block : 2;
1612 enum mali_msaa_mode msaa : 2;
1613 unsigned flags : 2;
1614
1615 unsigned swizzle : 12;
1616
1617 unsigned zero : 3;
1618
1619 /* Disables MFBD preload. When this bit is set, the render target will
1620 * be cleared every frame. When this bit is clear, the hardware will
1621 * automatically wallpaper the render target back from main memory.
1622 * Unfortunately, MFBD preload is very broken on Midgard, so in
1623 * practice, this is a chicken bit that should always be set.
1624 * Discovered by accident, as all good chicken bits are. */
1625
1626 unsigned no_preload : 1;
1627 } __attribute__((packed));
1628
1629 /* Flags for afbc.flags and ds_afbc.flags */
1630
1631 #define MALI_AFBC_FLAGS 0x10009
1632
1633 /* Lossless RGB and RGBA colorspace transform */
1634 #define MALI_AFBC_YTR (1 << 17)
1635
1636 struct mali_render_target {
1637 struct mali_rt_format format;
1638
1639 u64 zero1;
1640
1641 struct {
1642 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1643 * there is an extra metadata buffer that contains 16 bytes per tile.
1644 * The framebuffer needs to be the same size as before, since we don't
1645 * know ahead of time how much space it will take up. The
1646 * framebuffer_stride is set to 0, since the data isn't stored linearly
1647 * anymore.
1648 *
1649 * When AFBC is disabled, these fields are zero.
1650 */
1651
1652 mali_ptr metadata;
1653 u32 stride; // stride in units of tiles
1654 u32 flags; // = 0x20000
1655 } afbc;
1656
1657 mali_ptr framebuffer;
1658
1659 u32 zero2 : 4;
1660 u32 framebuffer_stride : 28; // in units of bytes, row to next
1661 u32 layer_stride; /* For multisample rendering */
1662
1663 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1664 u32 clear_color_2; // always equal, but unclear function?
1665 u32 clear_color_3; // always equal, but unclear function?
1666 u32 clear_color_4; // always equal, but unclear function?
1667 } __attribute__((packed));
1668
1669 /* An optional part of mali_framebuffer. It comes between the main structure
1670 * and the array of render targets. It must be included if any of these are
1671 * enabled:
1672 *
1673 * - Transaction Elimination
1674 * - Depth/stencil
1675 * - TODO: Anything else?
1676 */
1677
1678 /* flags_hi */
1679 #define MALI_EXTRA_PRESENT (0x1)
1680
1681 /* flags_lo */
1682 #define MALI_EXTRA_ZS (0x4)
1683
1684 struct mali_framebuffer_extra {
1685 mali_ptr checksum;
1686 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1687 u32 checksum_stride;
1688
1689 unsigned flags_lo : 4;
1690 enum mali_block_format zs_block : 2;
1691
1692 /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
1693 * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
1694 unsigned zs_samples : 4;
1695 unsigned flags_hi : 22;
1696
1697 union {
1698 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1699 struct {
1700 mali_ptr depth_stencil_afbc_metadata;
1701 u32 depth_stencil_afbc_stride; // in units of tiles
1702 u32 flags;
1703
1704 mali_ptr depth_stencil;
1705
1706 u64 padding;
1707 } ds_afbc;
1708
1709 struct {
1710 /* Depth becomes depth/stencil in case of combined D/S */
1711 mali_ptr depth;
1712 u32 depth_stride_zero : 4;
1713 u32 depth_stride : 28;
1714 u32 depth_layer_stride;
1715
1716 mali_ptr stencil;
1717 u32 stencil_stride_zero : 4;
1718 u32 stencil_stride : 28;
1719 u32 stencil_layer_stride;
1720 } ds_linear;
1721 };
1722
1723
1724 u32 clear_color_1;
1725 u32 clear_color_2;
1726 u64 zero3;
1727 } __attribute__((packed));
1728
1729 /* Flags for mfbd_flags */
1730
1731 /* Enables writing depth results back to main memory (rather than keeping them
1732 * on-chip in the tile buffer and then discarding) */
1733
1734 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1735
1736 /* The MFBD contains the extra mali_framebuffer_extra section */
1737
1738 #define MALI_MFBD_EXTRA (1 << 13)
1739
1740 struct mali_framebuffer {
1741 union {
1742 struct mali_shared_memory shared_memory;
1743 struct bifrost_multisampling msaa;
1744 };
1745
1746 /* 0x20 */
1747 u16 width1, height1;
1748 u32 zero3;
1749 u16 width2, height2;
1750 u32 unk1 : 19; // = 0x01000
1751 u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1752 u32 unk2 : 2; // = 0
1753 u32 rt_count_2 : 3; // no off-by-one
1754 u32 zero4 : 5;
1755 /* 0x30 */
1756 u32 clear_stencil : 8;
1757 u32 mfbd_flags : 24; // = 0x100
1758 float clear_depth;
1759
1760 union {
1761 struct midgard_tiler_descriptor tiler;
1762 struct {
1763 mali_ptr tiler_meta;
1764 u32 zeros[16];
1765 };
1766 };
1767
1768 /* optional: struct mali_framebuffer_extra extra */
1769 /* struct mali_render_target rts[] */
1770 } __attribute__((packed));
1771
1772 #endif /* __PANFROST_JOB_H__ */