8cb30ed0cbfb4538fdac0cec272fcc149c1230c2
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <inttypes.h>
34
35 typedef uint8_t u8;
36 typedef uint16_t u16;
37 typedef uint32_t u32;
38 typedef uint64_t u64;
39 typedef uint64_t mali_ptr;
40
41 /* Applies to tiler_gl_enables */
42
43 #define MALI_OCCLUSION_QUERY (1 << 3)
44 #define MALI_OCCLUSION_PRECISE (1 << 4)
45
46 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
47 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
48 * disagree about how to do viewport flipping, so the blob actually sets this
49 * for GL_CW but then has a negative viewport stride */
50
51 #define MALI_FRONT_CCW_TOP (1 << 5)
52
53 #define MALI_CULL_FACE_FRONT (1 << 6)
54 #define MALI_CULL_FACE_BACK (1 << 7)
55
56 enum mali_nondominant_mode {
57 MALI_BLEND_NON_MIRROR = 0,
58 MALI_BLEND_NON_ZERO = 1
59 };
60
61 enum mali_dominant_blend {
62 MALI_BLEND_DOM_SOURCE = 0,
63 MALI_BLEND_DOM_DESTINATION = 1
64 };
65
66 enum mali_dominant_factor {
67 MALI_DOMINANT_UNK0 = 0,
68 MALI_DOMINANT_ZERO = 1,
69 MALI_DOMINANT_SRC_COLOR = 2,
70 MALI_DOMINANT_DST_COLOR = 3,
71 MALI_DOMINANT_UNK4 = 4,
72 MALI_DOMINANT_SRC_ALPHA = 5,
73 MALI_DOMINANT_DST_ALPHA = 6,
74 MALI_DOMINANT_CONSTANT = 7,
75 };
76
77 enum mali_blend_modifier {
78 MALI_BLEND_MOD_UNK0 = 0,
79 MALI_BLEND_MOD_NORMAL = 1,
80 MALI_BLEND_MOD_SOURCE_ONE = 2,
81 MALI_BLEND_MOD_DEST_ONE = 3,
82 };
83
84 struct mali_blend_mode {
85 enum mali_blend_modifier clip_modifier : 2;
86 unsigned unused_0 : 1;
87 unsigned negate_source : 1;
88
89 enum mali_dominant_blend dominant : 1;
90
91 enum mali_nondominant_mode nondominant_mode : 1;
92
93 unsigned unused_1 : 1;
94
95 unsigned negate_dest : 1;
96
97 enum mali_dominant_factor dominant_factor : 3;
98 unsigned complement_dominant : 1;
99 } __attribute__((packed));
100
101 /* Compressed per-pixel formats. Each of these formats expands to one to four
102 * floating-point or integer numbers, as defined by the OpenGL specification.
103 * There are various places in OpenGL where the user can specify a compressed
104 * format in memory, which all use the same 8-bit enum in the various
105 * descriptors, although different hardware units support different formats.
106 */
107
108 /* The top 3 bits specify how the bits of each component are interpreted. */
109
110 /* e.g. ETC2_RGB8 */
111 #define MALI_FORMAT_COMPRESSED (0 << 5)
112
113 /* e.g. R11F_G11F_B10F */
114 #define MALI_FORMAT_SPECIAL (2 << 5)
115
116 /* signed normalized, e.g. RGBA8_SNORM */
117 #define MALI_FORMAT_SNORM (3 << 5)
118
119 /* e.g. RGBA8UI */
120 #define MALI_FORMAT_UINT (4 << 5)
121
122 /* e.g. RGBA8 and RGBA32F */
123 #define MALI_FORMAT_UNORM (5 << 5)
124
125 /* e.g. RGBA8I and RGBA16F */
126 #define MALI_FORMAT_SINT (6 << 5)
127
128 /* These formats seem to largely duplicate the others. They're used at least
129 * for Bifrost framebuffer output.
130 */
131 #define MALI_FORMAT_SPECIAL2 (7 << 5)
132 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
133
134 /* If the high 3 bits are 3 to 6 these two bits say how many components
135 * there are.
136 */
137 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
138 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
139
140 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
141 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
142 * bits mean.
143 */
144
145 #define MALI_CHANNEL_4 2
146
147 #define MALI_CHANNEL_8 3
148
149 #define MALI_CHANNEL_16 4
150
151 #define MALI_CHANNEL_32 5
152
153 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
154 * MALI_FORMAT_UNORM, it means a 32-bit float.
155 */
156 #define MALI_CHANNEL_FLOAT 7
157 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
158
159 /* The raw Midgard blend payload can either be an equation or a shader
160 * address, depending on the context */
161
162 union midgard_blend {
163 mali_ptr shader;
164
165 struct {
166 struct mali_blend_equation_packed equation;
167 float constant;
168 };
169 };
170
171 struct midgard_blend_rt {
172 struct mali_blend_flags_packed flags;
173 u32 zero;
174 union midgard_blend blend;
175 } __attribute__((packed));
176
177 /* On Bifrost systems (all MRT), each render target gets one of these
178 * descriptors */
179
180 enum bifrost_shader_type {
181 BIFROST_BLEND_F16 = 0,
182 BIFROST_BLEND_F32 = 1,
183 BIFROST_BLEND_I32 = 2,
184 BIFROST_BLEND_U32 = 3,
185 BIFROST_BLEND_I16 = 4,
186 BIFROST_BLEND_U16 = 5,
187 };
188
189 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
190
191 struct bifrost_blend_rt {
192 /* This is likely an analogue of the flags on
193 * midgard_blend_rt */
194
195 u16 flags; // = 0x200
196
197 /* Single-channel blend constants are encoded in a sort of
198 * fixed-point. Basically, the float is mapped to a byte, becoming
199 * a high byte, and then the lower-byte is added for precision.
200 * For the original float f:
201 *
202 * f = (constant_hi / 255) + (constant_lo / 65535)
203 *
204 * constant_hi = int(f / 255)
205 * constant_lo = 65535*f - (65535/255) * constant_hi
206 */
207 u16 constant;
208
209 struct mali_blend_equation_packed equation;
210
211 /*
212 * - 0x19 normally
213 * - 0x3 when this slot is unused (everything else is 0 except the index)
214 * - 0x11 when this is the fourth slot (and it's used)
215 * - 0 when there is a blend shader
216 */
217 u16 unk2;
218
219 /* increments from 0 to 3 */
220 u16 index;
221
222 union {
223 struct {
224 /* So far, I've only seen:
225 * - R001 for 1-component formats
226 * - RG01 for 2-component formats
227 * - RGB1 for 3-component formats
228 * - RGBA for 4-component formats
229 */
230 u32 swizzle : 12;
231 enum mali_format format : 8;
232
233 /* Type of the shader output variable. Note, this can
234 * be different from the format.
235 * enum bifrost_shader_type
236 */
237 u32 zero1 : 4;
238 u32 shader_type : 3;
239 u32 zero2 : 5;
240 };
241
242 /* Only the low 32 bits of the blend shader are stored, the
243 * high 32 bits are implicitly the same as the original shader.
244 * According to the kernel driver, the program counter for
245 * shaders is actually only 24 bits, so shaders cannot cross
246 * the 2^24-byte boundary, and neither can the blend shader.
247 * The blob handles this by allocating a 2^24 byte pool for
248 * shaders, and making sure that any blend shaders are stored
249 * in the same pool as the original shader. The kernel will
250 * make sure this allocation is aligned to 2^24 bytes.
251 */
252 u32 shader;
253 };
254 } __attribute__((packed));
255
256 /* Possible values for job_descriptor_size */
257
258 #define MALI_JOB_32 0
259 #define MALI_JOB_64 1
260
261 struct mali_job_descriptor_header {
262 u32 exception_status;
263 u32 first_incomplete_task;
264 u64 fault_pointer;
265 u8 job_descriptor_size : 1;
266 enum mali_job_type job_type : 7;
267 u8 job_barrier : 1;
268 u8 unknown_flags : 7;
269 u16 job_index;
270 u16 job_dependency_index_1;
271 u16 job_dependency_index_2;
272 u64 next_job;
273 } __attribute__((packed));
274
275 /* Details about write_value from panfrost igt tests which use it as a generic
276 * dword write primitive */
277
278 #define MALI_WRITE_VALUE_ZERO 3
279
280 struct mali_payload_write_value {
281 u64 address;
282 u32 value_descriptor;
283 u32 reserved;
284 u64 immediate;
285 } __attribute__((packed));
286
287 /*
288 * Mali Attributes
289 *
290 * This structure lets the attribute unit compute the address of an attribute
291 * given the vertex and instance ID. Unfortunately, the way this works is
292 * rather complicated when instancing is enabled.
293 *
294 * To explain this, first we need to explain how compute and vertex threads are
295 * dispatched. This is a guess (although a pretty firm guess!) since the
296 * details are mostly hidden from the driver, except for attribute instancing.
297 * When a quad is dispatched, it receives a single, linear index. However, we
298 * need to translate that index into a (vertex id, instance id) pair, or a
299 * (local id x, local id y, local id z) triple for compute shaders (although
300 * vertex shaders and compute shaders are handled almost identically).
301 * Focusing on vertex shaders, one option would be to do:
302 *
303 * vertex_id = linear_id % num_vertices
304 * instance_id = linear_id / num_vertices
305 *
306 * but this involves a costly division and modulus by an arbitrary number.
307 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
308 * num_instances threads instead of num_vertices * num_instances, which results
309 * in some "extra" threads with vertex_id >= num_vertices, which we have to
310 * discard. The more we pad num_vertices, the more "wasted" threads we
311 * dispatch, but the division is potentially easier.
312 *
313 * One straightforward choice is to pad num_vertices to the next power of two,
314 * which means that the division and modulus are just simple bit shifts and
315 * masking. But the actual algorithm is a bit more complicated. The thread
316 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
317 * to dividing by a power of two. This is possibly using the technique
318 * described in patent US20170010862A1. As a result, padded_num_vertices can be
319 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
320 * since we need less padding.
321 *
322 * padded_num_vertices is picked by the hardware. The driver just specifies the
323 * actual number of vertices. At least for Mali G71, the first few cases are
324 * given by:
325 *
326 * num_vertices | padded_num_vertices
327 * 3 | 4
328 * 4-7 | 8
329 * 8-11 | 12 (3 * 4)
330 * 12-15 | 16
331 * 16-19 | 20 (5 * 4)
332 *
333 * Note that padded_num_vertices is a multiple of four (presumably because
334 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
335 * at least one more than num_vertices, which seems like a quirk of the
336 * hardware. For larger num_vertices, the hardware uses the following
337 * algorithm: using the binary representation of num_vertices, we look at the
338 * most significant set bit as well as the following 3 bits. Let n be the
339 * number of bits after those 4 bits. Then we set padded_num_vertices according
340 * to the following table:
341 *
342 * high bits | padded_num_vertices
343 * 1000 | 9 * 2^n
344 * 1001 | 5 * 2^(n+1)
345 * 101x | 3 * 2^(n+2)
346 * 110x | 7 * 2^(n+1)
347 * 111x | 2^(n+4)
348 *
349 * For example, if num_vertices = 70 is passed to glDraw(), its binary
350 * representation is 1000110, so n = 3 and the high bits are 1000, and
351 * therefore padded_num_vertices = 9 * 2^3 = 72.
352 *
353 * The attribute unit works in terms of the original linear_id. if
354 * num_instances = 1, then they are the same, and everything is simple.
355 * However, with instancing things get more complicated. There are four
356 * possible modes, two of them we can group together:
357 *
358 * 1. Use the linear_id directly. Only used when there is no instancing.
359 *
360 * 2. Use the linear_id modulo a constant. This is used for per-vertex
361 * attributes with instancing enabled by making the constant equal
362 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
363 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
364 * The shift field specifies the power of two, while the extra_flags field
365 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
366 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
367 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
368 * shift = 3. Note that we must exactly follow the hardware algorithm used to
369 * get padded_num_vertices in order to correctly implement per-vertex
370 * attributes.
371 *
372 * 3. Divide the linear_id by a constant. In order to correctly implement
373 * instance divisors, we have to divide linear_id by padded_num_vertices times
374 * to user-specified divisor. So first we compute padded_num_vertices, again
375 * following the exact same algorithm that the hardware uses, then multiply it
376 * by the GL-level divisor to get the hardware-level divisor. This case is
377 * further divided into two more cases. If the hardware-level divisor is a
378 * power of two, then we just need to shift. The shift amount is specified by
379 * the shift field, so that the hardware-level divisor is just 2^shift.
380 *
381 * If it isn't a power of two, then we have to divide by an arbitrary integer.
382 * For that, we use the well-known technique of multiplying by an approximation
383 * of the inverse. The driver must compute the magic multiplier and shift
384 * amount, and then the hardware does the multiplication and shift. The
385 * hardware and driver also use the "round-down" optimization as described in
386 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
387 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
388 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
389 * presumably this simplifies the hardware multiplier a little. The hardware
390 * first multiplies linear_id by the multiplier and takes the high 32 bits,
391 * then applies the round-down correction if extra_flags = 1, then finally
392 * shifts right by the shift field.
393 *
394 * There are some differences between ridiculousfish's algorithm and the Mali
395 * hardware algorithm, which means that the reference code from ridiculousfish
396 * doesn't always produce the right constants. Mali does not use the pre-shift
397 * optimization, since that would make a hardware implementation slower (it
398 * would have to always do the pre-shift, multiply, and post-shift operations).
399 * It also forces the multplier to be at least 2^31, which means that the
400 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
401 * given the divisor d, the algorithm the driver must follow is:
402 *
403 * 1. Set shift = floor(log2(d)).
404 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
405 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
406 * magic_divisor = m - 1 and extra_flags = 1.
407 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
408 */
409
410 #define FBD_MASK (~0x3f)
411
412 /* MFBD, rather than SFBD */
413 #define MALI_MFBD (0x1)
414
415 /* ORed into an MFBD address to specify the fbx section is included */
416 #define MALI_MFBD_TAG_EXTRA (0x2)
417
418 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
419 * They also seem to be the same between Bifrost and Midgard. They're shared in
420 * fused payloads.
421 */
422
423 struct mali_vertex_tiler_prefix {
424 /* This is a dynamic bitfield containing the following things in this order:
425 *
426 * - gl_WorkGroupSize.x
427 * - gl_WorkGroupSize.y
428 * - gl_WorkGroupSize.z
429 * - gl_NumWorkGroups.x
430 * - gl_NumWorkGroups.y
431 * - gl_NumWorkGroups.z
432 *
433 * The number of bits allocated for each number is based on the *_shift
434 * fields below. For example, workgroups_y_shift gives the bit that
435 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
436 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
437 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
438 * value is one more than the stored value, since if any of the values
439 * are zero, then there would be no invocations (and hence no job). If
440 * there were 0 bits allocated to a given field, then it must be zero,
441 * and hence the real value is one.
442 *
443 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
444 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
445 * where vertex count is the number of vertices.
446 */
447 u32 invocation_count;
448
449 /* Bitfield for shifts:
450 *
451 * size_y_shift : 5
452 * size_z_shift : 5
453 * workgroups_x_shift : 6
454 * workgroups_y_shift : 6
455 * workgroups_z_shift : 6
456 * workgroups_x_shift_2 : 4
457 */
458 u32 invocation_shifts;
459
460 struct mali_primitive_packed primitive;
461 } __attribute__((packed));
462
463 /* Point size / line width can either be specified as a 32-bit float (for
464 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
465 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
466 * payload, the contents of varying_pointer will be intepreted as an array of
467 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
468 * creating a special MALI_R16F varying writing to varying_pointer. */
469
470 union midgard_primitive_size {
471 float constant;
472 u64 pointer;
473 };
474
475 struct bifrost_tiler_heap_meta {
476 u32 zero;
477 u32 heap_size;
478 /* note: these are just guesses! */
479 mali_ptr tiler_heap_start;
480 mali_ptr tiler_heap_free;
481 mali_ptr tiler_heap_end;
482
483 /* hierarchy weights? but they're still 0 after the job has run... */
484 u32 zeros[10];
485 u32 unk1;
486 u32 unk7e007e;
487 } __attribute__((packed));
488
489 struct bifrost_tiler_meta {
490 u32 tiler_heap_next_start; /* To be written by the GPU */
491 u32 used_hierarchy_mask; /* To be written by the GPU */
492 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
493 u16 flags;
494 u16 width;
495 u16 height;
496 u64 zero0;
497 mali_ptr tiler_heap_meta;
498 /* TODO what is this used for? */
499 u64 zeros[20];
500 } __attribute__((packed));
501
502 struct bifrost_tiler_only {
503 /* 0x20 */
504 union midgard_primitive_size primitive_size;
505
506 mali_ptr tiler_meta;
507
508 u64 zero1, zero2, zero3, zero4, zero5, zero6;
509 } __attribute__((packed));
510
511 struct mali_vertex_tiler_postfix {
512 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
513
514 /* Both zero for non-instanced draws. For instanced draws, a
515 * decomposition of padded_num_vertices. See the comments about the
516 * corresponding fields in mali_attr for context. */
517
518 unsigned instance_shift : 5;
519 unsigned instance_odd : 3;
520
521 u8 zero4;
522
523 /* Offset for first vertex in buffer */
524 u32 offset_start;
525
526 u64 zero5;
527
528 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
529 * output from the vertex shader for tiler jobs.
530 */
531
532 u64 position_varying;
533
534 /* An array of mali_uniform_buffer_meta's. The size is given by the
535 * shader_meta.
536 */
537 u64 uniform_buffers;
538
539 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
540 * On Midgard, this is a pointer to an array of pointers to the texture
541 * descriptors, number of pointers bounded by number of textures. The
542 * indirection is needed to accomodate varying numbers and sizes of
543 * texture descriptors */
544 u64 textures;
545
546 /* For OpenGL, from what I've seen, this is intimately connected to
547 * texture_meta. cwabbott says this is not the case under Vulkan, hence
548 * why this field is seperate (Midgard is Vulkan capable). Pointer to
549 * array of sampler descriptors (which are uniform in size) */
550 u64 sampler_descriptor;
551
552 u64 uniforms;
553 u64 shader;
554 u64 attributes; /* struct attribute_buffer[] */
555 u64 attribute_meta; /* attribute_meta[] */
556 u64 varyings; /* struct attr */
557 u64 varying_meta; /* pointer */
558 u64 viewport;
559 u64 occlusion_counter; /* A single bit as far as I can tell */
560
561 /* On Bifrost, this points directly to a mali_shared_memory structure.
562 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
563 * tagged), which embeds a mali_shared_memory structure */
564 mali_ptr shared_memory;
565 } __attribute__((packed));
566
567 struct midgard_payload_vertex_tiler {
568 struct mali_vertex_tiler_prefix prefix;
569 struct mali_vertex_tiler_postfix postfix;
570
571 union midgard_primitive_size primitive_size;
572 } __attribute__((packed));
573
574 struct bifrost_payload_vertex {
575 struct mali_vertex_tiler_prefix prefix;
576 struct mali_vertex_tiler_postfix postfix;
577 } __attribute__((packed));
578
579 struct bifrost_payload_tiler {
580 struct mali_vertex_tiler_prefix prefix;
581 struct bifrost_tiler_only tiler;
582 struct mali_vertex_tiler_postfix postfix;
583 } __attribute__((packed));
584
585 struct bifrost_payload_fused {
586 struct mali_vertex_tiler_prefix prefix;
587 struct bifrost_tiler_only tiler;
588 struct mali_vertex_tiler_postfix tiler_postfix;
589 u64 padding; /* zero */
590 struct mali_vertex_tiler_postfix vertex_postfix;
591 } __attribute__((packed));
592
593 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
594 * texture is stored as (63, 63) in these fields. This adjusts for that.
595 * There's an identical pattern in the framebuffer descriptor. Even vertex
596 * count fields work this way, hence the generic name -- integral fields that
597 * are strictly positive generally need this adjustment. */
598
599 #define MALI_POSITIVE(dim) (dim - 1)
600
601 /* 8192x8192 */
602 #define MAX_MIP_LEVELS (13)
603
604 /* Cubemap bloats everything up */
605 #define MAX_CUBE_FACES (6)
606
607 /* For each pointer, there is an address and optionally also a stride */
608 #define MAX_ELEMENTS (2)
609
610 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
611 * be cleaned up a lot. */
612
613 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
614
615 static inline int16_t
616 FIXED_16(float x, bool allow_negative)
617 {
618 /* Clamp inputs, accounting for float error */
619 float max_lod = (32.0 - (1.0 / 512.0));
620 float min_lod = allow_negative ? -max_lod : 0.0;
621
622 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
623
624 return (int) (x * 256.0);
625 }
626
627 /* From presentations, 16x16 tiles externally. Use shift for fast computation
628 * of tile numbers. */
629
630 #define MALI_TILE_SHIFT 4
631 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
632
633 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
634 * each component. Notice that this provides a theoretical upper bound of (1 <<
635 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
636 * 65536x65536. Multiplying that together, times another four given that Mali
637 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
638 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
639 * alone rendering in real-time to such a buffer.
640 *
641 * Nice job, guys.*/
642
643 /* From mali_kbase_10969_workaround.c */
644 #define MALI_X_COORD_MASK 0x00000FFF
645 #define MALI_Y_COORD_MASK 0x0FFF0000
646
647 /* Extract parts of a tile coordinate */
648
649 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
650 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
651
652 /* Helpers to generate tile coordinates based on the boundary coordinates in
653 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
654 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
655 * Intentional "off-by-one"; finding the tile number is a form of fencepost
656 * problem. */
657
658 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
659 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
660 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
661 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
662 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
663
664 struct mali_payload_fragment {
665 u32 min_tile_coord;
666 u32 max_tile_coord;
667 mali_ptr framebuffer;
668 } __attribute__((packed));
669
670 /* Single Framebuffer Descriptor */
671
672 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
673 * configured for 4x. With MSAA_8, it is configured for 8x. */
674
675 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
676 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
677 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
678 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
679
680 /* Fast/slow based on whether all three buffers are cleared at once */
681
682 #define MALI_CLEAR_FAST (1 << 18)
683 #define MALI_CLEAR_SLOW (1 << 28)
684 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
685
686 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
687 * within the larget framebuffer descriptor). Analogous to
688 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
689
690 /* See pan_tiler.c for derivation */
691 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
692
693 /* Flag disabling the tiler for clear-only jobs, with
694 hierarchical tiling */
695 #define MALI_TILER_DISABLED (1 << 12)
696
697 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
698 * hierarhical tiling. */
699 #define MALI_TILER_USER 0xFFF
700
701 /* Absent any geometry, the minimum size of the polygon list header */
702 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
703
704 struct midgard_tiler_descriptor {
705 /* Size of the entire polygon list; see pan_tiler.c for the
706 * computation. It's based on hierarchical tiling */
707
708 u32 polygon_list_size;
709
710 /* Name known from the replay workaround in the kernel. What exactly is
711 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
712 * specifies a mask of hierarchy weights, which explains some of the
713 * performance mysteries around setting it. We also see the bottom bit
714 * of tiler_flags set in the kernel, but no comment why.
715 *
716 * hierarchy_mask can have the TILER_DISABLED flag */
717
718 u16 hierarchy_mask;
719 u16 flags;
720
721 /* See mali_tiler.c for an explanation */
722 mali_ptr polygon_list;
723 mali_ptr polygon_list_body;
724
725 /* Names based on we see symmetry with replay jobs which name these
726 * explicitly */
727
728 mali_ptr heap_start; /* tiler heap_free_address */
729 mali_ptr heap_end;
730
731 /* Hierarchy weights. We know these are weights based on the kernel,
732 * but I've never seen them be anything other than zero */
733 u32 weights[8];
734 };
735
736 struct mali_sfbd_format {
737 /* 0x1 */
738 unsigned unk1 : 6;
739
740 /* mali_channel_swizzle */
741 unsigned swizzle : 12;
742
743 /* MALI_POSITIVE */
744 unsigned nr_channels : 2;
745
746 /* 0x4 */
747 unsigned unk2 : 6;
748
749 enum mali_block_format block : 2;
750
751 /* 0xb */
752 unsigned unk3 : 4;
753 };
754
755 /* Shared structure at the start of framebuffer descriptors, or used bare for
756 * compute jobs, configuring stack and shared memory */
757
758 struct mali_shared_memory {
759 u32 stack_shift : 4;
760 u32 unk0 : 28;
761
762 /* Configuration for shared memory for compute shaders.
763 * shared_workgroup_count is logarithmic and may be computed for a
764 * compute shader using shared memory as:
765 *
766 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
767 *
768 * For compute shaders that don't use shared memory, or non-compute
769 * shaders, this is set to ~0
770 */
771
772 u32 shared_workgroup_count : 5;
773 u32 shared_unk1 : 3;
774 u32 shared_shift : 4;
775 u32 shared_zero : 20;
776
777 mali_ptr scratchpad;
778
779 /* For compute shaders, the RAM backing of workgroup-shared memory. For
780 * fragment shaders on Bifrost, apparently multisampling locations */
781
782 mali_ptr shared_memory;
783 mali_ptr unknown1;
784 } __attribute__((packed));
785
786 /* Configures multisampling on Bifrost fragment jobs */
787
788 struct bifrost_multisampling {
789 u64 zero1;
790 u64 zero2;
791 mali_ptr sample_locations;
792 u64 zero4;
793 } __attribute__((packed));
794
795 struct mali_single_framebuffer {
796 struct mali_shared_memory shared_memory;
797 struct mali_sfbd_format format;
798
799 u32 clear_flags;
800 u32 zero2;
801
802 /* Purposeful off-by-one in these fields should be accounted for by the
803 * MALI_DIMENSION macro */
804
805 u16 width;
806 u16 height;
807
808 u32 zero3[4];
809 mali_ptr checksum;
810 u32 checksum_stride;
811 u32 zero5;
812
813 /* By default, the framebuffer is upside down from OpenGL's
814 * perspective. Set framebuffer to the end and negate the stride to
815 * flip in the Y direction */
816
817 mali_ptr framebuffer;
818 int32_t stride;
819
820 u32 zero4;
821
822 /* Depth and stencil buffers are interleaved, it appears, as they are
823 * set to the same address in captures. Both fields set to zero if the
824 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
825 * get a zero enable despite the buffer being present; that still is
826 * disabled. */
827
828 mali_ptr depth_buffer; // not SAME_VA
829 u32 depth_stride_zero : 4;
830 u32 depth_stride : 28;
831 u32 zero7;
832
833 mali_ptr stencil_buffer; // not SAME_VA
834 u32 stencil_stride_zero : 4;
835 u32 stencil_stride : 28;
836 u32 zero8;
837
838 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
839 u32 clear_color_2; // always equal, but unclear function?
840 u32 clear_color_3; // always equal, but unclear function?
841 u32 clear_color_4; // always equal, but unclear function?
842
843 /* Set to zero if not cleared */
844
845 float clear_depth_1; // float32, ditto
846 float clear_depth_2; // float32, ditto
847 float clear_depth_3; // float32, ditto
848 float clear_depth_4; // float32, ditto
849
850 u32 clear_stencil; // Exactly as it appears in OpenGL
851
852 u32 zero6[7];
853
854 struct midgard_tiler_descriptor tiler;
855
856 /* More below this, maybe */
857 } __attribute__((packed));
858
859
860 #define MALI_MFBD_FORMAT_SRGB (1 << 0)
861
862 struct mali_rt_format {
863 unsigned unk1 : 32;
864 unsigned unk2 : 3;
865
866 unsigned nr_channels : 2; /* MALI_POSITIVE */
867
868 unsigned unk3 : 4;
869 unsigned unk4 : 1;
870 enum mali_block_format block : 2;
871 enum mali_msaa msaa : 2;
872 unsigned flags : 2;
873
874 unsigned swizzle : 12;
875
876 unsigned zero : 3;
877
878 /* Disables MFBD preload. When this bit is set, the render target will
879 * be cleared every frame. When this bit is clear, the hardware will
880 * automatically wallpaper the render target back from main memory.
881 * Unfortunately, MFBD preload is very broken on Midgard, so in
882 * practice, this is a chicken bit that should always be set.
883 * Discovered by accident, as all good chicken bits are. */
884
885 unsigned no_preload : 1;
886 } __attribute__((packed));
887
888 /* Flags for afbc.flags and ds_afbc.flags */
889
890 #define MALI_AFBC_FLAGS 0x10009
891
892 /* Lossless RGB and RGBA colorspace transform */
893 #define MALI_AFBC_YTR (1 << 17)
894
895 struct mali_render_target {
896 struct mali_rt_format format;
897
898 u64 zero1;
899
900 struct {
901 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
902 * there is an extra metadata buffer that contains 16 bytes per tile.
903 * The framebuffer needs to be the same size as before, since we don't
904 * know ahead of time how much space it will take up. The
905 * framebuffer_stride is set to 0, since the data isn't stored linearly
906 * anymore.
907 *
908 * When AFBC is disabled, these fields are zero.
909 */
910
911 mali_ptr metadata;
912 u32 stride; // stride in units of tiles
913 u32 flags; // = 0x20000
914 } afbc;
915
916 mali_ptr framebuffer;
917
918 u32 zero2 : 4;
919 u32 framebuffer_stride : 28; // in units of bytes, row to next
920 u32 layer_stride; /* For multisample rendering */
921
922 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
923 u32 clear_color_2; // always equal, but unclear function?
924 u32 clear_color_3; // always equal, but unclear function?
925 u32 clear_color_4; // always equal, but unclear function?
926 } __attribute__((packed));
927
928 /* An optional part of mali_framebuffer. It comes between the main structure
929 * and the array of render targets. It must be included if any of these are
930 * enabled:
931 *
932 * - Transaction Elimination
933 * - Depth/stencil
934 * - TODO: Anything else?
935 */
936
937 /* flags_hi */
938 #define MALI_EXTRA_PRESENT (0x1)
939
940 /* flags_lo */
941 #define MALI_EXTRA_ZS (0x4)
942
943 struct mali_framebuffer_extra {
944 mali_ptr checksum;
945 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
946 u32 checksum_stride;
947
948 unsigned flags_lo : 4;
949 enum mali_block_format zs_block : 2;
950
951 /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
952 * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
953 unsigned zs_samples : 4;
954 unsigned flags_hi : 22;
955
956 union {
957 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
958 struct {
959 mali_ptr depth_stencil_afbc_metadata;
960 u32 depth_stencil_afbc_stride; // in units of tiles
961 u32 flags;
962
963 mali_ptr depth_stencil;
964
965 u64 padding;
966 } ds_afbc;
967
968 struct {
969 /* Depth becomes depth/stencil in case of combined D/S */
970 mali_ptr depth;
971 u32 depth_stride_zero : 4;
972 u32 depth_stride : 28;
973 u32 depth_layer_stride;
974
975 mali_ptr stencil;
976 u32 stencil_stride_zero : 4;
977 u32 stencil_stride : 28;
978 u32 stencil_layer_stride;
979 } ds_linear;
980 };
981
982
983 u32 clear_color_1;
984 u32 clear_color_2;
985 u64 zero3;
986 } __attribute__((packed));
987
988 /* Flags for mfbd_flags */
989
990 /* Enables writing depth results back to main memory (rather than keeping them
991 * on-chip in the tile buffer and then discarding) */
992
993 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
994
995 /* The MFBD contains the extra mali_framebuffer_extra section */
996
997 #define MALI_MFBD_EXTRA (1 << 13)
998
999 struct mali_framebuffer {
1000 union {
1001 struct mali_shared_memory shared_memory;
1002 struct bifrost_multisampling msaa;
1003 };
1004
1005 /* 0x20 */
1006 u16 width1, height1;
1007 u32 zero3;
1008 u16 width2, height2;
1009 u32 unk1 : 19; // = 0x01000
1010 u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1011 u32 unk2 : 2; // = 0
1012 u32 rt_count_2 : 3; // no off-by-one
1013 u32 zero4 : 5;
1014 /* 0x30 */
1015 u32 clear_stencil : 8;
1016 u32 mfbd_flags : 24; // = 0x100
1017 float clear_depth;
1018
1019 union {
1020 struct midgard_tiler_descriptor tiler;
1021 struct {
1022 mali_ptr tiler_meta;
1023 u32 zeros[16];
1024 };
1025 };
1026
1027 /* optional: struct mali_framebuffer_extra extra */
1028 /* struct mali_render_target rts[] */
1029 } __attribute__((packed));
1030
1031 #endif /* __PANFROST_JOB_H__ */