a282c6e32e17753779a9d856bbc6d6ac310fd90d
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <inttypes.h>
34
35 typedef uint8_t u8;
36 typedef uint16_t u16;
37 typedef uint32_t u32;
38 typedef uint64_t u64;
39 typedef uint64_t mali_ptr;
40
41 enum mali_job_type {
42 JOB_NOT_STARTED = 0,
43 JOB_TYPE_NULL = 1,
44 JOB_TYPE_WRITE_VALUE = 2,
45 JOB_TYPE_CACHE_FLUSH = 3,
46 JOB_TYPE_COMPUTE = 4,
47 JOB_TYPE_VERTEX = 5,
48 JOB_TYPE_GEOMETRY = 6,
49 JOB_TYPE_TILER = 7,
50 JOB_TYPE_FUSED = 8,
51 JOB_TYPE_FRAGMENT = 9,
52 };
53
54 enum mali_draw_mode {
55 MALI_DRAW_NONE = 0x0,
56 MALI_POINTS = 0x1,
57 MALI_LINES = 0x2,
58 MALI_LINE_STRIP = 0x4,
59 MALI_LINE_LOOP = 0x6,
60 MALI_TRIANGLES = 0x8,
61 MALI_TRIANGLE_STRIP = 0xA,
62 MALI_TRIANGLE_FAN = 0xC,
63 MALI_POLYGON = 0xD,
64 MALI_QUADS = 0xE,
65 MALI_QUAD_STRIP = 0xF,
66
67 /* All other modes invalid */
68 };
69
70 /* Applies to tiler_gl_enables */
71
72 #define MALI_OCCLUSION_QUERY (1 << 3)
73 #define MALI_OCCLUSION_PRECISE (1 << 4)
74
75 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
76 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
77 * disagree about how to do viewport flipping, so the blob actually sets this
78 * for GL_CW but then has a negative viewport stride */
79
80 #define MALI_FRONT_CCW_TOP (1 << 5)
81
82 #define MALI_CULL_FACE_FRONT (1 << 6)
83 #define MALI_CULL_FACE_BACK (1 << 7)
84
85 /* Used in stencil and depth tests */
86
87 enum mali_func {
88 MALI_FUNC_NEVER = 0,
89 MALI_FUNC_LESS = 1,
90 MALI_FUNC_EQUAL = 2,
91 MALI_FUNC_LEQUAL = 3,
92 MALI_FUNC_GREATER = 4,
93 MALI_FUNC_NOTEQUAL = 5,
94 MALI_FUNC_GEQUAL = 6,
95 MALI_FUNC_ALWAYS = 7
96 };
97
98 /* Flags apply to unknown2_3? */
99
100 #define MALI_HAS_MSAA (1 << 0)
101
102 /* Execute fragment shader per-sample if set (e.g. to implement gl_SampleID
103 * reads) */
104 #define MALI_PER_SAMPLE (1 << 2)
105 #define MALI_CAN_DISCARD (1 << 5)
106
107 /* Applies on SFBD systems, specifying that programmable blending is in use */
108 #define MALI_HAS_BLEND_SHADER (1 << 6)
109
110 /* func is mali_func */
111 #define MALI_DEPTH_FUNC(func) (func << 8)
112 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
113 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
114
115 #define MALI_DEPTH_WRITEMASK (1 << 11)
116
117 #define MALI_DEPTH_CLIP_NEAR (1 << 12)
118 #define MALI_DEPTH_CLIP_FAR (1 << 13)
119
120 /* Next flags to unknown2_4 */
121 #define MALI_STENCIL_TEST (1 << 0)
122
123 #define MALI_ALPHA_TO_COVERAGE (1 << 1)
124
125 #define MALI_NO_DITHER (1 << 9)
126 #define MALI_DEPTH_RANGE_A (1 << 12)
127 #define MALI_DEPTH_RANGE_B (1 << 13)
128 #define MALI_NO_MSAA (1 << 14)
129
130 /* Stencil test state is all encoded in a single u32, just with a lot of
131 * enums... */
132
133 enum mali_stencil_op {
134 MALI_STENCIL_KEEP = 0,
135 MALI_STENCIL_REPLACE = 1,
136 MALI_STENCIL_ZERO = 2,
137 MALI_STENCIL_INVERT = 3,
138 MALI_STENCIL_INCR_WRAP = 4,
139 MALI_STENCIL_DECR_WRAP = 5,
140 MALI_STENCIL_INCR = 6,
141 MALI_STENCIL_DECR = 7
142 };
143
144 struct mali_stencil_test {
145 unsigned ref : 8;
146 unsigned mask : 8;
147 enum mali_func func : 3;
148 enum mali_stencil_op sfail : 3;
149 enum mali_stencil_op dpfail : 3;
150 enum mali_stencil_op dppass : 3;
151 unsigned zero : 4;
152 } __attribute__((packed));
153
154 #define MALI_MASK_R (1 << 0)
155 #define MALI_MASK_G (1 << 1)
156 #define MALI_MASK_B (1 << 2)
157 #define MALI_MASK_A (1 << 3)
158
159 enum mali_nondominant_mode {
160 MALI_BLEND_NON_MIRROR = 0,
161 MALI_BLEND_NON_ZERO = 1
162 };
163
164 enum mali_dominant_blend {
165 MALI_BLEND_DOM_SOURCE = 0,
166 MALI_BLEND_DOM_DESTINATION = 1
167 };
168
169 enum mali_dominant_factor {
170 MALI_DOMINANT_UNK0 = 0,
171 MALI_DOMINANT_ZERO = 1,
172 MALI_DOMINANT_SRC_COLOR = 2,
173 MALI_DOMINANT_DST_COLOR = 3,
174 MALI_DOMINANT_UNK4 = 4,
175 MALI_DOMINANT_SRC_ALPHA = 5,
176 MALI_DOMINANT_DST_ALPHA = 6,
177 MALI_DOMINANT_CONSTANT = 7,
178 };
179
180 enum mali_blend_modifier {
181 MALI_BLEND_MOD_UNK0 = 0,
182 MALI_BLEND_MOD_NORMAL = 1,
183 MALI_BLEND_MOD_SOURCE_ONE = 2,
184 MALI_BLEND_MOD_DEST_ONE = 3,
185 };
186
187 struct mali_blend_mode {
188 enum mali_blend_modifier clip_modifier : 2;
189 unsigned unused_0 : 1;
190 unsigned negate_source : 1;
191
192 enum mali_dominant_blend dominant : 1;
193
194 enum mali_nondominant_mode nondominant_mode : 1;
195
196 unsigned unused_1 : 1;
197
198 unsigned negate_dest : 1;
199
200 enum mali_dominant_factor dominant_factor : 3;
201 unsigned complement_dominant : 1;
202 } __attribute__((packed));
203
204 struct mali_blend_equation {
205 /* Of type mali_blend_mode */
206 unsigned rgb_mode : 12;
207 unsigned alpha_mode : 12;
208
209 unsigned zero1 : 4;
210
211 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
212
213 unsigned color_mask : 4;
214 } __attribute__((packed));
215
216 /* Used with channel swizzling */
217 enum mali_channel {
218 MALI_CHANNEL_RED = 0,
219 MALI_CHANNEL_GREEN = 1,
220 MALI_CHANNEL_BLUE = 2,
221 MALI_CHANNEL_ALPHA = 3,
222 MALI_CHANNEL_ZERO = 4,
223 MALI_CHANNEL_ONE = 5,
224 MALI_CHANNEL_RESERVED_0 = 6,
225 MALI_CHANNEL_RESERVED_1 = 7,
226 };
227
228 struct mali_channel_swizzle {
229 enum mali_channel r : 3;
230 enum mali_channel g : 3;
231 enum mali_channel b : 3;
232 enum mali_channel a : 3;
233 } __attribute__((packed));
234
235 /* Compressed per-pixel formats. Each of these formats expands to one to four
236 * floating-point or integer numbers, as defined by the OpenGL specification.
237 * There are various places in OpenGL where the user can specify a compressed
238 * format in memory, which all use the same 8-bit enum in the various
239 * descriptors, although different hardware units support different formats.
240 */
241
242 /* The top 3 bits specify how the bits of each component are interpreted. */
243
244 /* e.g. ETC2_RGB8 */
245 #define MALI_FORMAT_COMPRESSED (0 << 5)
246
247 /* e.g. R11F_G11F_B10F */
248 #define MALI_FORMAT_SPECIAL (2 << 5)
249
250 /* signed normalized, e.g. RGBA8_SNORM */
251 #define MALI_FORMAT_SNORM (3 << 5)
252
253 /* e.g. RGBA8UI */
254 #define MALI_FORMAT_UINT (4 << 5)
255
256 /* e.g. RGBA8 and RGBA32F */
257 #define MALI_FORMAT_UNORM (5 << 5)
258
259 /* e.g. RGBA8I and RGBA16F */
260 #define MALI_FORMAT_SINT (6 << 5)
261
262 /* These formats seem to largely duplicate the others. They're used at least
263 * for Bifrost framebuffer output.
264 */
265 #define MALI_FORMAT_SPECIAL2 (7 << 5)
266 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
267
268 /* If the high 3 bits are 3 to 6 these two bits say how many components
269 * there are.
270 */
271 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
272 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
273
274 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
275 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
276 * bits mean.
277 */
278
279 #define MALI_CHANNEL_4 2
280
281 #define MALI_CHANNEL_8 3
282
283 #define MALI_CHANNEL_16 4
284
285 #define MALI_CHANNEL_32 5
286
287 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
288 * MALI_FORMAT_UNORM, it means a 32-bit float.
289 */
290 #define MALI_CHANNEL_FLOAT 7
291 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
292
293 enum mali_format {
294 /* Not all formats are in fact available, need to query dynamically to
295 * check. Factory settings for Juno enables only ETC2 and ASTC, no
296 * DXT/RGTC formats.
297 * */
298
299 /* 0x0 invalid */
300 MALI_ETC2_RGB8 = MALI_FORMAT_COMPRESSED | 0x1,
301 MALI_ETC2_R11_UNORM = MALI_FORMAT_COMPRESSED | 0x2,
302 MALI_ETC2_RGBA8 = MALI_FORMAT_COMPRESSED | 0x3,
303 MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
304 /* 0x5 reserved */
305 MALI_NXR = MALI_FORMAT_COMPRESSED | 0x6, /* Nokia eXtended Range */
306 MALI_BC1_UNORM = MALI_FORMAT_COMPRESSED | 0x7, /* DXT1 */
307 MALI_BC2_UNORM = MALI_FORMAT_COMPRESSED | 0x8, /* DXT3 */
308 MALI_BC3_UNORM = MALI_FORMAT_COMPRESSED | 0x9, /* DXT5 */
309 MALI_BC4_UNORM = MALI_FORMAT_COMPRESSED | 0xA, /* RGTC1_UNORM */
310 MALI_BC4_SNORM = MALI_FORMAT_COMPRESSED | 0xB, /* RGTC1_SNORM */
311 MALI_BC5_UNORM = MALI_FORMAT_COMPRESSED | 0xC, /* RGTC2_UNORM */
312 MALI_BC5_SNORM = MALI_FORMAT_COMPRESSED | 0xD, /* RGTC2_SNORM */
313 MALI_BC6H_UF16 = MALI_FORMAT_COMPRESSED | 0xE,
314 MALI_BC6H_SF16 = MALI_FORMAT_COMPRESSED | 0xF,
315 MALI_BC7_UNORM = MALI_FORMAT_COMPRESSED | 0x10,
316 MALI_ETC2_R11_SNORM = MALI_FORMAT_COMPRESSED | 0x11, /* EAC_SNORM */
317 MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12, /* EAC_SNORM */
318 MALI_ETC2_RGB8A1 = MALI_FORMAT_COMPRESSED | 0x13,
319 MALI_ASTC_3D_LDR = MALI_FORMAT_COMPRESSED | 0x14,
320 MALI_ASTC_3D_HDR = MALI_FORMAT_COMPRESSED | 0x15,
321 MALI_ASTC_2D_LDR = MALI_FORMAT_COMPRESSED | 0x16,
322 MALI_ASTC_2D_HDR = MALI_FORMAT_COMPRESSED | 0x17,
323
324 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
325 MALI_RGB5_X1_UNORM = MALI_FORMAT_SPECIAL | 0x1,
326 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
327 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
328 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
329 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
330 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
331
332 MALI_RGB332_UNORM = MALI_FORMAT_SPECIAL | 0xb,
333 MALI_RGB233_UNORM = MALI_FORMAT_SPECIAL | 0xc,
334
335 MALI_Z24X8_UNORM = MALI_FORMAT_SPECIAL | 0xd,
336 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
337 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
338 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
339 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
340 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
341 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
342 /* Only used for varyings, to indicate the transformed gl_Position */
343 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
344 /* Only used for varyings, to indicate that the write should be
345 * discarded.
346 */
347 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
348
349 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
350 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
351 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
352 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
353 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
354 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
355 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
356 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
357 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
358 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
359 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
360 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
361
362 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
363 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
364 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
365 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
366 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
367 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
368 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
369 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
370 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
371 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
372 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
373 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
374
375 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
376 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
377 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
378 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
379 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
380 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
381 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
382 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
383 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
384 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
385 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
386 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
387 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
388 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
389 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
390 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
391 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
392
393 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
394 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
395 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
396 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
397 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
398 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
399 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
400 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
401 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
402 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
403 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
404 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
405 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
406 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
407 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
408 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
409
410 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
411 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
412 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
413 };
414
415
416 /* Applies to midgard1.flags_lo */
417
418 /* Should be set when the fragment shader updates the depth value. */
419 #define MALI_WRITES_Z (1 << 4)
420
421 /* Should the hardware perform early-Z testing? Set if the shader does not use
422 * discard, alpha-to-coverage, shader depth writes, and if the shader has no
423 * side effects (writes to global memory or images) unless early-z testing is
424 * forced in the shader.
425 */
426
427 #define MALI_EARLY_Z (1 << 6)
428
429 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
430 * fragment shader that uses texturing or derivative functions */
431
432 #define MALI_HELPER_INVOCATIONS (1 << 7)
433
434 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
435 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
436 * it might read depth/stencil in particular, also set MALI_READS_ZS */
437
438 #define MALI_READS_ZS (1 << 8)
439
440 /* The shader might write to global memory (via OpenCL, SSBOs, or images).
441 * Reading is okay, as are ordinary writes to the tilebuffer/varyings. Setting
442 * incurs a performance penalty. On a fragment shader, this bit implies there
443 * are side effects, hence it interacts with early-z. */
444 #define MALI_WRITES_GLOBAL (1 << 9)
445
446 #define MALI_READS_TILEBUFFER (1 << 10)
447
448 /* Applies to midgard1.flags_hi */
449
450 /* Should be set when the fragment shader updates the stencil value. */
451 #define MALI_WRITES_S (1 << 2)
452
453 /* Mode to suppress generation of Infinity and NaN values by clamping inf
454 * (-inf) to MAX_FLOAT (-MIN_FLOAT) and flushing NaN to 0.0
455 *
456 * Compare suppress_inf/suppress_nan flags on the Bifrost clause header for the
457 * same functionality.
458 *
459 * This is not conformant on GLES3 or OpenCL, but is optional on GLES2, where
460 * it works around app bugs (e.g. in glmark2-es2 -bterrain with FP16).
461 */
462 #define MALI_SUPPRESS_INF_NAN (1 << 3)
463
464 /* Flags for bifrost1.unk1 */
465
466 /* Shader uses less than 32 registers, partitioned as [R0, R15] U [R48, R63],
467 * allowing for full thread count. If clear, the full [R0, R63] register set is
468 * available at half thread count */
469 #define MALI_BIFROST_FULL_THREAD (1 << 9)
470
471 /* Enable early-z testing (presumably). This flag may not be set if the shader:
472 *
473 * - Uses blending
474 * - Uses discard
475 * - Writes gl_FragDepth
476 *
477 * This differs from Midgard which sets the MALI_EARLY_Z flag even with
478 * blending, although I've begun to suspect that flag does not in fact enable
479 * EARLY_Z alone. */
480 #define MALI_BIFROST_EARLY_Z (1 << 15)
481
482 /* First clause type is ATEST */
483 #define MALI_BIFROST_FIRST_ATEST (1 << 26)
484
485 /* The raw Midgard blend payload can either be an equation or a shader
486 * address, depending on the context */
487
488 union midgard_blend {
489 mali_ptr shader;
490
491 struct {
492 struct mali_blend_equation equation;
493 float constant;
494 };
495 };
496
497 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
498 * ZERO) */
499
500 #define MALI_BLEND_LOAD_TIB (0x1)
501
502 /* A blend shader is used to blend this render target */
503 #define MALI_BLEND_MRT_SHADER (0x2)
504
505 /* On MRT Midgard systems (using an MFBD), each render target gets its own
506 * blend descriptor */
507
508 #define MALI_BLEND_SRGB (0x400)
509
510 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
511 #define MALI_BLEND_NO_DITHER (0x800)
512
513 struct midgard_blend_rt {
514 /* Flags base value of 0x200 to enable the render target.
515 * OR with 0x1 for blending (anything other than REPLACE).
516 * OR with 0x2 for programmable blending
517 * OR with MALI_BLEND_SRGB for implicit sRGB
518 */
519
520 u64 flags;
521 union midgard_blend blend;
522 } __attribute__((packed));
523
524 /* On Bifrost systems (all MRT), each render target gets one of these
525 * descriptors */
526
527 enum bifrost_shader_type {
528 BIFROST_BLEND_F16 = 0,
529 BIFROST_BLEND_F32 = 1,
530 BIFROST_BLEND_I32 = 2,
531 BIFROST_BLEND_U32 = 3,
532 BIFROST_BLEND_I16 = 4,
533 BIFROST_BLEND_U16 = 5,
534 };
535
536 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
537
538 struct bifrost_blend_rt {
539 /* This is likely an analogue of the flags on
540 * midgard_blend_rt */
541
542 u16 flags; // = 0x200
543
544 /* Single-channel blend constants are encoded in a sort of
545 * fixed-point. Basically, the float is mapped to a byte, becoming
546 * a high byte, and then the lower-byte is added for precision.
547 * For the original float f:
548 *
549 * f = (constant_hi / 255) + (constant_lo / 65535)
550 *
551 * constant_hi = int(f / 255)
552 * constant_lo = 65535*f - (65535/255) * constant_hi
553 */
554 u16 constant;
555
556 struct mali_blend_equation equation;
557
558 /*
559 * - 0x19 normally
560 * - 0x3 when this slot is unused (everything else is 0 except the index)
561 * - 0x11 when this is the fourth slot (and it's used)
562 * - 0 when there is a blend shader
563 */
564 u16 unk2;
565
566 /* increments from 0 to 3 */
567 u16 index;
568
569 union {
570 struct {
571 /* So far, I've only seen:
572 * - R001 for 1-component formats
573 * - RG01 for 2-component formats
574 * - RGB1 for 3-component formats
575 * - RGBA for 4-component formats
576 */
577 u32 swizzle : 12;
578 enum mali_format format : 8;
579
580 /* Type of the shader output variable. Note, this can
581 * be different from the format.
582 * enum bifrost_shader_type
583 */
584 u32 zero1 : 4;
585 u32 shader_type : 3;
586 u32 zero2 : 5;
587 };
588
589 /* Only the low 32 bits of the blend shader are stored, the
590 * high 32 bits are implicitly the same as the original shader.
591 * According to the kernel driver, the program counter for
592 * shaders is actually only 24 bits, so shaders cannot cross
593 * the 2^24-byte boundary, and neither can the blend shader.
594 * The blob handles this by allocating a 2^24 byte pool for
595 * shaders, and making sure that any blend shaders are stored
596 * in the same pool as the original shader. The kernel will
597 * make sure this allocation is aligned to 2^24 bytes.
598 */
599 u32 shader;
600 };
601 } __attribute__((packed));
602
603 /* Descriptor for the shader. Following this is at least one, up to four blend
604 * descriptors for each active render target */
605
606 struct mali_shader_meta {
607 mali_ptr shader;
608 u16 sampler_count;
609 u16 texture_count;
610 u16 attribute_count;
611 u16 varying_count;
612
613 union {
614 struct {
615 u32 uniform_buffer_count : 4;
616 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
617 } bifrost1;
618 struct {
619 unsigned uniform_buffer_count : 4;
620 unsigned flags_lo : 12;
621
622 /* vec4 units */
623 unsigned work_count : 5;
624 unsigned uniform_count : 5;
625 unsigned flags_hi : 6;
626 } midgard1;
627 };
628
629 /* Same as glPolygoOffset() arguments */
630 float depth_units;
631 float depth_factor;
632
633 u32 unknown2_2;
634
635 /* Generated from SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT. See
636 * 13.8.3 ("Multisample Fragment Operations") in the OpenGL ES 3.2
637 * specification. Only matters when multisampling is enabled. */
638 u16 coverage_mask;
639
640 u16 unknown2_3;
641
642 u8 stencil_mask_front;
643 u8 stencil_mask_back;
644 u16 unknown2_4;
645
646 struct mali_stencil_test stencil_front;
647 struct mali_stencil_test stencil_back;
648
649 union {
650 struct {
651 u32 unk3 : 7;
652 /* On Bifrost, some system values are preloaded in
653 * registers R55-R62 by the thread dispatcher prior to
654 * the start of shader execution. This is a bitfield
655 * with one entry for each register saying which
656 * registers need to be preloaded. Right now, the known
657 * values are:
658 *
659 * Vertex/compute:
660 * - R55 : gl_LocalInvocationID.xy
661 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
662 * - R57 : gl_WorkGroupID.x
663 * - R58 : gl_WorkGroupID.y
664 * - R59 : gl_WorkGroupID.z
665 * - R60 : gl_GlobalInvocationID.x
666 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
667 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
668 *
669 * Fragment:
670 * - R55 : unknown, never seen (but the bit for this is
671 * always set?)
672 * - R56 : unknown (bit always unset)
673 * - R57 : gl_PrimitiveID
674 * - R58 : gl_FrontFacing in low bit, potentially other stuff
675 * - R59 : u16 fragment coordinates (used to compute
676 * gl_FragCoord.xy, together with sample positions)
677 * - R60 : gl_SampleMask (used in epilog, so pretty
678 * much always used, but the bit is always 0 -- is
679 * this just always pushed?)
680 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
681 * varying interpolation.
682 * - R62 : unknown (bit always unset).
683 *
684 * Later GPUs (starting with Mali-G52?) support
685 * preloading float varyings into r0-r7. This is
686 * indicated by setting 0x40. There is no distinction
687 * here between 1 varying and 2.
688 */
689 u32 preload_regs : 8;
690 /* In units of 8 bytes or 64 bits, since the
691 * uniform/const port loads 64 bits at a time.
692 */
693 u32 uniform_count : 7;
694 u32 unk4 : 10; // = 2
695 } bifrost2;
696 struct {
697 u32 unknown2_7;
698 } midgard2;
699 };
700
701 u32 padding;
702
703 /* Blending information for the older non-MRT Midgard HW. Check for
704 * MALI_HAS_BLEND_SHADER to decide how to interpret.
705 */
706
707 union midgard_blend blend;
708 } __attribute__((packed));
709
710 /* This only concerns hardware jobs */
711
712 /* Possible values for job_descriptor_size */
713
714 #define MALI_JOB_32 0
715 #define MALI_JOB_64 1
716
717 struct mali_job_descriptor_header {
718 u32 exception_status;
719 u32 first_incomplete_task;
720 u64 fault_pointer;
721 u8 job_descriptor_size : 1;
722 enum mali_job_type job_type : 7;
723 u8 job_barrier : 1;
724 u8 unknown_flags : 7;
725 u16 job_index;
726 u16 job_dependency_index_1;
727 u16 job_dependency_index_2;
728 u64 next_job;
729 } __attribute__((packed));
730
731 /* These concern exception_status */
732
733 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
734 * kernel */
735
736 enum mali_exception_access {
737 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
738 * fault so it's just unused */
739 MALI_EXCEPTION_ACCESS_NONE = 0,
740
741 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
742 MALI_EXCEPTION_ACCESS_READ = 2,
743 MALI_EXCEPTION_ACCESS_WRITE = 3
744 };
745
746 /* Details about write_value from panfrost igt tests which use it as a generic
747 * dword write primitive */
748
749 #define MALI_WRITE_VALUE_ZERO 3
750
751 struct mali_payload_write_value {
752 u64 address;
753 u32 value_descriptor;
754 u32 reserved;
755 u64 immediate;
756 } __attribute__((packed));
757
758 /*
759 * Mali Attributes
760 *
761 * This structure lets the attribute unit compute the address of an attribute
762 * given the vertex and instance ID. Unfortunately, the way this works is
763 * rather complicated when instancing is enabled.
764 *
765 * To explain this, first we need to explain how compute and vertex threads are
766 * dispatched. This is a guess (although a pretty firm guess!) since the
767 * details are mostly hidden from the driver, except for attribute instancing.
768 * When a quad is dispatched, it receives a single, linear index. However, we
769 * need to translate that index into a (vertex id, instance id) pair, or a
770 * (local id x, local id y, local id z) triple for compute shaders (although
771 * vertex shaders and compute shaders are handled almost identically).
772 * Focusing on vertex shaders, one option would be to do:
773 *
774 * vertex_id = linear_id % num_vertices
775 * instance_id = linear_id / num_vertices
776 *
777 * but this involves a costly division and modulus by an arbitrary number.
778 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
779 * num_instances threads instead of num_vertices * num_instances, which results
780 * in some "extra" threads with vertex_id >= num_vertices, which we have to
781 * discard. The more we pad num_vertices, the more "wasted" threads we
782 * dispatch, but the division is potentially easier.
783 *
784 * One straightforward choice is to pad num_vertices to the next power of two,
785 * which means that the division and modulus are just simple bit shifts and
786 * masking. But the actual algorithm is a bit more complicated. The thread
787 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
788 * to dividing by a power of two. This is possibly using the technique
789 * described in patent US20170010862A1. As a result, padded_num_vertices can be
790 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
791 * since we need less padding.
792 *
793 * padded_num_vertices is picked by the hardware. The driver just specifies the
794 * actual number of vertices. At least for Mali G71, the first few cases are
795 * given by:
796 *
797 * num_vertices | padded_num_vertices
798 * 3 | 4
799 * 4-7 | 8
800 * 8-11 | 12 (3 * 4)
801 * 12-15 | 16
802 * 16-19 | 20 (5 * 4)
803 *
804 * Note that padded_num_vertices is a multiple of four (presumably because
805 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
806 * at least one more than num_vertices, which seems like a quirk of the
807 * hardware. For larger num_vertices, the hardware uses the following
808 * algorithm: using the binary representation of num_vertices, we look at the
809 * most significant set bit as well as the following 3 bits. Let n be the
810 * number of bits after those 4 bits. Then we set padded_num_vertices according
811 * to the following table:
812 *
813 * high bits | padded_num_vertices
814 * 1000 | 9 * 2^n
815 * 1001 | 5 * 2^(n+1)
816 * 101x | 3 * 2^(n+2)
817 * 110x | 7 * 2^(n+1)
818 * 111x | 2^(n+4)
819 *
820 * For example, if num_vertices = 70 is passed to glDraw(), its binary
821 * representation is 1000110, so n = 3 and the high bits are 1000, and
822 * therefore padded_num_vertices = 9 * 2^3 = 72.
823 *
824 * The attribute unit works in terms of the original linear_id. if
825 * num_instances = 1, then they are the same, and everything is simple.
826 * However, with instancing things get more complicated. There are four
827 * possible modes, two of them we can group together:
828 *
829 * 1. Use the linear_id directly. Only used when there is no instancing.
830 *
831 * 2. Use the linear_id modulo a constant. This is used for per-vertex
832 * attributes with instancing enabled by making the constant equal
833 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
834 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
835 * The shift field specifies the power of two, while the extra_flags field
836 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
837 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
838 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
839 * shift = 3. Note that we must exactly follow the hardware algorithm used to
840 * get padded_num_vertices in order to correctly implement per-vertex
841 * attributes.
842 *
843 * 3. Divide the linear_id by a constant. In order to correctly implement
844 * instance divisors, we have to divide linear_id by padded_num_vertices times
845 * to user-specified divisor. So first we compute padded_num_vertices, again
846 * following the exact same algorithm that the hardware uses, then multiply it
847 * by the GL-level divisor to get the hardware-level divisor. This case is
848 * further divided into two more cases. If the hardware-level divisor is a
849 * power of two, then we just need to shift. The shift amount is specified by
850 * the shift field, so that the hardware-level divisor is just 2^shift.
851 *
852 * If it isn't a power of two, then we have to divide by an arbitrary integer.
853 * For that, we use the well-known technique of multiplying by an approximation
854 * of the inverse. The driver must compute the magic multiplier and shift
855 * amount, and then the hardware does the multiplication and shift. The
856 * hardware and driver also use the "round-down" optimization as described in
857 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
858 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
859 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
860 * presumably this simplifies the hardware multiplier a little. The hardware
861 * first multiplies linear_id by the multiplier and takes the high 32 bits,
862 * then applies the round-down correction if extra_flags = 1, then finally
863 * shifts right by the shift field.
864 *
865 * There are some differences between ridiculousfish's algorithm and the Mali
866 * hardware algorithm, which means that the reference code from ridiculousfish
867 * doesn't always produce the right constants. Mali does not use the pre-shift
868 * optimization, since that would make a hardware implementation slower (it
869 * would have to always do the pre-shift, multiply, and post-shift operations).
870 * It also forces the multplier to be at least 2^31, which means that the
871 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
872 * given the divisor d, the algorithm the driver must follow is:
873 *
874 * 1. Set shift = floor(log2(d)).
875 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
876 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
877 * magic_divisor = m - 1 and extra_flags = 1.
878 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
879 *
880 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
881 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
882 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
883 * (*NOT the row stride*). Size is set to the size of the image itself.
884 *
885 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
886 * use particular fixed addresses with modified structures.
887 */
888
889 enum mali_attr_mode {
890 MALI_ATTR_UNUSED = 0,
891 MALI_ATTR_LINEAR = 1,
892 MALI_ATTR_POT_DIVIDE = 2,
893 MALI_ATTR_MODULO = 3,
894 MALI_ATTR_NPOT_DIVIDE = 4,
895 MALI_ATTR_IMAGE = 5,
896 };
897
898 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
899
900 #define MALI_ATTR_VERTEXID (0x22)
901 #define MALI_ATTR_INSTANCEID (0x24)
902 #define MALI_VARYING_FRAG_COORD (0x25)
903 #define MALI_VARYING_FRONT_FACING (0x26)
904
905 /* This magic "pseudo-address" is used as `elements` to implement
906 * gl_PointCoord. When read from a fragment shader, it generates a point
907 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
908 * require an affine transformation in the shader. */
909
910 #define MALI_VARYING_POINT_COORD (0x61)
911
912 /* Used for comparison to check if an address is special. Mostly a guess, but
913 * it doesn't really matter. */
914
915 #define MALI_RECORD_SPECIAL (0x100)
916
917 union mali_attr {
918 /* This is used for actual attributes. */
919 struct {
920 /* The bottom 3 bits are the mode */
921 mali_ptr elements : 64 - 8;
922 u32 shift : 5;
923 u32 extra_flags : 3;
924 u32 stride;
925 u32 size;
926 };
927 /* The entry after an NPOT_DIVIDE entry has this format. It stores
928 * extra information that wouldn't fit in a normal entry.
929 */
930 struct {
931 u32 unk; /* = 0x20 */
932 u32 magic_divisor;
933 u32 zero;
934 /* This is the original, GL-level divisor. */
935 u32 divisor;
936 };
937 } __attribute__((packed));
938
939 struct mali_attr_meta {
940 /* Vertex buffer index */
941 u8 index;
942
943 unsigned unknown1 : 2;
944 unsigned swizzle : 12;
945 enum mali_format format : 8;
946
947 /* Always observed to be zero at the moment */
948 unsigned unknown3 : 2;
949
950 /* When packing multiple attributes in a buffer, offset addresses by
951 * this value. Obscurely, this is signed. */
952 int32_t src_offset;
953 } __attribute__((packed));
954
955 #define FBD_MASK (~0x3f)
956
957 /* MFBD, rather than SFBD */
958 #define MALI_MFBD (0x1)
959
960 /* ORed into an MFBD address to specify the fbx section is included */
961 #define MALI_MFBD_TAG_EXTRA (0x2)
962
963 /* Uniform buffer objects are 64-bit fields divided as:
964 *
965 * u64 size : 10;
966 * mali_ptr ptr : 64 - 10;
967 *
968 * The size is actually the size minus 1 (MALI_POSITIVE), in units of 16 bytes.
969 * This gives a maximum of 2^14 bytes, which just so happens to be the GL
970 * minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
971 *
972 * The pointer is missing the bottom 2 bits and top 8 bits. The top 8 bits
973 * should be 0 for userspace pointers, according to
974 * https://lwn.net/Articles/718895/. By reusing these bits, we can make each
975 * entry in the table only 64 bits.
976 */
977
978 #define MALI_MAKE_UBO(elements, ptr) \
979 (MALI_POSITIVE((elements)) | (((ptr) >> 2) << 10))
980
981 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
982 * They also seem to be the same between Bifrost and Midgard. They're shared in
983 * fused payloads.
984 */
985
986 /* Applies to unknown_draw */
987
988 #define MALI_DRAW_INDEXED_UINT8 (0x10)
989 #define MALI_DRAW_INDEXED_UINT16 (0x20)
990 #define MALI_DRAW_INDEXED_UINT32 (0x30)
991 #define MALI_DRAW_INDEXED_SIZE (0x30)
992 #define MALI_DRAW_INDEXED_SHIFT (4)
993
994 #define MALI_DRAW_VARYING_SIZE (0x100)
995
996 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
997 * use the last vertex. This is the default in DX and VK, but not in GL. */
998
999 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
1000
1001 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
1002
1003 struct mali_vertex_tiler_prefix {
1004 /* This is a dynamic bitfield containing the following things in this order:
1005 *
1006 * - gl_WorkGroupSize.x
1007 * - gl_WorkGroupSize.y
1008 * - gl_WorkGroupSize.z
1009 * - gl_NumWorkGroups.x
1010 * - gl_NumWorkGroups.y
1011 * - gl_NumWorkGroups.z
1012 *
1013 * The number of bits allocated for each number is based on the *_shift
1014 * fields below. For example, workgroups_y_shift gives the bit that
1015 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
1016 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
1017 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
1018 * value is one more than the stored value, since if any of the values
1019 * are zero, then there would be no invocations (and hence no job). If
1020 * there were 0 bits allocated to a given field, then it must be zero,
1021 * and hence the real value is one.
1022 *
1023 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
1024 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
1025 * where vertex count is the number of vertices.
1026 */
1027 u32 invocation_count;
1028
1029 /* Bitfield for shifts:
1030 *
1031 * size_y_shift : 5
1032 * size_z_shift : 5
1033 * workgroups_x_shift : 6
1034 * workgroups_y_shift : 6
1035 * workgroups_z_shift : 6
1036 * workgroups_x_shift_2 : 4
1037 */
1038 u32 invocation_shifts;
1039
1040 u32 draw_mode : 4;
1041 u32 unknown_draw : 22;
1042
1043 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
1044 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
1045 * something to do with how many quads get put in the same execution
1046 * engine, which is a balance (you don't want to starve the engine, but
1047 * you also want to distribute work evenly).
1048 */
1049 u32 workgroups_x_shift_3 : 6;
1050
1051
1052 /* Negative of min_index. This is used to compute
1053 * the unbiased index in tiler/fragment shader runs.
1054 *
1055 * The hardware adds offset_bias_correction in each run,
1056 * so that absent an index bias, the first vertex processed is
1057 * genuinely the first vertex (0). But with an index bias,
1058 * the first vertex process is numbered the same as the bias.
1059 *
1060 * To represent this more conviniently:
1061 * unbiased_index = lower_bound_index +
1062 * index_bias +
1063 * offset_bias_correction
1064 *
1065 * This is done since the hardware doesn't accept a index_bias
1066 * and this allows it to recover the unbiased index.
1067 */
1068 int32_t offset_bias_correction;
1069 u32 zero1;
1070
1071 /* Like many other strictly nonzero quantities, index_count is
1072 * subtracted by one. For an indexed cube, this is equal to 35 = 6
1073 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
1074 * for an indexed draw, index_count is the number of actual vertices
1075 * rendered whereas invocation_count is the number of unique vertices
1076 * rendered (the number of times the vertex shader must be invoked).
1077 * For non-indexed draws, this is just equal to invocation_count. */
1078
1079 u32 index_count;
1080
1081 /* No hidden structure; literally just a pointer to an array of uint
1082 * indices (width depends on flags). Thanks, guys, for not making my
1083 * life insane for once! NULL for non-indexed draws. */
1084
1085 u64 indices;
1086 } __attribute__((packed));
1087
1088 /* Point size / line width can either be specified as a 32-bit float (for
1089 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
1090 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1091 * payload, the contents of varying_pointer will be intepreted as an array of
1092 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1093 * creating a special MALI_R16F varying writing to varying_pointer. */
1094
1095 union midgard_primitive_size {
1096 float constant;
1097 u64 pointer;
1098 };
1099
1100 struct bifrost_tiler_heap_meta {
1101 u32 zero;
1102 u32 heap_size;
1103 /* note: these are just guesses! */
1104 mali_ptr tiler_heap_start;
1105 mali_ptr tiler_heap_free;
1106 mali_ptr tiler_heap_end;
1107
1108 /* hierarchy weights? but they're still 0 after the job has run... */
1109 u32 zeros[10];
1110 u32 unk1;
1111 u32 unk7e007e;
1112 } __attribute__((packed));
1113
1114 struct bifrost_tiler_meta {
1115 u32 tiler_heap_next_start; /* To be written by the GPU */
1116 u32 used_hierarchy_mask; /* To be written by the GPU */
1117 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
1118 u16 flags;
1119 u16 width;
1120 u16 height;
1121 u64 zero0;
1122 mali_ptr tiler_heap_meta;
1123 /* TODO what is this used for? */
1124 u64 zeros[20];
1125 } __attribute__((packed));
1126
1127 struct bifrost_tiler_only {
1128 /* 0x20 */
1129 union midgard_primitive_size primitive_size;
1130
1131 mali_ptr tiler_meta;
1132
1133 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1134 } __attribute__((packed));
1135
1136 struct mali_vertex_tiler_postfix {
1137 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
1138
1139 /* Both zero for non-instanced draws. For instanced draws, a
1140 * decomposition of padded_num_vertices. See the comments about the
1141 * corresponding fields in mali_attr for context. */
1142
1143 unsigned instance_shift : 5;
1144 unsigned instance_odd : 3;
1145
1146 u8 zero4;
1147
1148 /* Offset for first vertex in buffer */
1149 u32 offset_start;
1150
1151 u64 zero5;
1152
1153 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1154 * output from the vertex shader for tiler jobs.
1155 */
1156
1157 u64 position_varying;
1158
1159 /* An array of mali_uniform_buffer_meta's. The size is given by the
1160 * shader_meta.
1161 */
1162 u64 uniform_buffers;
1163
1164 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
1165 * On Midgard, this is a pointer to an array of pointers to the texture
1166 * descriptors, number of pointers bounded by number of textures. The
1167 * indirection is needed to accomodate varying numbers and sizes of
1168 * texture descriptors */
1169 u64 textures;
1170
1171 /* For OpenGL, from what I've seen, this is intimately connected to
1172 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1173 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1174 * array of sampler descriptors (which are uniform in size) */
1175 u64 sampler_descriptor;
1176
1177 u64 uniforms;
1178 u64 shader;
1179 u64 attributes; /* struct attribute_buffer[] */
1180 u64 attribute_meta; /* attribute_meta[] */
1181 u64 varyings; /* struct attr */
1182 u64 varying_meta; /* pointer */
1183 u64 viewport;
1184 u64 occlusion_counter; /* A single bit as far as I can tell */
1185
1186 /* On Bifrost, this points directly to a mali_shared_memory structure.
1187 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
1188 * tagged), which embeds a mali_shared_memory structure */
1189 mali_ptr shared_memory;
1190 } __attribute__((packed));
1191
1192 struct midgard_payload_vertex_tiler {
1193 struct mali_vertex_tiler_prefix prefix;
1194 struct mali_vertex_tiler_postfix postfix;
1195
1196 union midgard_primitive_size primitive_size;
1197 } __attribute__((packed));
1198
1199 struct bifrost_payload_vertex {
1200 struct mali_vertex_tiler_prefix prefix;
1201 struct mali_vertex_tiler_postfix postfix;
1202 } __attribute__((packed));
1203
1204 struct bifrost_payload_tiler {
1205 struct mali_vertex_tiler_prefix prefix;
1206 struct bifrost_tiler_only tiler;
1207 struct mali_vertex_tiler_postfix postfix;
1208 } __attribute__((packed));
1209
1210 struct bifrost_payload_fused {
1211 struct mali_vertex_tiler_prefix prefix;
1212 struct bifrost_tiler_only tiler;
1213 struct mali_vertex_tiler_postfix tiler_postfix;
1214 u64 padding; /* zero */
1215 struct mali_vertex_tiler_postfix vertex_postfix;
1216 } __attribute__((packed));
1217
1218 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1219 * texture is stored as (63, 63) in these fields. This adjusts for that.
1220 * There's an identical pattern in the framebuffer descriptor. Even vertex
1221 * count fields work this way, hence the generic name -- integral fields that
1222 * are strictly positive generally need this adjustment. */
1223
1224 #define MALI_POSITIVE(dim) (dim - 1)
1225
1226 /* Used with wrapping. Unclear what top bit conveys */
1227
1228 enum mali_wrap_mode {
1229 MALI_WRAP_REPEAT = 0x8 | 0x0,
1230 MALI_WRAP_CLAMP_TO_EDGE = 0x8 | 0x1,
1231 MALI_WRAP_CLAMP = 0x8 | 0x2,
1232 MALI_WRAP_CLAMP_TO_BORDER = 0x8 | 0x3,
1233 MALI_WRAP_MIRRORED_REPEAT = 0x8 | 0x4 | 0x0,
1234 MALI_WRAP_MIRRORED_CLAMP_TO_EDGE = 0x8 | 0x4 | 0x1,
1235 MALI_WRAP_MIRRORED_CLAMP = 0x8 | 0x4 | 0x2,
1236 MALI_WRAP_MIRRORED_CLAMP_TO_BORDER = 0x8 | 0x4 | 0x3,
1237 };
1238
1239 /* Shared across both command stream and Midgard, and even with Bifrost */
1240
1241 enum mali_texture_type {
1242 MALI_TEX_CUBE = 0x0,
1243 MALI_TEX_1D = 0x1,
1244 MALI_TEX_2D = 0x2,
1245 MALI_TEX_3D = 0x3
1246 };
1247
1248 /* 8192x8192 */
1249 #define MAX_MIP_LEVELS (13)
1250
1251 /* Cubemap bloats everything up */
1252 #define MAX_CUBE_FACES (6)
1253
1254 /* For each pointer, there is an address and optionally also a stride */
1255 #define MAX_ELEMENTS (2)
1256
1257 /* It's not known why there are 4-bits allocated -- this enum is almost
1258 * certainly incomplete */
1259
1260 enum mali_texture_layout {
1261 /* For a Z/S texture, this is linear */
1262 MALI_TEXTURE_TILED = 0x1,
1263
1264 /* Z/S textures cannot be tiled */
1265 MALI_TEXTURE_LINEAR = 0x2,
1266
1267 /* 16x16 sparse */
1268 MALI_TEXTURE_AFBC = 0xC
1269 };
1270
1271 /* Corresponds to the type passed to glTexImage2D and so forth */
1272
1273 struct mali_texture_format {
1274 unsigned swizzle : 12;
1275 enum mali_format format : 8;
1276
1277 unsigned srgb : 1;
1278 unsigned unknown1 : 1;
1279
1280 enum mali_texture_type type : 2;
1281 enum mali_texture_layout layout : 4;
1282
1283 /* Always set */
1284 unsigned unknown2 : 1;
1285
1286 /* Set to allow packing an explicit stride */
1287 unsigned manual_stride : 1;
1288
1289 unsigned zero : 2;
1290 } __attribute__((packed));
1291
1292 struct mali_texture_descriptor {
1293 uint16_t width;
1294 uint16_t height;
1295 uint16_t depth;
1296 uint16_t array_size;
1297
1298 struct mali_texture_format format;
1299
1300 uint16_t unknown3;
1301
1302 /* One for non-mipmapped, zero for mipmapped */
1303 uint8_t unknown3A;
1304
1305 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1306 uint8_t levels;
1307
1308 /* Swizzling is a single 32-bit word, broken up here for convenience.
1309 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1310 * level swizzling, not the internal pixel-level swizzling which is
1311 * below OpenGL's reach */
1312
1313 unsigned swizzle : 12;
1314 unsigned swizzle_zero : 20;
1315
1316 uint32_t unknown5;
1317 uint32_t unknown6;
1318 uint32_t unknown7;
1319 } __attribute__((packed));
1320
1321 /* While Midgard texture descriptors are variable length, Bifrost descriptors
1322 * are fixed like samplers with more pointers to expand if necessary */
1323
1324 struct bifrost_texture_descriptor {
1325 unsigned format_unk : 4; /* 2 */
1326 enum mali_texture_type type : 2;
1327 unsigned zero : 4;
1328 unsigned format_swizzle : 12;
1329 enum mali_format format : 8;
1330 unsigned srgb : 1;
1331 unsigned format_unk3 : 1; /* 0 */
1332
1333 uint16_t width; /* MALI_POSITIVE */
1334 uint16_t height; /* MALI_POSITIVE */
1335
1336 /* OpenGL swizzle */
1337 unsigned swizzle : 12;
1338 enum mali_texture_layout layout : 4;
1339 uint8_t levels : 8; /* Number of levels-1 if mipmapped, 0 if not */
1340 unsigned unk1 : 8;
1341
1342 unsigned levels_unk : 24; /* 0 */
1343 unsigned level_2 : 8; /* Number of levels, again? */
1344
1345 mali_ptr payload;
1346
1347 uint16_t array_size;
1348 uint16_t unk4;
1349
1350 uint16_t depth;
1351 uint16_t unk5;
1352 } __attribute__((packed));
1353
1354 /* filter_mode */
1355
1356 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1357 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1358
1359 /* TODO: What do these bits mean individually? Only seen set together */
1360
1361 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1362 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1363
1364 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1365 * sampler_t flag. For typical OpenGL textures, this is always set. */
1366
1367 #define MALI_SAMP_NORM_COORDS (1 << 5)
1368
1369 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1370 * be cleaned up a lot. */
1371
1372 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1373
1374 static inline int16_t
1375 FIXED_16(float x, bool allow_negative)
1376 {
1377 /* Clamp inputs, accounting for float error */
1378 float max_lod = (32.0 - (1.0 / 512.0));
1379 float min_lod = allow_negative ? -max_lod : 0.0;
1380
1381 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1382
1383 return (int) (x * 256.0);
1384 }
1385
1386 struct mali_sampler_descriptor {
1387 uint16_t filter_mode;
1388
1389 /* Fixed point, signed.
1390 * Upper 7 bits before the decimal point, although it caps [0-31].
1391 * Lower 8 bits after the decimal point: int(round(x * 256)) */
1392
1393 int16_t lod_bias;
1394 int16_t min_lod;
1395 int16_t max_lod;
1396
1397 /* All one word in reality, but packed a bit. Comparisons are flipped
1398 * from OpenGL. */
1399
1400 enum mali_wrap_mode wrap_s : 4;
1401 enum mali_wrap_mode wrap_t : 4;
1402 enum mali_wrap_mode wrap_r : 4;
1403 enum mali_func compare_func : 3;
1404
1405 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1406 * ES2, controlling seamless cubemapping */
1407 unsigned seamless_cube_map : 1;
1408
1409 unsigned zero : 16;
1410
1411 uint32_t zero2;
1412 float border_color[4];
1413 } __attribute__((packed));
1414
1415 /* Bifrost sampler descriptors look pretty similar */
1416
1417 #define BIFROST_SAMP_MIN_NEAREST (1)
1418 #define BIFROST_SAMP_MAG_LINEAR (1)
1419
1420 struct bifrost_sampler_descriptor {
1421 uint8_t unk1;
1422
1423 enum mali_wrap_mode wrap_r : 4;
1424 enum mali_wrap_mode wrap_t : 4;
1425 enum mali_wrap_mode wrap_s : 4;
1426 uint8_t unk8 : 4;
1427
1428 uint8_t unk2 : 1;
1429 uint8_t norm_coords : 1;
1430 uint8_t unk3 : 1;
1431 uint8_t min_filter : 1;
1432 uint8_t zero1 : 1;
1433 uint8_t mag_filter : 1;
1434 uint8_t mip_filter : 1;
1435
1436 int16_t min_lod;
1437 int16_t max_lod;
1438
1439 uint64_t zero2;
1440 uint64_t zero3;
1441 uint64_t zero4;
1442 } __attribute__((packed));
1443
1444 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1445 * modified by MALI_POSITIVE; viewport0 is as-is.
1446 */
1447
1448 struct mali_viewport {
1449 /* XY clipping planes */
1450 float clip_minx;
1451 float clip_miny;
1452 float clip_maxx;
1453 float clip_maxy;
1454
1455 /* Depth clipping planes */
1456 float clip_minz;
1457 float clip_maxz;
1458
1459 u16 viewport0[2];
1460 u16 viewport1[2];
1461 } __attribute__((packed));
1462
1463 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1464 * of tile numbers. */
1465
1466 #define MALI_TILE_SHIFT 4
1467 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1468
1469 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1470 * each component. Notice that this provides a theoretical upper bound of (1 <<
1471 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1472 * 65536x65536. Multiplying that together, times another four given that Mali
1473 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1474 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1475 * alone rendering in real-time to such a buffer.
1476 *
1477 * Nice job, guys.*/
1478
1479 /* From mali_kbase_10969_workaround.c */
1480 #define MALI_X_COORD_MASK 0x00000FFF
1481 #define MALI_Y_COORD_MASK 0x0FFF0000
1482
1483 /* Extract parts of a tile coordinate */
1484
1485 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1486 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1487
1488 /* Helpers to generate tile coordinates based on the boundary coordinates in
1489 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1490 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1491 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1492 * problem. */
1493
1494 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1495 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1496 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1497 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1498 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1499
1500 struct mali_payload_fragment {
1501 u32 min_tile_coord;
1502 u32 max_tile_coord;
1503 mali_ptr framebuffer;
1504 } __attribute__((packed));
1505
1506 /* Single Framebuffer Descriptor */
1507
1508 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1509 * configured for 4x. With MSAA_8, it is configured for 8x. */
1510
1511 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1512 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1513 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1514 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1515
1516 /* Fast/slow based on whether all three buffers are cleared at once */
1517
1518 #define MALI_CLEAR_FAST (1 << 18)
1519 #define MALI_CLEAR_SLOW (1 << 28)
1520 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1521
1522 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1523 * within the larget framebuffer descriptor). Analogous to
1524 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1525
1526 /* See pan_tiler.c for derivation */
1527 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1528
1529 /* Flag disabling the tiler for clear-only jobs, with
1530 hierarchical tiling */
1531 #define MALI_TILER_DISABLED (1 << 12)
1532
1533 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1534 * hierarhical tiling. */
1535 #define MALI_TILER_USER 0xFFF
1536
1537 /* Absent any geometry, the minimum size of the polygon list header */
1538 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1539
1540 struct midgard_tiler_descriptor {
1541 /* Size of the entire polygon list; see pan_tiler.c for the
1542 * computation. It's based on hierarchical tiling */
1543
1544 u32 polygon_list_size;
1545
1546 /* Name known from the replay workaround in the kernel. What exactly is
1547 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1548 * specifies a mask of hierarchy weights, which explains some of the
1549 * performance mysteries around setting it. We also see the bottom bit
1550 * of tiler_flags set in the kernel, but no comment why.
1551 *
1552 * hierarchy_mask can have the TILER_DISABLED flag */
1553
1554 u16 hierarchy_mask;
1555 u16 flags;
1556
1557 /* See mali_tiler.c for an explanation */
1558 mali_ptr polygon_list;
1559 mali_ptr polygon_list_body;
1560
1561 /* Names based on we see symmetry with replay jobs which name these
1562 * explicitly */
1563
1564 mali_ptr heap_start; /* tiler heap_free_address */
1565 mali_ptr heap_end;
1566
1567 /* Hierarchy weights. We know these are weights based on the kernel,
1568 * but I've never seen them be anything other than zero */
1569 u32 weights[8];
1570 };
1571
1572 enum mali_block_format {
1573 MALI_BLOCK_TILED = 0x0,
1574 MALI_BLOCK_UNKNOWN = 0x1,
1575 MALI_BLOCK_LINEAR = 0x2,
1576 MALI_BLOCK_AFBC = 0x3,
1577 };
1578
1579 struct mali_sfbd_format {
1580 /* 0x1 */
1581 unsigned unk1 : 6;
1582
1583 /* mali_channel_swizzle */
1584 unsigned swizzle : 12;
1585
1586 /* MALI_POSITIVE */
1587 unsigned nr_channels : 2;
1588
1589 /* 0x4 */
1590 unsigned unk2 : 6;
1591
1592 enum mali_block_format block : 2;
1593
1594 /* 0xb */
1595 unsigned unk3 : 4;
1596 };
1597
1598 /* Shared structure at the start of framebuffer descriptors, or used bare for
1599 * compute jobs, configuring stack and shared memory */
1600
1601 struct mali_shared_memory {
1602 u32 stack_shift : 4;
1603 u32 unk0 : 28;
1604
1605 /* Configuration for shared memory for compute shaders.
1606 * shared_workgroup_count is logarithmic and may be computed for a
1607 * compute shader using shared memory as:
1608 *
1609 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1610 *
1611 * For compute shaders that don't use shared memory, or non-compute
1612 * shaders, this is set to ~0
1613 */
1614
1615 u32 shared_workgroup_count : 5;
1616 u32 shared_unk1 : 3;
1617 u32 shared_shift : 4;
1618 u32 shared_zero : 20;
1619
1620 mali_ptr scratchpad;
1621
1622 /* For compute shaders, the RAM backing of workgroup-shared memory. For
1623 * fragment shaders on Bifrost, apparently multisampling locations */
1624
1625 mali_ptr shared_memory;
1626 mali_ptr unknown1;
1627 } __attribute__((packed));
1628
1629 /* Configures multisampling on Bifrost fragment jobs */
1630
1631 struct bifrost_multisampling {
1632 u64 zero1;
1633 u64 zero2;
1634 mali_ptr sample_locations;
1635 u64 zero4;
1636 } __attribute__((packed));
1637
1638 struct mali_single_framebuffer {
1639 struct mali_shared_memory shared_memory;
1640 struct mali_sfbd_format format;
1641
1642 u32 clear_flags;
1643 u32 zero2;
1644
1645 /* Purposeful off-by-one in these fields should be accounted for by the
1646 * MALI_DIMENSION macro */
1647
1648 u16 width;
1649 u16 height;
1650
1651 u32 zero3[4];
1652 mali_ptr checksum;
1653 u32 checksum_stride;
1654 u32 zero5;
1655
1656 /* By default, the framebuffer is upside down from OpenGL's
1657 * perspective. Set framebuffer to the end and negate the stride to
1658 * flip in the Y direction */
1659
1660 mali_ptr framebuffer;
1661 int32_t stride;
1662
1663 u32 zero4;
1664
1665 /* Depth and stencil buffers are interleaved, it appears, as they are
1666 * set to the same address in captures. Both fields set to zero if the
1667 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1668 * get a zero enable despite the buffer being present; that still is
1669 * disabled. */
1670
1671 mali_ptr depth_buffer; // not SAME_VA
1672 u32 depth_stride_zero : 4;
1673 u32 depth_stride : 28;
1674 u32 zero7;
1675
1676 mali_ptr stencil_buffer; // not SAME_VA
1677 u32 stencil_stride_zero : 4;
1678 u32 stencil_stride : 28;
1679 u32 zero8;
1680
1681 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1682 u32 clear_color_2; // always equal, but unclear function?
1683 u32 clear_color_3; // always equal, but unclear function?
1684 u32 clear_color_4; // always equal, but unclear function?
1685
1686 /* Set to zero if not cleared */
1687
1688 float clear_depth_1; // float32, ditto
1689 float clear_depth_2; // float32, ditto
1690 float clear_depth_3; // float32, ditto
1691 float clear_depth_4; // float32, ditto
1692
1693 u32 clear_stencil; // Exactly as it appears in OpenGL
1694
1695 u32 zero6[7];
1696
1697 struct midgard_tiler_descriptor tiler;
1698
1699 /* More below this, maybe */
1700 } __attribute__((packed));
1701
1702
1703 /* SINGLE to disable multisampling, AVERAGE for
1704 * EXT_multisampled_render_to_texture operation where multiple tilebuffer
1705 * samples are implicitly resolved before writeout, MULTIPLE to write multiple
1706 * samples inline, and LAYERED for ES3-style multisampling with each sample in
1707 * a different buffer.
1708 */
1709
1710 enum mali_msaa_mode {
1711 MALI_MSAA_SINGLE = 0,
1712 MALI_MSAA_AVERAGE = 1,
1713 MALI_MSAA_MULTIPLE = 2,
1714 MALI_MSAA_LAYERED = 3,
1715 };
1716
1717 #define MALI_MFBD_FORMAT_SRGB (1 << 0)
1718
1719 struct mali_rt_format {
1720 unsigned unk1 : 32;
1721 unsigned unk2 : 3;
1722
1723 unsigned nr_channels : 2; /* MALI_POSITIVE */
1724
1725 unsigned unk3 : 4;
1726 unsigned unk4 : 1;
1727 enum mali_block_format block : 2;
1728 enum mali_msaa_mode msaa : 2;
1729 unsigned flags : 2;
1730
1731 unsigned swizzle : 12;
1732
1733 unsigned zero : 3;
1734
1735 /* Disables MFBD preload. When this bit is set, the render target will
1736 * be cleared every frame. When this bit is clear, the hardware will
1737 * automatically wallpaper the render target back from main memory.
1738 * Unfortunately, MFBD preload is very broken on Midgard, so in
1739 * practice, this is a chicken bit that should always be set.
1740 * Discovered by accident, as all good chicken bits are. */
1741
1742 unsigned no_preload : 1;
1743 } __attribute__((packed));
1744
1745 /* Flags for afbc.flags and ds_afbc.flags */
1746
1747 #define MALI_AFBC_FLAGS 0x10009
1748
1749 /* Lossless RGB and RGBA colorspace transform */
1750 #define MALI_AFBC_YTR (1 << 17)
1751
1752 struct mali_render_target {
1753 struct mali_rt_format format;
1754
1755 u64 zero1;
1756
1757 struct {
1758 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1759 * there is an extra metadata buffer that contains 16 bytes per tile.
1760 * The framebuffer needs to be the same size as before, since we don't
1761 * know ahead of time how much space it will take up. The
1762 * framebuffer_stride is set to 0, since the data isn't stored linearly
1763 * anymore.
1764 *
1765 * When AFBC is disabled, these fields are zero.
1766 */
1767
1768 mali_ptr metadata;
1769 u32 stride; // stride in units of tiles
1770 u32 flags; // = 0x20000
1771 } afbc;
1772
1773 mali_ptr framebuffer;
1774
1775 u32 zero2 : 4;
1776 u32 framebuffer_stride : 28; // in units of bytes, row to next
1777 u32 layer_stride; /* For multisample rendering */
1778
1779 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1780 u32 clear_color_2; // always equal, but unclear function?
1781 u32 clear_color_3; // always equal, but unclear function?
1782 u32 clear_color_4; // always equal, but unclear function?
1783 } __attribute__((packed));
1784
1785 /* An optional part of mali_framebuffer. It comes between the main structure
1786 * and the array of render targets. It must be included if any of these are
1787 * enabled:
1788 *
1789 * - Transaction Elimination
1790 * - Depth/stencil
1791 * - TODO: Anything else?
1792 */
1793
1794 /* flags_hi */
1795 #define MALI_EXTRA_PRESENT (0x1)
1796
1797 /* flags_lo */
1798 #define MALI_EXTRA_ZS (0x4)
1799
1800 struct mali_framebuffer_extra {
1801 mali_ptr checksum;
1802 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1803 u32 checksum_stride;
1804
1805 unsigned flags_lo : 4;
1806 enum mali_block_format zs_block : 2;
1807
1808 /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
1809 * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
1810 unsigned zs_samples : 4;
1811 unsigned flags_hi : 22;
1812
1813 union {
1814 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1815 struct {
1816 mali_ptr depth_stencil_afbc_metadata;
1817 u32 depth_stencil_afbc_stride; // in units of tiles
1818 u32 flags;
1819
1820 mali_ptr depth_stencil;
1821
1822 u64 padding;
1823 } ds_afbc;
1824
1825 struct {
1826 /* Depth becomes depth/stencil in case of combined D/S */
1827 mali_ptr depth;
1828 u32 depth_stride_zero : 4;
1829 u32 depth_stride : 28;
1830 u32 depth_layer_stride;
1831
1832 mali_ptr stencil;
1833 u32 stencil_stride_zero : 4;
1834 u32 stencil_stride : 28;
1835 u32 stencil_layer_stride;
1836 } ds_linear;
1837 };
1838
1839
1840 u32 clear_color_1;
1841 u32 clear_color_2;
1842 u64 zero3;
1843 } __attribute__((packed));
1844
1845 /* Flags for mfbd_flags */
1846
1847 /* Enables writing depth results back to main memory (rather than keeping them
1848 * on-chip in the tile buffer and then discarding) */
1849
1850 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1851
1852 /* The MFBD contains the extra mali_framebuffer_extra section */
1853
1854 #define MALI_MFBD_EXTRA (1 << 13)
1855
1856 struct mali_framebuffer {
1857 union {
1858 struct mali_shared_memory shared_memory;
1859 struct bifrost_multisampling msaa;
1860 };
1861
1862 /* 0x20 */
1863 u16 width1, height1;
1864 u32 zero3;
1865 u16 width2, height2;
1866 u32 unk1 : 19; // = 0x01000
1867 u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1868 u32 unk2 : 2; // = 0
1869 u32 rt_count_2 : 3; // no off-by-one
1870 u32 zero4 : 5;
1871 /* 0x30 */
1872 u32 clear_stencil : 8;
1873 u32 mfbd_flags : 24; // = 0x100
1874 float clear_depth;
1875
1876 union {
1877 struct midgard_tiler_descriptor tiler;
1878 struct {
1879 mali_ptr tiler_meta;
1880 u32 zeros[16];
1881 };
1882 };
1883
1884 /* optional: struct mali_framebuffer_extra extra */
1885 /* struct mali_render_target rts[] */
1886 } __attribute__((packed));
1887
1888 #endif /* __PANFROST_JOB_H__ */