panfrost: Implement gl_FragCoord correctly
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <panfrost-misc.h>
33
34 #define MALI_SHORT_PTR_BITS (sizeof(u64)*8)
35
36 #define MALI_FBD_HIERARCHY_WEIGHTS 8
37
38 #define MALI_PAYLOAD_SIZE 256
39
40 typedef u32 mali_jd_core_req;
41
42 enum mali_job_type {
43 JOB_NOT_STARTED = 0,
44 JOB_TYPE_NULL = 1,
45 JOB_TYPE_SET_VALUE = 2,
46 JOB_TYPE_CACHE_FLUSH = 3,
47 JOB_TYPE_COMPUTE = 4,
48 JOB_TYPE_VERTEX = 5,
49 JOB_TYPE_GEOMETRY = 6,
50 JOB_TYPE_TILER = 7,
51 JOB_TYPE_FUSED = 8,
52 JOB_TYPE_FRAGMENT = 9,
53 };
54
55 enum mali_draw_mode {
56 MALI_DRAW_NONE = 0x0,
57 MALI_POINTS = 0x1,
58 MALI_LINES = 0x2,
59 MALI_LINE_STRIP = 0x4,
60 MALI_LINE_LOOP = 0x6,
61 MALI_TRIANGLES = 0x8,
62 MALI_TRIANGLE_STRIP = 0xA,
63 MALI_TRIANGLE_FAN = 0xC,
64 MALI_POLYGON = 0xD,
65 MALI_QUADS = 0xE,
66 MALI_QUAD_STRIP = 0xF,
67
68 /* All other modes invalid */
69 };
70
71 /* Applies to tiler_gl_enables */
72
73
74 #define MALI_OCCLUSION_QUERY (1 << 3)
75 #define MALI_OCCLUSION_PRECISE (1 << 4)
76
77 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
78 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
79 * disagree about how to do viewport flipping, so the blob actually sets this
80 * for GL_CW but then has a negative viewport stride */
81 #define MALI_FRONT_CCW_TOP (1 << 5)
82
83 #define MALI_CULL_FACE_FRONT (1 << 6)
84 #define MALI_CULL_FACE_BACK (1 << 7)
85
86 /* TODO: Might this actually be a finer bitfield? */
87 #define MALI_DEPTH_STENCIL_ENABLE 0x6400
88
89 #define DS_ENABLE(field) \
90 (field == MALI_DEPTH_STENCIL_ENABLE) \
91 ? "MALI_DEPTH_STENCIL_ENABLE" \
92 : (field == 0) ? "0" \
93 : "0 /* XXX: Unknown, check hexdump */"
94
95 /* Used in stencil and depth tests */
96
97 enum mali_func {
98 MALI_FUNC_NEVER = 0,
99 MALI_FUNC_LESS = 1,
100 MALI_FUNC_EQUAL = 2,
101 MALI_FUNC_LEQUAL = 3,
102 MALI_FUNC_GREATER = 4,
103 MALI_FUNC_NOTEQUAL = 5,
104 MALI_FUNC_GEQUAL = 6,
105 MALI_FUNC_ALWAYS = 7
106 };
107
108 /* Same OpenGL, but mixed up. Why? Because forget me, that's why! */
109
110 enum mali_alt_func {
111 MALI_ALT_FUNC_NEVER = 0,
112 MALI_ALT_FUNC_GREATER = 1,
113 MALI_ALT_FUNC_EQUAL = 2,
114 MALI_ALT_FUNC_GEQUAL = 3,
115 MALI_ALT_FUNC_LESS = 4,
116 MALI_ALT_FUNC_NOTEQUAL = 5,
117 MALI_ALT_FUNC_LEQUAL = 6,
118 MALI_ALT_FUNC_ALWAYS = 7
119 };
120
121 /* Flags apply to unknown2_3? */
122
123 #define MALI_HAS_MSAA (1 << 0)
124 #define MALI_CAN_DISCARD (1 << 5)
125
126 /* Applies on SFBD systems, specifying that programmable blending is in use */
127 #define MALI_HAS_BLEND_SHADER (1 << 6)
128
129 /* func is mali_func */
130 #define MALI_DEPTH_FUNC(func) (func << 8)
131 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
132 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
133
134 #define MALI_DEPTH_TEST (1 << 11)
135
136 /* Next flags to unknown2_4 */
137 #define MALI_STENCIL_TEST (1 << 0)
138
139 /* What?! */
140 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
141
142 #define MALI_NO_DITHER (1 << 9)
143 #define MALI_DEPTH_RANGE_A (1 << 12)
144 #define MALI_DEPTH_RANGE_B (1 << 13)
145 #define MALI_NO_MSAA (1 << 14)
146
147 /* Stencil test state is all encoded in a single u32, just with a lot of
148 * enums... */
149
150 enum mali_stencil_op {
151 MALI_STENCIL_KEEP = 0,
152 MALI_STENCIL_REPLACE = 1,
153 MALI_STENCIL_ZERO = 2,
154 MALI_STENCIL_INVERT = 3,
155 MALI_STENCIL_INCR_WRAP = 4,
156 MALI_STENCIL_DECR_WRAP = 5,
157 MALI_STENCIL_INCR = 6,
158 MALI_STENCIL_DECR = 7
159 };
160
161 struct mali_stencil_test {
162 unsigned ref : 8;
163 unsigned mask : 8;
164 enum mali_func func : 3;
165 enum mali_stencil_op sfail : 3;
166 enum mali_stencil_op dpfail : 3;
167 enum mali_stencil_op dppass : 3;
168 unsigned zero : 4;
169 } __attribute__((packed));
170
171 #define MALI_MASK_R (1 << 0)
172 #define MALI_MASK_G (1 << 1)
173 #define MALI_MASK_B (1 << 2)
174 #define MALI_MASK_A (1 << 3)
175
176 enum mali_nondominant_mode {
177 MALI_BLEND_NON_MIRROR = 0,
178 MALI_BLEND_NON_ZERO = 1
179 };
180
181 enum mali_dominant_blend {
182 MALI_BLEND_DOM_SOURCE = 0,
183 MALI_BLEND_DOM_DESTINATION = 1
184 };
185
186 enum mali_dominant_factor {
187 MALI_DOMINANT_UNK0 = 0,
188 MALI_DOMINANT_ZERO = 1,
189 MALI_DOMINANT_SRC_COLOR = 2,
190 MALI_DOMINANT_DST_COLOR = 3,
191 MALI_DOMINANT_UNK4 = 4,
192 MALI_DOMINANT_SRC_ALPHA = 5,
193 MALI_DOMINANT_DST_ALPHA = 6,
194 MALI_DOMINANT_CONSTANT = 7,
195 };
196
197 enum mali_blend_modifier {
198 MALI_BLEND_MOD_UNK0 = 0,
199 MALI_BLEND_MOD_NORMAL = 1,
200 MALI_BLEND_MOD_SOURCE_ONE = 2,
201 MALI_BLEND_MOD_DEST_ONE = 3,
202 };
203
204 struct mali_blend_mode {
205 enum mali_blend_modifier clip_modifier : 2;
206 unsigned unused_0 : 1;
207 unsigned negate_source : 1;
208
209 enum mali_dominant_blend dominant : 1;
210
211 enum mali_nondominant_mode nondominant_mode : 1;
212
213 unsigned unused_1 : 1;
214
215 unsigned negate_dest : 1;
216
217 enum mali_dominant_factor dominant_factor : 3;
218 unsigned complement_dominant : 1;
219 } __attribute__((packed));
220
221 struct mali_blend_equation {
222 /* Of type mali_blend_mode */
223 unsigned rgb_mode : 12;
224 unsigned alpha_mode : 12;
225
226 unsigned zero1 : 4;
227
228 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
229
230 unsigned color_mask : 4;
231 } __attribute__((packed));
232
233 /* Used with channel swizzling */
234 enum mali_channel {
235 MALI_CHANNEL_RED = 0,
236 MALI_CHANNEL_GREEN = 1,
237 MALI_CHANNEL_BLUE = 2,
238 MALI_CHANNEL_ALPHA = 3,
239 MALI_CHANNEL_ZERO = 4,
240 MALI_CHANNEL_ONE = 5,
241 MALI_CHANNEL_RESERVED_0 = 6,
242 MALI_CHANNEL_RESERVED_1 = 7,
243 };
244
245 struct mali_channel_swizzle {
246 enum mali_channel r : 3;
247 enum mali_channel g : 3;
248 enum mali_channel b : 3;
249 enum mali_channel a : 3;
250 } __attribute__((packed));
251
252 /* Compressed per-pixel formats. Each of these formats expands to one to four
253 * floating-point or integer numbers, as defined by the OpenGL specification.
254 * There are various places in OpenGL where the user can specify a compressed
255 * format in memory, which all use the same 8-bit enum in the various
256 * descriptors, although different hardware units support different formats.
257 */
258
259 /* The top 3 bits specify how the bits of each component are interpreted. */
260
261 /* e.g. R11F_G11F_B10F */
262 #define MALI_FORMAT_SPECIAL (2 << 5)
263
264 /* signed normalized, e.g. RGBA8_SNORM */
265 #define MALI_FORMAT_SNORM (3 << 5)
266
267 /* e.g. RGBA8UI */
268 #define MALI_FORMAT_UINT (4 << 5)
269
270 /* e.g. RGBA8 and RGBA32F */
271 #define MALI_FORMAT_UNORM (5 << 5)
272
273 /* e.g. RGBA8I and RGBA16F */
274 #define MALI_FORMAT_SINT (6 << 5)
275
276 /* These formats seem to largely duplicate the others. They're used at least
277 * for Bifrost framebuffer output.
278 */
279 #define MALI_FORMAT_SPECIAL2 (7 << 5)
280
281 /* If the high 3 bits are 3 to 6 these two bits say how many components
282 * there are.
283 */
284 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
285
286 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
287 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
288 * bits mean.
289 */
290
291 #define MALI_CHANNEL_4 2
292
293 #define MALI_CHANNEL_8 3
294
295 #define MALI_CHANNEL_16 4
296
297 #define MALI_CHANNEL_32 5
298
299 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
300 * MALI_FORMAT_UNORM, it means a 32-bit float.
301 */
302 #define MALI_CHANNEL_FLOAT 7
303
304 enum mali_format {
305 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
306 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
307 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
308 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
309 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
310 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
311
312 /* YUV formats */
313 MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
314
315 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
316 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
317 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
318 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
319 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
320 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
321 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
322 /* Only used for varyings, to indicate the transformed gl_Position */
323 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
324 /* Only used for varyings, to indicate that the write should be
325 * discarded.
326 */
327 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
328
329 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
330 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
331 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
332 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
333 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
334 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
335 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
336 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
337 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
338 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
339 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
340 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
341
342 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
343 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
344 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
345 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
346 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
347 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
348 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
349 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
350 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
351 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
352 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
353 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
354
355 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
356 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
357 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
358 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
359 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
360 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
361 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
362 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
363 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
364 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
365 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
366 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
367 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
368 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
369 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
370 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
371 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
372
373 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
374 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
375 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
376 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
377 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
378 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
379 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
380 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
381 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
382 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
383 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
384 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
385 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
386 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
387 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
388 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
389
390 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
391 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
392 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
393 };
394
395
396 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
397 * literally performing a bitwise invert. This function produces slightly wrong
398 * results and I'm not sure why; some rounding issue I suppose... */
399
400 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
401 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
402
403 /* Applies to midgard1.flags */
404
405 /* Should the hardware perform early-Z testing? Normally should be set
406 * for performance reasons. Clear if you use: discard,
407 * alpha-to-coverage... * It's also possible this disables
408 * forward-pixel kill; we're not quite sure which bit is which yet.
409 * TODO: How does this interact with blending?*/
410
411 #define MALI_EARLY_Z (1 << 6)
412
413 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
414 * fragment shader that uses texturing or derivative functions */
415
416 #define MALI_HELPER_INVOCATIONS (1 << 7)
417
418 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
419 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
420 * it might read depth/stencil in particular, also set MALI_READS_ZS */
421
422 #define MALI_READS_ZS (1 << 8)
423 #define MALI_READS_TILEBUFFER (1 << 12)
424
425 /* The raw Midgard blend payload can either be an equation or a shader
426 * address, depending on the context */
427
428 union midgard_blend {
429 mali_ptr shader;
430
431 struct {
432 struct mali_blend_equation equation;
433 float constant;
434 };
435 };
436
437 /* On MRT Midgard systems (using an MFBD), each render target gets its own
438 * blend descriptor */
439
440 #define MALI_BLEND_SRGB (0x400)
441
442 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
443 #define MALI_BLEND_NO_DITHER (0x800)
444
445 struct midgard_blend_rt {
446 /* Flags base value of 0x200 to enable the render target.
447 * OR with 0x1 for blending (anything other than REPLACE).
448 * OR with 0x2 for programmable blending with 0-2 registers
449 * OR with 0x3 for programmable blending with 2+ registers
450 * OR with MALI_BLEND_SRGB for implicit sRGB
451 */
452
453 u64 flags;
454 union midgard_blend blend;
455 } __attribute__((packed));
456
457 /* On Bifrost systems (all MRT), each render target gets one of these
458 * descriptors */
459
460 struct bifrost_blend_rt {
461 /* This is likely an analogue of the flags on
462 * midgard_blend_rt */
463
464 u16 flags; // = 0x200
465
466 /* Single-channel blend constants are encoded in a sort of
467 * fixed-point. Basically, the float is mapped to a byte, becoming
468 * a high byte, and then the lower-byte is added for precision.
469 * For the original float f:
470 *
471 * f = (constant_hi / 255) + (constant_lo / 65535)
472 *
473 * constant_hi = int(f / 255)
474 * constant_lo = 65535*f - (65535/255) * constant_hi
475 */
476
477 u16 constant;
478
479 struct mali_blend_equation equation;
480 /*
481 * - 0x19 normally
482 * - 0x3 when this slot is unused (everything else is 0 except the index)
483 * - 0x11 when this is the fourth slot (and it's used)
484 + * - 0 when there is a blend shader
485 */
486 u16 unk2;
487 /* increments from 0 to 3 */
488 u16 index;
489
490 union {
491 struct {
492 /* So far, I've only seen:
493 * - R001 for 1-component formats
494 * - RG01 for 2-component formats
495 * - RGB1 for 3-component formats
496 * - RGBA for 4-component formats
497 */
498 u32 swizzle : 12;
499 enum mali_format format : 8;
500
501 /* Type of the shader output variable. Note, this can
502 * be different from the format.
503 *
504 * 0: f16 (mediump float)
505 * 1: f32 (highp float)
506 * 2: i32 (highp int)
507 * 3: u32 (highp uint)
508 * 4: i16 (mediump int)
509 * 5: u16 (mediump uint)
510 */
511 u32 shader_type : 3;
512 u32 zero : 9;
513 };
514
515 /* Only the low 32 bits of the blend shader are stored, the
516 * high 32 bits are implicitly the same as the original shader.
517 * According to the kernel driver, the program counter for
518 * shaders is actually only 24 bits, so shaders cannot cross
519 * the 2^24-byte boundary, and neither can the blend shader.
520 * The blob handles this by allocating a 2^24 byte pool for
521 * shaders, and making sure that any blend shaders are stored
522 * in the same pool as the original shader. The kernel will
523 * make sure this allocation is aligned to 2^24 bytes.
524 */
525 u32 shader;
526 };
527 } __attribute__((packed));
528
529 /* Descriptor for the shader. Following this is at least one, up to four blend
530 * descriptors for each active render target */
531
532 struct mali_shader_meta {
533 mali_ptr shader;
534 u16 sampler_count;
535 u16 texture_count;
536 u16 attribute_count;
537 u16 varying_count;
538
539 union {
540 struct {
541 u32 uniform_buffer_count : 4;
542 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
543 } bifrost1;
544 struct {
545 unsigned uniform_buffer_count : 4;
546 unsigned flags : 12;
547
548 /* Whole number of uniform registers used, times two;
549 * whole number of work registers used (no scale).
550 */
551 unsigned work_count : 5;
552 unsigned uniform_count : 5;
553 unsigned unknown2 : 6;
554 } midgard1;
555 };
556
557 /* Same as glPolygoOffset() arguments */
558 float depth_units;
559 float depth_factor;
560
561 u32 unknown2_2;
562
563 u16 alpha_coverage;
564 u16 unknown2_3;
565
566 u8 stencil_mask_front;
567 u8 stencil_mask_back;
568 u16 unknown2_4;
569
570 struct mali_stencil_test stencil_front;
571 struct mali_stencil_test stencil_back;
572
573 union {
574 struct {
575 u32 unk3 : 7;
576 /* On Bifrost, some system values are preloaded in
577 * registers R55-R62 by the thread dispatcher prior to
578 * the start of shader execution. This is a bitfield
579 * with one entry for each register saying which
580 * registers need to be preloaded. Right now, the known
581 * values are:
582 *
583 * Vertex/compute:
584 * - R55 : gl_LocalInvocationID.xy
585 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
586 * - R57 : gl_WorkGroupID.x
587 * - R58 : gl_WorkGroupID.y
588 * - R59 : gl_WorkGroupID.z
589 * - R60 : gl_GlobalInvocationID.x
590 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
591 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
592 *
593 * Fragment:
594 * - R55 : unknown, never seen (but the bit for this is
595 * always set?)
596 * - R56 : unknown (bit always unset)
597 * - R57 : gl_PrimitiveID
598 * - R58 : gl_FrontFacing in low bit, potentially other stuff
599 * - R59 : u16 fragment coordinates (used to compute
600 * gl_FragCoord.xy, together with sample positions)
601 * - R60 : gl_SampleMask (used in epilog, so pretty
602 * much always used, but the bit is always 0 -- is
603 * this just always pushed?)
604 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
605 * varying interpolation.
606 * - R62 : unknown (bit always unset).
607 */
608 u32 preload_regs : 8;
609 /* In units of 8 bytes or 64 bits, since the
610 * uniform/const port loads 64 bits at a time.
611 */
612 u32 uniform_count : 7;
613 u32 unk4 : 10; // = 2
614 } bifrost2;
615 struct {
616 u32 unknown2_7;
617 } midgard2;
618 };
619
620 /* zero on bifrost */
621 u32 unknown2_8;
622
623 /* Blending information for the older non-MRT Midgard HW. Check for
624 * MALI_HAS_BLEND_SHADER to decide how to interpret.
625 */
626
627 union midgard_blend blend;
628 } __attribute__((packed));
629
630 /* This only concerns hardware jobs */
631
632 /* Possible values for job_descriptor_size */
633
634 #define MALI_JOB_32 0
635 #define MALI_JOB_64 1
636
637 struct mali_job_descriptor_header {
638 u32 exception_status;
639 u32 first_incomplete_task;
640 u64 fault_pointer;
641 u8 job_descriptor_size : 1;
642 enum mali_job_type job_type : 7;
643 u8 job_barrier : 1;
644 u8 unknown_flags : 7;
645 u16 job_index;
646 u16 job_dependency_index_1;
647 u16 job_dependency_index_2;
648
649 union {
650 u64 next_job_64;
651 u32 next_job_32;
652 };
653 } __attribute__((packed));
654
655 /* These concern exception_status */
656
657 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
658 * kernel */
659
660 enum mali_exception_access {
661 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
662 * fault so it's just unused */
663 MALI_EXCEPTION_ACCESS_NONE = 0,
664
665 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
666 MALI_EXCEPTION_ACCESS_READ = 2,
667 MALI_EXCEPTION_ACCESS_WRITE = 3
668 };
669
670 struct mali_payload_set_value {
671 u64 out;
672 u64 unknown;
673 } __attribute__((packed));
674
675 /* Special attributes have a fixed index */
676 #define MALI_SPECIAL_ATTRIBUTE_BASE 16
677 #define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0)
678 #define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1)
679
680 /*
681 * Mali Attributes
682 *
683 * This structure lets the attribute unit compute the address of an attribute
684 * given the vertex and instance ID. Unfortunately, the way this works is
685 * rather complicated when instancing is enabled.
686 *
687 * To explain this, first we need to explain how compute and vertex threads are
688 * dispatched. This is a guess (although a pretty firm guess!) since the
689 * details are mostly hidden from the driver, except for attribute instancing.
690 * When a quad is dispatched, it receives a single, linear index. However, we
691 * need to translate that index into a (vertex id, instance id) pair, or a
692 * (local id x, local id y, local id z) triple for compute shaders (although
693 * vertex shaders and compute shaders are handled almost identically).
694 * Focusing on vertex shaders, one option would be to do:
695 *
696 * vertex_id = linear_id % num_vertices
697 * instance_id = linear_id / num_vertices
698 *
699 * but this involves a costly division and modulus by an arbitrary number.
700 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
701 * num_instances threads instead of num_vertices * num_instances, which results
702 * in some "extra" threads with vertex_id >= num_vertices, which we have to
703 * discard. The more we pad num_vertices, the more "wasted" threads we
704 * dispatch, but the division is potentially easier.
705 *
706 * One straightforward choice is to pad num_vertices to the next power of two,
707 * which means that the division and modulus are just simple bit shifts and
708 * masking. But the actual algorithm is a bit more complicated. The thread
709 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
710 * to dividing by a power of two. This is possibly using the technique
711 * described in patent US20170010862A1. As a result, padded_num_vertices can be
712 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
713 * since we need less padding.
714 *
715 * padded_num_vertices is picked by the hardware. The driver just specifies the
716 * actual number of vertices. At least for Mali G71, the first few cases are
717 * given by:
718 *
719 * num_vertices | padded_num_vertices
720 * 3 | 4
721 * 4-7 | 8
722 * 8-11 | 12 (3 * 4)
723 * 12-15 | 16
724 * 16-19 | 20 (5 * 4)
725 *
726 * Note that padded_num_vertices is a multiple of four (presumably because
727 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
728 * at least one more than num_vertices, which seems like a quirk of the
729 * hardware. For larger num_vertices, the hardware uses the following
730 * algorithm: using the binary representation of num_vertices, we look at the
731 * most significant set bit as well as the following 3 bits. Let n be the
732 * number of bits after those 4 bits. Then we set padded_num_vertices according
733 * to the following table:
734 *
735 * high bits | padded_num_vertices
736 * 1000 | 9 * 2^n
737 * 1001 | 5 * 2^(n+1)
738 * 101x | 3 * 2^(n+2)
739 * 110x | 7 * 2^(n+1)
740 * 111x | 2^(n+4)
741 *
742 * For example, if num_vertices = 70 is passed to glDraw(), its binary
743 * representation is 1000110, so n = 3 and the high bits are 1000, and
744 * therefore padded_num_vertices = 9 * 2^3 = 72.
745 *
746 * The attribute unit works in terms of the original linear_id. if
747 * num_instances = 1, then they are the same, and everything is simple.
748 * However, with instancing things get more complicated. There are four
749 * possible modes, two of them we can group together:
750 *
751 * 1. Use the linear_id directly. Only used when there is no instancing.
752 *
753 * 2. Use the linear_id modulo a constant. This is used for per-vertex
754 * attributes with instancing enabled by making the constant equal
755 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
756 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
757 * The shift field specifies the power of two, while the extra_flags field
758 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
759 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
760 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
761 * shift = 3. Note that we must exactly follow the hardware algorithm used to
762 * get padded_num_vertices in order to correctly implement per-vertex
763 * attributes.
764 *
765 * 3. Divide the linear_id by a constant. In order to correctly implement
766 * instance divisors, we have to divide linear_id by padded_num_vertices times
767 * to user-specified divisor. So first we compute padded_num_vertices, again
768 * following the exact same algorithm that the hardware uses, then multiply it
769 * by the GL-level divisor to get the hardware-level divisor. This case is
770 * further divided into two more cases. If the hardware-level divisor is a
771 * power of two, then we just need to shift. The shift amount is specified by
772 * the shift field, so that the hardware-level divisor is just 2^shift.
773 *
774 * If it isn't a power of two, then we have to divide by an arbitrary integer.
775 * For that, we use the well-known technique of multiplying by an approximation
776 * of the inverse. The driver must compute the magic multiplier and shift
777 * amount, and then the hardware does the multiplication and shift. The
778 * hardware and driver also use the "round-down" optimization as described in
779 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
780 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
781 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
782 * presumably this simplifies the hardware multiplier a little. The hardware
783 * first multiplies linear_id by the multiplier and takes the high 32 bits,
784 * then applies the round-down correction if extra_flags = 1, then finally
785 * shifts right by the shift field.
786 *
787 * There are some differences between ridiculousfish's algorithm and the Mali
788 * hardware algorithm, which means that the reference code from ridiculousfish
789 * doesn't always produce the right constants. Mali does not use the pre-shift
790 * optimization, since that would make a hardware implementation slower (it
791 * would have to always do the pre-shift, multiply, and post-shift operations).
792 * It also forces the multplier to be at least 2^31, which means that the
793 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
794 * given the divisor d, the algorithm the driver must follow is:
795 *
796 * 1. Set shift = floor(log2(d)).
797 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
798 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
799 * magic_divisor = m - 1 and extra_flags = 1.
800 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
801 *
802 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
803 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
804 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
805 * (*NOT the row stride*). Size is set to the size of the image itself.
806 *
807 * Special internal varyings (including gl_FrontFacing) could be seen as
808 * IMAGE/INTERNAL as well as LINEAR, setting all fields set to zero and using a
809 * special elements pseudo-pointer.
810 */
811
812 enum mali_attr_mode {
813 MALI_ATTR_UNUSED = 0,
814 MALI_ATTR_LINEAR = 1,
815 MALI_ATTR_POT_DIVIDE = 2,
816 MALI_ATTR_MODULO = 3,
817 MALI_ATTR_NPOT_DIVIDE = 4,
818 MALI_ATTR_IMAGE = 5,
819 MALI_ATTR_INTERNAL = 6
820 };
821
822 /* Pseudo-address for gl_FrontFacing, used with INTERNAL. Same addres is used
823 * for gl_FragCoord with IMAGE, needing a coordinate flip. Who knows. */
824
825 #define MALI_VARYING_FRAG_COORD (0x25)
826 #define MALI_VARYING_FRONT_FACING (0x26)
827
828 /* This magic "pseudo-address" is used as `elements` to implement
829 * gl_PointCoord. When read from a fragment shader, it generates a point
830 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
831 * require an affine transformation in the shader. */
832
833 #define MALI_VARYING_POINT_COORD (0x61)
834
835 /* Used for comparison to check if an address is special. Mostly a guess, but
836 * it doesn't really matter. */
837
838 #define MALI_VARYING_SPECIAL (0x100)
839
840 union mali_attr {
841 /* This is used for actual attributes. */
842 struct {
843 /* The bottom 3 bits are the mode */
844 mali_ptr elements : 64 - 8;
845 u32 shift : 5;
846 u32 extra_flags : 3;
847 u32 stride;
848 u32 size;
849 };
850 /* The entry after an NPOT_DIVIDE entry has this format. It stores
851 * extra information that wouldn't fit in a normal entry.
852 */
853 struct {
854 u32 unk; /* = 0x20 */
855 u32 magic_divisor;
856 u32 zero;
857 /* This is the original, GL-level divisor. */
858 u32 divisor;
859 };
860 } __attribute__((packed));
861
862 struct mali_attr_meta {
863 /* Vertex buffer index */
864 u8 index;
865
866 unsigned unknown1 : 2;
867 unsigned swizzle : 12;
868 enum mali_format format : 8;
869
870 /* Always observed to be zero at the moment */
871 unsigned unknown3 : 2;
872
873 /* When packing multiple attributes in a buffer, offset addresses by
874 * this value. Obscurely, this is signed. */
875 int32_t src_offset;
876 } __attribute__((packed));
877
878 enum mali_fbd_type {
879 MALI_SFBD = 0,
880 MALI_MFBD = 1,
881 };
882
883 #define FBD_TYPE (1)
884 #define FBD_MASK (~0x3f)
885
886 /* ORed into an MFBD address to specify the fbx section is included */
887 #define MALI_MFBD_TAG_EXTRA (0x2)
888
889 struct mali_uniform_buffer_meta {
890 /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
891 * bytes. This gives a maximum of 2^14 bytes, which just so happens to
892 * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
893 */
894 u64 size : 10;
895
896 /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
897 * should be 0 for userspace pointers, according to
898 * https://lwn.net/Articles/718895/. By reusing these bits, we can make
899 * each entry in the table only 64 bits.
900 */
901 mali_ptr ptr : 64 - 10;
902 };
903
904 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
905 * They also seem to be the same between Bifrost and Midgard. They're shared in
906 * fused payloads.
907 */
908
909 /* Applies to unknown_draw */
910
911 #define MALI_DRAW_INDEXED_UINT8 (0x10)
912 #define MALI_DRAW_INDEXED_UINT16 (0x20)
913 #define MALI_DRAW_INDEXED_UINT32 (0x30)
914 #define MALI_DRAW_INDEXED_SIZE (0x30)
915 #define MALI_DRAW_INDEXED_SHIFT (4)
916
917 #define MALI_DRAW_VARYING_SIZE (0x100)
918 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
919
920 struct mali_vertex_tiler_prefix {
921 /* This is a dynamic bitfield containing the following things in this order:
922 *
923 * - gl_WorkGroupSize.x
924 * - gl_WorkGroupSize.y
925 * - gl_WorkGroupSize.z
926 * - gl_NumWorkGroups.x
927 * - gl_NumWorkGroups.y
928 * - gl_NumWorkGroups.z
929 *
930 * The number of bits allocated for each number is based on the *_shift
931 * fields below. For example, workgroups_y_shift gives the bit that
932 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
933 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
934 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
935 * value is one more than the stored value, since if any of the values
936 * are zero, then there would be no invocations (and hence no job). If
937 * there were 0 bits allocated to a given field, then it must be zero,
938 * and hence the real value is one.
939 *
940 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
941 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
942 * where vertex count is the number of vertices.
943 */
944 u32 invocation_count;
945
946 u32 size_y_shift : 5;
947 u32 size_z_shift : 5;
948 u32 workgroups_x_shift : 6;
949 u32 workgroups_y_shift : 6;
950 u32 workgroups_z_shift : 6;
951 /* This is max(workgroups_x_shift, 2) in all the cases I've seen. */
952 u32 workgroups_x_shift_2 : 4;
953
954 u32 draw_mode : 4;
955 u32 unknown_draw : 22;
956
957 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
958 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
959 * something to do with how many quads get put in the same execution
960 * engine, which is a balance (you don't want to starve the engine, but
961 * you also want to distribute work evenly).
962 */
963 u32 workgroups_x_shift_3 : 6;
964
965
966 /* Negative of min_index. This is used to compute
967 * the unbiased index in tiler/fragment shader runs.
968 *
969 * The hardware adds offset_bias_correction in each run,
970 * so that absent an index bias, the first vertex processed is
971 * genuinely the first vertex (0). But with an index bias,
972 * the first vertex process is numbered the same as the bias.
973 *
974 * To represent this more conviniently:
975 * unbiased_index = lower_bound_index +
976 * index_bias +
977 * offset_bias_correction
978 *
979 * This is done since the hardware doesn't accept a index_bias
980 * and this allows it to recover the unbiased index.
981 */
982 int32_t offset_bias_correction;
983 u32 zero1;
984
985 /* Like many other strictly nonzero quantities, index_count is
986 * subtracted by one. For an indexed cube, this is equal to 35 = 6
987 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
988 * for an indexed draw, index_count is the number of actual vertices
989 * rendered whereas invocation_count is the number of unique vertices
990 * rendered (the number of times the vertex shader must be invoked).
991 * For non-indexed draws, this is just equal to invocation_count. */
992
993 u32 index_count;
994
995 /* No hidden structure; literally just a pointer to an array of uint
996 * indices (width depends on flags). Thanks, guys, for not making my
997 * life insane for once! NULL for non-indexed draws. */
998
999 u64 indices;
1000 } __attribute__((packed));
1001
1002 /* Point size / line width can either be specified as a 32-bit float (for
1003 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
1004 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1005 * payload, the contents of varying_pointer will be intepreted as an array of
1006 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1007 * creating a special MALI_R16F varying writing to varying_pointer. */
1008
1009 union midgard_primitive_size {
1010 float constant;
1011 u64 pointer;
1012 };
1013
1014 struct bifrost_vertex_only {
1015 u32 unk2; /* =0x2 */
1016
1017 u32 zero0;
1018
1019 u64 zero1;
1020 } __attribute__((packed));
1021
1022 struct bifrost_tiler_heap_meta {
1023 u32 zero;
1024 u32 heap_size;
1025 /* note: these are just guesses! */
1026 mali_ptr tiler_heap_start;
1027 mali_ptr tiler_heap_free;
1028 mali_ptr tiler_heap_end;
1029
1030 /* hierarchy weights? but they're still 0 after the job has run... */
1031 u32 zeros[12];
1032 } __attribute__((packed));
1033
1034 struct bifrost_tiler_meta {
1035 u64 zero0;
1036 u16 hierarchy_mask;
1037 u16 flags;
1038 u16 width;
1039 u16 height;
1040 u64 zero1;
1041 mali_ptr tiler_heap_meta;
1042 /* TODO what is this used for? */
1043 u64 zeros[20];
1044 } __attribute__((packed));
1045
1046 struct bifrost_tiler_only {
1047 /* 0x20 */
1048 union midgard_primitive_size primitive_size;
1049
1050 mali_ptr tiler_meta;
1051
1052 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1053
1054 u32 gl_enables;
1055 u32 zero7;
1056 u64 zero8;
1057 } __attribute__((packed));
1058
1059 struct bifrost_scratchpad {
1060 u32 zero;
1061 u32 flags; // = 0x1f
1062 /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
1063 * during startup. It seems to serve the same purpose as the
1064 * gpu_scratchpad in the SFBD for Midgard, although it's slightly
1065 * larger.
1066 */
1067 mali_ptr gpu_scratchpad;
1068 } __attribute__((packed));
1069
1070 struct mali_vertex_tiler_postfix {
1071 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1072 * output from the vertex shader for tiler jobs.
1073 */
1074
1075 u64 position_varying;
1076
1077 /* An array of mali_uniform_buffer_meta's. The size is given by the
1078 * shader_meta.
1079 */
1080 u64 uniform_buffers;
1081
1082 /* This is a pointer to an array of pointers to the texture
1083 * descriptors, number of pointers bounded by number of textures. The
1084 * indirection is needed to accomodate varying numbers and sizes of
1085 * texture descriptors */
1086 u64 texture_trampoline;
1087
1088 /* For OpenGL, from what I've seen, this is intimately connected to
1089 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1090 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1091 * array of sampler descriptors (which are uniform in size) */
1092 u64 sampler_descriptor;
1093
1094 u64 uniforms;
1095 u8 flags : 4;
1096 u64 _shader_upper : MALI_SHORT_PTR_BITS - 4; /* struct shader_meta */
1097 u64 attributes; /* struct attribute_buffer[] */
1098 u64 attribute_meta; /* attribute_meta[] */
1099 u64 varyings; /* struct attr */
1100 u64 varying_meta; /* pointer */
1101 u64 viewport;
1102 u64 occlusion_counter; /* A single bit as far as I can tell */
1103
1104 /* Note: on Bifrost, this isn't actually the FBD. It points to
1105 * bifrost_scratchpad instead. However, it does point to the same thing
1106 * in vertex and tiler jobs.
1107 */
1108 mali_ptr framebuffer;
1109 } __attribute__((packed));
1110
1111 struct midgard_payload_vertex_tiler {
1112 struct mali_vertex_tiler_prefix prefix;
1113
1114 u16 gl_enables; // 0x5
1115
1116 /* Both zero for non-instanced draws. For instanced draws, a
1117 * decomposition of padded_num_vertices. See the comments about the
1118 * corresponding fields in mali_attr for context. */
1119
1120 unsigned instance_shift : 5;
1121 unsigned instance_odd : 3;
1122
1123 u8 zero4;
1124
1125 /* Offset for first vertex in buffer */
1126 u32 offset_start;
1127
1128 u64 zero5;
1129
1130 struct mali_vertex_tiler_postfix postfix;
1131
1132 union midgard_primitive_size primitive_size;
1133 } __attribute__((packed));
1134
1135 struct bifrost_payload_vertex {
1136 struct mali_vertex_tiler_prefix prefix;
1137 struct bifrost_vertex_only vertex;
1138 struct mali_vertex_tiler_postfix postfix;
1139 } __attribute__((packed));
1140
1141 struct bifrost_payload_tiler {
1142 struct mali_vertex_tiler_prefix prefix;
1143 struct bifrost_tiler_only tiler;
1144 struct mali_vertex_tiler_postfix postfix;
1145 } __attribute__((packed));
1146
1147 struct bifrost_payload_fused {
1148 struct mali_vertex_tiler_prefix prefix;
1149 struct bifrost_tiler_only tiler;
1150 struct mali_vertex_tiler_postfix tiler_postfix;
1151 u64 padding; /* zero */
1152 struct bifrost_vertex_only vertex;
1153 struct mali_vertex_tiler_postfix vertex_postfix;
1154 } __attribute__((packed));
1155
1156 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1157 * texture is stored as (63, 63) in these fields. This adjusts for that.
1158 * There's an identical pattern in the framebuffer descriptor. Even vertex
1159 * count fields work this way, hence the generic name -- integral fields that
1160 * are strictly positive generally need this adjustment. */
1161
1162 #define MALI_POSITIVE(dim) (dim - 1)
1163
1164 /* Opposite of MALI_POSITIVE, found in the depth_units field */
1165
1166 #define MALI_NEGATIVE(dim) (dim + 1)
1167
1168 /* Used with wrapping. Incomplete (this is a 4-bit field...) */
1169
1170 enum mali_wrap_mode {
1171 MALI_WRAP_REPEAT = 0x8,
1172 MALI_WRAP_CLAMP_TO_EDGE = 0x9,
1173 MALI_WRAP_CLAMP_TO_BORDER = 0xB,
1174 MALI_WRAP_MIRRORED_REPEAT = 0xC
1175 };
1176
1177 /* Shared across both command stream and Midgard, and even with Bifrost */
1178
1179 enum mali_texture_type {
1180 MALI_TEX_CUBE = 0x0,
1181 MALI_TEX_1D = 0x1,
1182 MALI_TEX_2D = 0x2,
1183 MALI_TEX_3D = 0x3
1184 };
1185
1186 /* 8192x8192 */
1187 #define MAX_MIP_LEVELS (13)
1188
1189 /* Cubemap bloats everything up */
1190 #define MAX_CUBE_FACES (6)
1191
1192 /* For each pointer, there is an address and optionally also a stride */
1193 #define MAX_ELEMENTS (2)
1194
1195 /* It's not known why there are 4-bits allocated -- this enum is almost
1196 * certainly incomplete */
1197
1198 enum mali_texture_layout {
1199 /* For a Z/S texture, this is linear */
1200 MALI_TEXTURE_TILED = 0x1,
1201
1202 /* Z/S textures cannot be tiled */
1203 MALI_TEXTURE_LINEAR = 0x2,
1204
1205 /* 16x16 sparse */
1206 MALI_TEXTURE_AFBC = 0xC
1207 };
1208
1209 /* Corresponds to the type passed to glTexImage2D and so forth */
1210
1211 struct mali_texture_format {
1212 unsigned swizzle : 12;
1213 enum mali_format format : 8;
1214
1215 unsigned srgb : 1;
1216 unsigned unknown1 : 1;
1217
1218 enum mali_texture_type type : 2;
1219 enum mali_texture_layout layout : 4;
1220
1221 /* Always set */
1222 unsigned unknown2 : 1;
1223
1224 /* Set to allow packing an explicit stride */
1225 unsigned manual_stride : 1;
1226
1227 unsigned zero : 2;
1228 } __attribute__((packed));
1229
1230 struct mali_texture_descriptor {
1231 uint16_t width;
1232 uint16_t height;
1233 uint16_t depth;
1234 uint16_t array_size;
1235
1236 struct mali_texture_format format;
1237
1238 uint16_t unknown3;
1239
1240 /* One for non-mipmapped, zero for mipmapped */
1241 uint8_t unknown3A;
1242
1243 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1244 uint8_t levels;
1245
1246 /* Swizzling is a single 32-bit word, broken up here for convenience.
1247 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1248 * level swizzling, not the internal pixel-level swizzling which is
1249 * below OpenGL's reach */
1250
1251 unsigned swizzle : 12;
1252 unsigned swizzle_zero : 20;
1253
1254 uint32_t unknown5;
1255 uint32_t unknown6;
1256 uint32_t unknown7;
1257
1258 mali_ptr payload[MAX_MIP_LEVELS * MAX_CUBE_FACES * MAX_ELEMENTS];
1259 } __attribute__((packed));
1260
1261 /* filter_mode */
1262
1263 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1264 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1265
1266 /* TODO: What do these bits mean individually? Only seen set together */
1267
1268 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1269 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1270
1271 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1272 * sampler_t flag. For typical OpenGL textures, this is always set. */
1273
1274 #define MALI_SAMP_NORM_COORDS (1 << 5)
1275
1276 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1277 * be cleaned up a lot. */
1278
1279 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1280
1281 static inline uint16_t
1282 FIXED_16(float x)
1283 {
1284 /* Clamp inputs, accounting for float error */
1285 float max_lod = (32.0 - (1.0 / 512.0));
1286
1287 x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x));
1288
1289 return (int) (x * 256.0);
1290 }
1291
1292 struct mali_sampler_descriptor {
1293 uint32_t filter_mode;
1294
1295 /* Fixed point. Upper 8-bits is before the decimal point, although it
1296 * caps [0-31]. Lower 8-bits is after the decimal point: int(round(x *
1297 * 256)) */
1298
1299 uint16_t min_lod;
1300 uint16_t max_lod;
1301
1302 /* All one word in reality, but packed a bit */
1303
1304 enum mali_wrap_mode wrap_s : 4;
1305 enum mali_wrap_mode wrap_t : 4;
1306 enum mali_wrap_mode wrap_r : 4;
1307 enum mali_alt_func compare_func : 3;
1308
1309 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1310 * ES2, controlling seamless cubemapping */
1311 unsigned seamless_cube_map : 1;
1312
1313 unsigned zero : 16;
1314
1315 uint32_t zero2;
1316 float border_color[4];
1317 } __attribute__((packed));
1318
1319 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1320 * modified by MALI_POSITIVE; viewport0 is as-is.
1321 */
1322
1323 struct mali_viewport {
1324 /* XY clipping planes */
1325 float clip_minx;
1326 float clip_miny;
1327 float clip_maxx;
1328 float clip_maxy;
1329
1330 /* Depth clipping planes */
1331 float clip_minz;
1332 float clip_maxz;
1333
1334 u16 viewport0[2];
1335 u16 viewport1[2];
1336 } __attribute__((packed));
1337
1338 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1339 * of tile numbers. */
1340
1341 #define MALI_TILE_SHIFT 4
1342 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1343
1344 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1345 * each component. Notice that this provides a theoretical upper bound of (1 <<
1346 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1347 * 65536x65536. Multiplying that together, times another four given that Mali
1348 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1349 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1350 * alone rendering in real-time to such a buffer.
1351 *
1352 * Nice job, guys.*/
1353
1354 /* From mali_kbase_10969_workaround.c */
1355 #define MALI_X_COORD_MASK 0x00000FFF
1356 #define MALI_Y_COORD_MASK 0x0FFF0000
1357
1358 /* Extract parts of a tile coordinate */
1359
1360 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1361 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1362
1363 /* Helpers to generate tile coordinates based on the boundary coordinates in
1364 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1365 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1366 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1367 * problem. */
1368
1369 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1370 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1371 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1372 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1373 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1374
1375 struct mali_payload_fragment {
1376 u32 min_tile_coord;
1377 u32 max_tile_coord;
1378 mali_ptr framebuffer;
1379 } __attribute__((packed));
1380
1381 /* Single Framebuffer Descriptor */
1382
1383 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1384 * configured for 4x. With MSAA_8, it is configured for 8x. */
1385
1386 #define MALI_FRAMEBUFFER_MSAA_8 (1 << 3)
1387 #define MALI_FRAMEBUFFER_MSAA_A (1 << 4)
1388 #define MALI_FRAMEBUFFER_MSAA_B (1 << 23)
1389
1390 /* Fast/slow based on whether all three buffers are cleared at once */
1391
1392 #define MALI_CLEAR_FAST (1 << 18)
1393 #define MALI_CLEAR_SLOW (1 << 28)
1394 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1395
1396 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1397 * within the larget framebuffer descriptor). Analogous to
1398 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1399
1400 /* See pan_tiler.c for derivation */
1401 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1402
1403 /* Flag disabling the tiler for clear-only jobs */
1404 #define MALI_TILER_DISABLED (1 << 12)
1405
1406 struct midgard_tiler_descriptor {
1407 /* Size of the entire polygon list; see pan_tiler.c for the
1408 * computation. It's based on hierarchical tiling */
1409
1410 u32 polygon_list_size;
1411
1412 /* Name known from the replay workaround in the kernel. What exactly is
1413 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1414 * specifies a mask of hierarchy weights, which explains some of the
1415 * performance mysteries around setting it. We also see the bottom bit
1416 * of tiler_flags set in the kernel, but no comment why.
1417 *
1418 * hierarchy_mask can have the TILER_DISABLED flag */
1419
1420 u16 hierarchy_mask;
1421 u16 flags;
1422
1423 /* See mali_tiler.c for an explanation */
1424 mali_ptr polygon_list;
1425 mali_ptr polygon_list_body;
1426
1427 /* Names based on we see symmetry with replay jobs which name these
1428 * explicitly */
1429
1430 mali_ptr heap_start; /* tiler heap_free_address */
1431 mali_ptr heap_end;
1432
1433 /* Hierarchy weights. We know these are weights based on the kernel,
1434 * but I've never seen them be anything other than zero */
1435 u32 weights[8];
1436 };
1437
1438 struct mali_single_framebuffer {
1439 u32 unknown1;
1440 u32 unknown2;
1441 u64 unknown_address_0;
1442 u64 zero1;
1443 u64 zero0;
1444
1445 /* Exact format is ironically not known, since EGL is finnicky with the
1446 * blob. MSAA, colourspace, etc are configured here. */
1447
1448 u32 format;
1449
1450 u32 clear_flags;
1451 u32 zero2;
1452
1453 /* Purposeful off-by-one in these fields should be accounted for by the
1454 * MALI_DIMENSION macro */
1455
1456 u16 width;
1457 u16 height;
1458
1459 u32 zero3[8];
1460
1461 /* By default, the framebuffer is upside down from OpenGL's
1462 * perspective. Set framebuffer to the end and negate the stride to
1463 * flip in the Y direction */
1464
1465 mali_ptr framebuffer;
1466 int32_t stride;
1467
1468 u32 zero4;
1469
1470 /* Depth and stencil buffers are interleaved, it appears, as they are
1471 * set to the same address in captures. Both fields set to zero if the
1472 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1473 * get a zero enable despite the buffer being present; that still is
1474 * disabled. */
1475
1476 mali_ptr depth_buffer; // not SAME_VA
1477 u64 depth_buffer_enable;
1478
1479 mali_ptr stencil_buffer; // not SAME_VA
1480 u64 stencil_buffer_enable;
1481
1482 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1483 u32 clear_color_2; // always equal, but unclear function?
1484 u32 clear_color_3; // always equal, but unclear function?
1485 u32 clear_color_4; // always equal, but unclear function?
1486
1487 /* Set to zero if not cleared */
1488
1489 float clear_depth_1; // float32, ditto
1490 float clear_depth_2; // float32, ditto
1491 float clear_depth_3; // float32, ditto
1492 float clear_depth_4; // float32, ditto
1493
1494 u32 clear_stencil; // Exactly as it appears in OpenGL
1495
1496 u32 zero6[7];
1497
1498 struct midgard_tiler_descriptor tiler;
1499
1500 /* More below this, maybe */
1501 } __attribute__((packed));
1502
1503 /* On Midgard, this "framebuffer descriptor" is used for the framebuffer field
1504 * of compute jobs. Superficially resembles a single framebuffer descriptor */
1505
1506 struct mali_compute_fbd {
1507 u32 unknown1[8];
1508 } __attribute__((packed));
1509
1510 /* Format bits for the render target flags */
1511
1512 #define MALI_MFBD_FORMAT_MSAA (1 << 1)
1513 #define MALI_MFBD_FORMAT_SRGB (1 << 2)
1514
1515 enum mali_mfbd_block_format {
1516 MALI_MFBD_BLOCK_TILED = 0x0,
1517 MALI_MFBD_BLOCK_UNKNOWN = 0x1,
1518 MALI_MFBD_BLOCK_LINEAR = 0x2,
1519 MALI_MFBD_BLOCK_AFBC = 0x3,
1520 };
1521
1522 struct mali_rt_format {
1523 unsigned unk1 : 32;
1524 unsigned unk2 : 3;
1525
1526 unsigned nr_channels : 2; /* MALI_POSITIVE */
1527
1528 unsigned unk3 : 5;
1529 enum mali_mfbd_block_format block : 2;
1530 unsigned flags : 4;
1531
1532 unsigned swizzle : 12;
1533
1534 unsigned zero : 3;
1535
1536 /* Disables MFBD preload. When this bit is set, the render target will
1537 * be cleared every frame. When this bit is clear, the hardware will
1538 * automatically wallpaper the render target back from main memory.
1539 * Unfortunately, MFBD preload is very broken on Midgard, so in
1540 * practice, this is a chicken bit that should always be set.
1541 * Discovered by accident, as all good chicken bits are. */
1542
1543 unsigned no_preload : 1;
1544 } __attribute__((packed));
1545
1546 struct bifrost_render_target {
1547 struct mali_rt_format format;
1548
1549 u64 zero1;
1550
1551 struct {
1552 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1553 * there is an extra metadata buffer that contains 16 bytes per tile.
1554 * The framebuffer needs to be the same size as before, since we don't
1555 * know ahead of time how much space it will take up. The
1556 * framebuffer_stride is set to 0, since the data isn't stored linearly
1557 * anymore.
1558 *
1559 * When AFBC is disabled, these fields are zero.
1560 */
1561
1562 mali_ptr metadata;
1563 u32 stride; // stride in units of tiles
1564 u32 unk; // = 0x20000
1565 } afbc;
1566
1567 mali_ptr framebuffer;
1568
1569 u32 zero2 : 4;
1570 u32 framebuffer_stride : 28; // in units of bytes
1571 u32 zero3;
1572
1573 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1574 u32 clear_color_2; // always equal, but unclear function?
1575 u32 clear_color_3; // always equal, but unclear function?
1576 u32 clear_color_4; // always equal, but unclear function?
1577 } __attribute__((packed));
1578
1579 /* An optional part of bifrost_framebuffer. It comes between the main structure
1580 * and the array of render targets. It must be included if any of these are
1581 * enabled:
1582 *
1583 * - Transaction Elimination
1584 * - Depth/stencil
1585 * - TODO: Anything else?
1586 */
1587
1588 /* Flags field: note, these are guesses */
1589
1590 #define MALI_EXTRA_PRESENT (0x400)
1591 #define MALI_EXTRA_AFBC (0x20)
1592 #define MALI_EXTRA_AFBC_ZS (0x10)
1593 #define MALI_EXTRA_ZS (0x4)
1594
1595 struct bifrost_fb_extra {
1596 mali_ptr checksum;
1597 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1598 u32 checksum_stride;
1599
1600 u32 flags;
1601
1602 union {
1603 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1604 struct {
1605 mali_ptr depth_stencil_afbc_metadata;
1606 u32 depth_stencil_afbc_stride; // in units of tiles
1607 u32 zero1;
1608
1609 mali_ptr depth_stencil;
1610
1611 u64 padding;
1612 } ds_afbc;
1613
1614 struct {
1615 /* Depth becomes depth/stencil in case of combined D/S */
1616 mali_ptr depth;
1617 u32 depth_stride_zero : 4;
1618 u32 depth_stride : 28;
1619 u32 zero1;
1620
1621 mali_ptr stencil;
1622 u32 stencil_stride_zero : 4;
1623 u32 stencil_stride : 28;
1624 u32 zero2;
1625 } ds_linear;
1626 };
1627
1628
1629 u64 zero3, zero4;
1630 } __attribute__((packed));
1631
1632 /* Flags for mfbd_flags */
1633
1634 /* Enables writing depth results back to main memory (rather than keeping them
1635 * on-chip in the tile buffer and then discarding) */
1636
1637 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1638
1639 /* The MFBD contains the extra bifrost_fb_extra section */
1640
1641 #define MALI_MFBD_EXTRA (1 << 13)
1642
1643 struct bifrost_framebuffer {
1644 u32 unk0; // = 0x10
1645
1646 u32 unknown2; // = 0x1f, same as SFBD
1647 mali_ptr scratchpad;
1648
1649 /* 0x10 */
1650 mali_ptr sample_locations;
1651 mali_ptr unknown1;
1652 /* 0x20 */
1653 u16 width1, height1;
1654 u32 zero3;
1655 u16 width2, height2;
1656 u32 unk1 : 19; // = 0x01000
1657 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1658 u32 unk2 : 3; // = 0
1659 u32 rt_count_2 : 3; // no off-by-one
1660 u32 zero4 : 5;
1661 /* 0x30 */
1662 u32 clear_stencil : 8;
1663 u32 mfbd_flags : 24; // = 0x100
1664 float clear_depth;
1665
1666 struct midgard_tiler_descriptor tiler;
1667
1668 /* optional: struct bifrost_fb_extra extra */
1669 /* struct bifrost_render_target rts[] */
1670 } __attribute__((packed));
1671
1672 #endif /* __PANFROST_JOB_H__ */