panfrost: Identify texture layout field
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <panfrost-misc.h>
34
35 enum mali_job_type {
36 JOB_NOT_STARTED = 0,
37 JOB_TYPE_NULL = 1,
38 JOB_TYPE_WRITE_VALUE = 2,
39 JOB_TYPE_CACHE_FLUSH = 3,
40 JOB_TYPE_COMPUTE = 4,
41 JOB_TYPE_VERTEX = 5,
42 JOB_TYPE_GEOMETRY = 6,
43 JOB_TYPE_TILER = 7,
44 JOB_TYPE_FUSED = 8,
45 JOB_TYPE_FRAGMENT = 9,
46 };
47
48 enum mali_draw_mode {
49 MALI_DRAW_NONE = 0x0,
50 MALI_POINTS = 0x1,
51 MALI_LINES = 0x2,
52 MALI_LINE_STRIP = 0x4,
53 MALI_LINE_LOOP = 0x6,
54 MALI_TRIANGLES = 0x8,
55 MALI_TRIANGLE_STRIP = 0xA,
56 MALI_TRIANGLE_FAN = 0xC,
57 MALI_POLYGON = 0xD,
58 MALI_QUADS = 0xE,
59 MALI_QUAD_STRIP = 0xF,
60
61 /* All other modes invalid */
62 };
63
64 /* Applies to tiler_gl_enables */
65
66 #define MALI_OCCLUSION_QUERY (1 << 3)
67 #define MALI_OCCLUSION_PRECISE (1 << 4)
68
69 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
70 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
71 * disagree about how to do viewport flipping, so the blob actually sets this
72 * for GL_CW but then has a negative viewport stride */
73
74 #define MALI_FRONT_CCW_TOP (1 << 5)
75
76 #define MALI_CULL_FACE_FRONT (1 << 6)
77 #define MALI_CULL_FACE_BACK (1 << 7)
78
79 /* Used in stencil and depth tests */
80
81 enum mali_func {
82 MALI_FUNC_NEVER = 0,
83 MALI_FUNC_LESS = 1,
84 MALI_FUNC_EQUAL = 2,
85 MALI_FUNC_LEQUAL = 3,
86 MALI_FUNC_GREATER = 4,
87 MALI_FUNC_NOTEQUAL = 5,
88 MALI_FUNC_GEQUAL = 6,
89 MALI_FUNC_ALWAYS = 7
90 };
91
92 /* Flags apply to unknown2_3? */
93
94 #define MALI_HAS_MSAA (1 << 0)
95 #define MALI_CAN_DISCARD (1 << 5)
96
97 /* Applies on SFBD systems, specifying that programmable blending is in use */
98 #define MALI_HAS_BLEND_SHADER (1 << 6)
99
100 /* func is mali_func */
101 #define MALI_DEPTH_FUNC(func) (func << 8)
102 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
103 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
104
105 #define MALI_DEPTH_WRITEMASK (1 << 11)
106
107 /* Next flags to unknown2_4 */
108 #define MALI_STENCIL_TEST (1 << 0)
109
110 /* What?! */
111 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
112
113 #define MALI_NO_DITHER (1 << 9)
114 #define MALI_DEPTH_RANGE_A (1 << 12)
115 #define MALI_DEPTH_RANGE_B (1 << 13)
116 #define MALI_NO_MSAA (1 << 14)
117
118 /* Stencil test state is all encoded in a single u32, just with a lot of
119 * enums... */
120
121 enum mali_stencil_op {
122 MALI_STENCIL_KEEP = 0,
123 MALI_STENCIL_REPLACE = 1,
124 MALI_STENCIL_ZERO = 2,
125 MALI_STENCIL_INVERT = 3,
126 MALI_STENCIL_INCR_WRAP = 4,
127 MALI_STENCIL_DECR_WRAP = 5,
128 MALI_STENCIL_INCR = 6,
129 MALI_STENCIL_DECR = 7
130 };
131
132 struct mali_stencil_test {
133 unsigned ref : 8;
134 unsigned mask : 8;
135 enum mali_func func : 3;
136 enum mali_stencil_op sfail : 3;
137 enum mali_stencil_op dpfail : 3;
138 enum mali_stencil_op dppass : 3;
139 unsigned zero : 4;
140 } __attribute__((packed));
141
142 #define MALI_MASK_R (1 << 0)
143 #define MALI_MASK_G (1 << 1)
144 #define MALI_MASK_B (1 << 2)
145 #define MALI_MASK_A (1 << 3)
146
147 enum mali_nondominant_mode {
148 MALI_BLEND_NON_MIRROR = 0,
149 MALI_BLEND_NON_ZERO = 1
150 };
151
152 enum mali_dominant_blend {
153 MALI_BLEND_DOM_SOURCE = 0,
154 MALI_BLEND_DOM_DESTINATION = 1
155 };
156
157 enum mali_dominant_factor {
158 MALI_DOMINANT_UNK0 = 0,
159 MALI_DOMINANT_ZERO = 1,
160 MALI_DOMINANT_SRC_COLOR = 2,
161 MALI_DOMINANT_DST_COLOR = 3,
162 MALI_DOMINANT_UNK4 = 4,
163 MALI_DOMINANT_SRC_ALPHA = 5,
164 MALI_DOMINANT_DST_ALPHA = 6,
165 MALI_DOMINANT_CONSTANT = 7,
166 };
167
168 enum mali_blend_modifier {
169 MALI_BLEND_MOD_UNK0 = 0,
170 MALI_BLEND_MOD_NORMAL = 1,
171 MALI_BLEND_MOD_SOURCE_ONE = 2,
172 MALI_BLEND_MOD_DEST_ONE = 3,
173 };
174
175 struct mali_blend_mode {
176 enum mali_blend_modifier clip_modifier : 2;
177 unsigned unused_0 : 1;
178 unsigned negate_source : 1;
179
180 enum mali_dominant_blend dominant : 1;
181
182 enum mali_nondominant_mode nondominant_mode : 1;
183
184 unsigned unused_1 : 1;
185
186 unsigned negate_dest : 1;
187
188 enum mali_dominant_factor dominant_factor : 3;
189 unsigned complement_dominant : 1;
190 } __attribute__((packed));
191
192 struct mali_blend_equation {
193 /* Of type mali_blend_mode */
194 unsigned rgb_mode : 12;
195 unsigned alpha_mode : 12;
196
197 unsigned zero1 : 4;
198
199 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
200
201 unsigned color_mask : 4;
202 } __attribute__((packed));
203
204 /* Used with channel swizzling */
205 enum mali_channel {
206 MALI_CHANNEL_RED = 0,
207 MALI_CHANNEL_GREEN = 1,
208 MALI_CHANNEL_BLUE = 2,
209 MALI_CHANNEL_ALPHA = 3,
210 MALI_CHANNEL_ZERO = 4,
211 MALI_CHANNEL_ONE = 5,
212 MALI_CHANNEL_RESERVED_0 = 6,
213 MALI_CHANNEL_RESERVED_1 = 7,
214 };
215
216 struct mali_channel_swizzle {
217 enum mali_channel r : 3;
218 enum mali_channel g : 3;
219 enum mali_channel b : 3;
220 enum mali_channel a : 3;
221 } __attribute__((packed));
222
223 /* Compressed per-pixel formats. Each of these formats expands to one to four
224 * floating-point or integer numbers, as defined by the OpenGL specification.
225 * There are various places in OpenGL where the user can specify a compressed
226 * format in memory, which all use the same 8-bit enum in the various
227 * descriptors, although different hardware units support different formats.
228 */
229
230 /* The top 3 bits specify how the bits of each component are interpreted. */
231
232 /* e.g. ETC2_RGB8 */
233 #define MALI_FORMAT_COMPRESSED (0 << 5)
234
235 /* e.g. R11F_G11F_B10F */
236 #define MALI_FORMAT_SPECIAL (2 << 5)
237
238 /* signed normalized, e.g. RGBA8_SNORM */
239 #define MALI_FORMAT_SNORM (3 << 5)
240
241 /* e.g. RGBA8UI */
242 #define MALI_FORMAT_UINT (4 << 5)
243
244 /* e.g. RGBA8 and RGBA32F */
245 #define MALI_FORMAT_UNORM (5 << 5)
246
247 /* e.g. RGBA8I and RGBA16F */
248 #define MALI_FORMAT_SINT (6 << 5)
249
250 /* These formats seem to largely duplicate the others. They're used at least
251 * for Bifrost framebuffer output.
252 */
253 #define MALI_FORMAT_SPECIAL2 (7 << 5)
254
255 /* If the high 3 bits are 3 to 6 these two bits say how many components
256 * there are.
257 */
258 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
259
260 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
261 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
262 * bits mean.
263 */
264
265 #define MALI_CHANNEL_4 2
266
267 #define MALI_CHANNEL_8 3
268
269 #define MALI_CHANNEL_16 4
270
271 #define MALI_CHANNEL_32 5
272
273 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
274 * MALI_FORMAT_UNORM, it means a 32-bit float.
275 */
276 #define MALI_CHANNEL_FLOAT 7
277
278 enum mali_format {
279 MALI_ETC2_RGB8 = MALI_FORMAT_COMPRESSED | 0x1,
280 MALI_ETC2_R11_UNORM = MALI_FORMAT_COMPRESSED | 0x2,
281 MALI_ETC2_RGBA8 = MALI_FORMAT_COMPRESSED | 0x3,
282 MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
283 MALI_ETC2_R11_SNORM = MALI_FORMAT_COMPRESSED | 0x11,
284 MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12,
285 MALI_ETC2_RGB8A1 = MALI_FORMAT_COMPRESSED | 0x13,
286 MALI_ASTC_SRGB_SUPP = MALI_FORMAT_COMPRESSED | 0x16,
287 MALI_ASTC_HDR_SUPP = MALI_FORMAT_COMPRESSED | 0x17,
288
289 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
290 MALI_RGB5_X1_UNORM = MALI_FORMAT_SPECIAL | 0x1,
291 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
292 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
293 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
294 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
295 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
296
297 MALI_RGB332_UNORM = MALI_FORMAT_SPECIAL | 0xb,
298 MALI_RGB233_UNORM = MALI_FORMAT_SPECIAL | 0xc,
299
300 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xd,
301 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
302 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
303 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
304 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
305 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
306 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
307 /* Only used for varyings, to indicate the transformed gl_Position */
308 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
309 /* Only used for varyings, to indicate that the write should be
310 * discarded.
311 */
312 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
313
314 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
315 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
316 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
317 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
318 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
319 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
320 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
321 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
322 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
323 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
324 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
325 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
326
327 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
328 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
329 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
330 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
331 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
332 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
333 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
334 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
335 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
336 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
337 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
338 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
339
340 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
341 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
342 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
343 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
344 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
345 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
346 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
347 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
348 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
349 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
350 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
351 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
352 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
353 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
354 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
355 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
356 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
357
358 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
359 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
360 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
361 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
362 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
363 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
364 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
365 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
366 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
367 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
368 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
369 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
370 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
371 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
372 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
373 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
374
375 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
376 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
377 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
378 };
379
380
381 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
382 * literally performing a bitwise invert. This function produces slightly wrong
383 * results and I'm not sure why; some rounding issue I suppose... */
384
385 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
386 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
387
388 /* Applies to midgard1.flags_lo */
389
390 /* Should be set when the fragment shader updates the depth value. */
391 #define MALI_WRITES_Z (1 << 4)
392
393 /* Should the hardware perform early-Z testing? Normally should be set
394 * for performance reasons. Clear if you use: discard,
395 * alpha-to-coverage... * It's also possible this disables
396 * forward-pixel kill; we're not quite sure which bit is which yet.
397 * TODO: How does this interact with blending?*/
398
399 #define MALI_EARLY_Z (1 << 6)
400
401 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
402 * fragment shader that uses texturing or derivative functions */
403
404 #define MALI_HELPER_INVOCATIONS (1 << 7)
405
406 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
407 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
408 * it might read depth/stencil in particular, also set MALI_READS_ZS */
409
410 #define MALI_READS_ZS (1 << 8)
411 #define MALI_READS_TILEBUFFER (1 << 12)
412
413 /* Applies to midgard1.flags_hi */
414
415 /* Should be set when the fragment shader updates the stencil value. */
416 #define MALI_WRITES_S (1 << 2)
417
418 /* The raw Midgard blend payload can either be an equation or a shader
419 * address, depending on the context */
420
421 union midgard_blend {
422 mali_ptr shader;
423
424 struct {
425 struct mali_blend_equation equation;
426 float constant;
427 };
428 };
429
430 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
431 * ZERO) */
432
433 #define MALI_BLEND_LOAD_TIB (0x1)
434
435 /* A blend shader is used to blend this render target */
436 #define MALI_BLEND_MRT_SHADER (0x2)
437
438 /* On MRT Midgard systems (using an MFBD), each render target gets its own
439 * blend descriptor */
440
441 #define MALI_BLEND_SRGB (0x400)
442
443 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
444 #define MALI_BLEND_NO_DITHER (0x800)
445
446 struct midgard_blend_rt {
447 /* Flags base value of 0x200 to enable the render target.
448 * OR with 0x1 for blending (anything other than REPLACE).
449 * OR with 0x2 for programmable blending
450 * OR with MALI_BLEND_SRGB for implicit sRGB
451 */
452
453 u64 flags;
454 union midgard_blend blend;
455 } __attribute__((packed));
456
457 /* On Bifrost systems (all MRT), each render target gets one of these
458 * descriptors */
459
460 struct bifrost_blend_rt {
461 /* This is likely an analogue of the flags on
462 * midgard_blend_rt */
463
464 u16 flags; // = 0x200
465
466 /* Single-channel blend constants are encoded in a sort of
467 * fixed-point. Basically, the float is mapped to a byte, becoming
468 * a high byte, and then the lower-byte is added for precision.
469 * For the original float f:
470 *
471 * f = (constant_hi / 255) + (constant_lo / 65535)
472 *
473 * constant_hi = int(f / 255)
474 * constant_lo = 65535*f - (65535/255) * constant_hi
475 */
476
477 u16 constant;
478
479 struct mali_blend_equation equation;
480 /*
481 * - 0x19 normally
482 * - 0x3 when this slot is unused (everything else is 0 except the index)
483 * - 0x11 when this is the fourth slot (and it's used)
484 + * - 0 when there is a blend shader
485 */
486 u16 unk2;
487 /* increments from 0 to 3 */
488 u16 index;
489
490 union {
491 struct {
492 /* So far, I've only seen:
493 * - R001 for 1-component formats
494 * - RG01 for 2-component formats
495 * - RGB1 for 3-component formats
496 * - RGBA for 4-component formats
497 */
498 u32 swizzle : 12;
499 enum mali_format format : 8;
500
501 /* Type of the shader output variable. Note, this can
502 * be different from the format.
503 *
504 * 0: f16 (mediump float)
505 * 1: f32 (highp float)
506 * 2: i32 (highp int)
507 * 3: u32 (highp uint)
508 * 4: i16 (mediump int)
509 * 5: u16 (mediump uint)
510 */
511 u32 shader_type : 3;
512 u32 zero : 9;
513 };
514
515 /* Only the low 32 bits of the blend shader are stored, the
516 * high 32 bits are implicitly the same as the original shader.
517 * According to the kernel driver, the program counter for
518 * shaders is actually only 24 bits, so shaders cannot cross
519 * the 2^24-byte boundary, and neither can the blend shader.
520 * The blob handles this by allocating a 2^24 byte pool for
521 * shaders, and making sure that any blend shaders are stored
522 * in the same pool as the original shader. The kernel will
523 * make sure this allocation is aligned to 2^24 bytes.
524 */
525 u32 shader;
526 };
527 } __attribute__((packed));
528
529 /* Descriptor for the shader. Following this is at least one, up to four blend
530 * descriptors for each active render target */
531
532 struct mali_shader_meta {
533 mali_ptr shader;
534 u16 sampler_count;
535 u16 texture_count;
536 u16 attribute_count;
537 u16 varying_count;
538
539 union {
540 struct {
541 u32 uniform_buffer_count : 4;
542 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
543 } bifrost1;
544 struct {
545 unsigned uniform_buffer_count : 4;
546 unsigned flags_lo : 12;
547
548 /* vec4 units */
549 unsigned work_count : 5;
550 unsigned uniform_count : 5;
551 unsigned flags_hi : 6;
552 } midgard1;
553 };
554
555 /* Same as glPolygoOffset() arguments */
556 float depth_units;
557 float depth_factor;
558
559 u32 unknown2_2;
560
561 u16 alpha_coverage;
562 u16 unknown2_3;
563
564 u8 stencil_mask_front;
565 u8 stencil_mask_back;
566 u16 unknown2_4;
567
568 struct mali_stencil_test stencil_front;
569 struct mali_stencil_test stencil_back;
570
571 union {
572 struct {
573 u32 unk3 : 7;
574 /* On Bifrost, some system values are preloaded in
575 * registers R55-R62 by the thread dispatcher prior to
576 * the start of shader execution. This is a bitfield
577 * with one entry for each register saying which
578 * registers need to be preloaded. Right now, the known
579 * values are:
580 *
581 * Vertex/compute:
582 * - R55 : gl_LocalInvocationID.xy
583 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
584 * - R57 : gl_WorkGroupID.x
585 * - R58 : gl_WorkGroupID.y
586 * - R59 : gl_WorkGroupID.z
587 * - R60 : gl_GlobalInvocationID.x
588 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
589 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
590 *
591 * Fragment:
592 * - R55 : unknown, never seen (but the bit for this is
593 * always set?)
594 * - R56 : unknown (bit always unset)
595 * - R57 : gl_PrimitiveID
596 * - R58 : gl_FrontFacing in low bit, potentially other stuff
597 * - R59 : u16 fragment coordinates (used to compute
598 * gl_FragCoord.xy, together with sample positions)
599 * - R60 : gl_SampleMask (used in epilog, so pretty
600 * much always used, but the bit is always 0 -- is
601 * this just always pushed?)
602 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
603 * varying interpolation.
604 * - R62 : unknown (bit always unset).
605 *
606 * Later GPUs (starting with Mali-G52?) support
607 * preloading float varyings into r0-r7. This is
608 * indicated by setting 0x40. There is no distinction
609 * here between 1 varying and 2.
610 */
611 u32 preload_regs : 8;
612 /* In units of 8 bytes or 64 bits, since the
613 * uniform/const port loads 64 bits at a time.
614 */
615 u32 uniform_count : 7;
616 u32 unk4 : 10; // = 2
617 } bifrost2;
618 struct {
619 u32 unknown2_7;
620 } midgard2;
621 };
622
623 u32 padding;
624
625 /* Blending information for the older non-MRT Midgard HW. Check for
626 * MALI_HAS_BLEND_SHADER to decide how to interpret.
627 */
628
629 union midgard_blend blend;
630 } __attribute__((packed));
631
632 /* This only concerns hardware jobs */
633
634 /* Possible values for job_descriptor_size */
635
636 #define MALI_JOB_32 0
637 #define MALI_JOB_64 1
638
639 struct mali_job_descriptor_header {
640 u32 exception_status;
641 u32 first_incomplete_task;
642 u64 fault_pointer;
643 u8 job_descriptor_size : 1;
644 enum mali_job_type job_type : 7;
645 u8 job_barrier : 1;
646 u8 unknown_flags : 7;
647 u16 job_index;
648 u16 job_dependency_index_1;
649 u16 job_dependency_index_2;
650 u64 next_job;
651 } __attribute__((packed));
652
653 /* These concern exception_status */
654
655 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
656 * kernel */
657
658 enum mali_exception_access {
659 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
660 * fault so it's just unused */
661 MALI_EXCEPTION_ACCESS_NONE = 0,
662
663 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
664 MALI_EXCEPTION_ACCESS_READ = 2,
665 MALI_EXCEPTION_ACCESS_WRITE = 3
666 };
667
668 /* Details about write_value from panfrost igt tests which use it as a generic
669 * dword write primitive */
670
671 #define MALI_WRITE_VALUE_ZERO 3
672
673 struct mali_payload_write_value {
674 u64 address;
675 u32 value_descriptor;
676 u32 reserved;
677 u64 immediate;
678 } __attribute__((packed));
679
680 /*
681 * Mali Attributes
682 *
683 * This structure lets the attribute unit compute the address of an attribute
684 * given the vertex and instance ID. Unfortunately, the way this works is
685 * rather complicated when instancing is enabled.
686 *
687 * To explain this, first we need to explain how compute and vertex threads are
688 * dispatched. This is a guess (although a pretty firm guess!) since the
689 * details are mostly hidden from the driver, except for attribute instancing.
690 * When a quad is dispatched, it receives a single, linear index. However, we
691 * need to translate that index into a (vertex id, instance id) pair, or a
692 * (local id x, local id y, local id z) triple for compute shaders (although
693 * vertex shaders and compute shaders are handled almost identically).
694 * Focusing on vertex shaders, one option would be to do:
695 *
696 * vertex_id = linear_id % num_vertices
697 * instance_id = linear_id / num_vertices
698 *
699 * but this involves a costly division and modulus by an arbitrary number.
700 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
701 * num_instances threads instead of num_vertices * num_instances, which results
702 * in some "extra" threads with vertex_id >= num_vertices, which we have to
703 * discard. The more we pad num_vertices, the more "wasted" threads we
704 * dispatch, but the division is potentially easier.
705 *
706 * One straightforward choice is to pad num_vertices to the next power of two,
707 * which means that the division and modulus are just simple bit shifts and
708 * masking. But the actual algorithm is a bit more complicated. The thread
709 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
710 * to dividing by a power of two. This is possibly using the technique
711 * described in patent US20170010862A1. As a result, padded_num_vertices can be
712 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
713 * since we need less padding.
714 *
715 * padded_num_vertices is picked by the hardware. The driver just specifies the
716 * actual number of vertices. At least for Mali G71, the first few cases are
717 * given by:
718 *
719 * num_vertices | padded_num_vertices
720 * 3 | 4
721 * 4-7 | 8
722 * 8-11 | 12 (3 * 4)
723 * 12-15 | 16
724 * 16-19 | 20 (5 * 4)
725 *
726 * Note that padded_num_vertices is a multiple of four (presumably because
727 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
728 * at least one more than num_vertices, which seems like a quirk of the
729 * hardware. For larger num_vertices, the hardware uses the following
730 * algorithm: using the binary representation of num_vertices, we look at the
731 * most significant set bit as well as the following 3 bits. Let n be the
732 * number of bits after those 4 bits. Then we set padded_num_vertices according
733 * to the following table:
734 *
735 * high bits | padded_num_vertices
736 * 1000 | 9 * 2^n
737 * 1001 | 5 * 2^(n+1)
738 * 101x | 3 * 2^(n+2)
739 * 110x | 7 * 2^(n+1)
740 * 111x | 2^(n+4)
741 *
742 * For example, if num_vertices = 70 is passed to glDraw(), its binary
743 * representation is 1000110, so n = 3 and the high bits are 1000, and
744 * therefore padded_num_vertices = 9 * 2^3 = 72.
745 *
746 * The attribute unit works in terms of the original linear_id. if
747 * num_instances = 1, then they are the same, and everything is simple.
748 * However, with instancing things get more complicated. There are four
749 * possible modes, two of them we can group together:
750 *
751 * 1. Use the linear_id directly. Only used when there is no instancing.
752 *
753 * 2. Use the linear_id modulo a constant. This is used for per-vertex
754 * attributes with instancing enabled by making the constant equal
755 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
756 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
757 * The shift field specifies the power of two, while the extra_flags field
758 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
759 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
760 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
761 * shift = 3. Note that we must exactly follow the hardware algorithm used to
762 * get padded_num_vertices in order to correctly implement per-vertex
763 * attributes.
764 *
765 * 3. Divide the linear_id by a constant. In order to correctly implement
766 * instance divisors, we have to divide linear_id by padded_num_vertices times
767 * to user-specified divisor. So first we compute padded_num_vertices, again
768 * following the exact same algorithm that the hardware uses, then multiply it
769 * by the GL-level divisor to get the hardware-level divisor. This case is
770 * further divided into two more cases. If the hardware-level divisor is a
771 * power of two, then we just need to shift. The shift amount is specified by
772 * the shift field, so that the hardware-level divisor is just 2^shift.
773 *
774 * If it isn't a power of two, then we have to divide by an arbitrary integer.
775 * For that, we use the well-known technique of multiplying by an approximation
776 * of the inverse. The driver must compute the magic multiplier and shift
777 * amount, and then the hardware does the multiplication and shift. The
778 * hardware and driver also use the "round-down" optimization as described in
779 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
780 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
781 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
782 * presumably this simplifies the hardware multiplier a little. The hardware
783 * first multiplies linear_id by the multiplier and takes the high 32 bits,
784 * then applies the round-down correction if extra_flags = 1, then finally
785 * shifts right by the shift field.
786 *
787 * There are some differences between ridiculousfish's algorithm and the Mali
788 * hardware algorithm, which means that the reference code from ridiculousfish
789 * doesn't always produce the right constants. Mali does not use the pre-shift
790 * optimization, since that would make a hardware implementation slower (it
791 * would have to always do the pre-shift, multiply, and post-shift operations).
792 * It also forces the multplier to be at least 2^31, which means that the
793 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
794 * given the divisor d, the algorithm the driver must follow is:
795 *
796 * 1. Set shift = floor(log2(d)).
797 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
798 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
799 * magic_divisor = m - 1 and extra_flags = 1.
800 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
801 *
802 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
803 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
804 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
805 * (*NOT the row stride*). Size is set to the size of the image itself.
806 *
807 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
808 * use particular fixed addresses with modified structures.
809 */
810
811 enum mali_attr_mode {
812 MALI_ATTR_UNUSED = 0,
813 MALI_ATTR_LINEAR = 1,
814 MALI_ATTR_POT_DIVIDE = 2,
815 MALI_ATTR_MODULO = 3,
816 MALI_ATTR_NPOT_DIVIDE = 4,
817 MALI_ATTR_IMAGE = 5,
818 };
819
820 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
821
822 #define MALI_ATTR_VERTEXID (0x22)
823 #define MALI_ATTR_INSTANCEID (0x24)
824 #define MALI_VARYING_FRAG_COORD (0x25)
825 #define MALI_VARYING_FRONT_FACING (0x26)
826
827 /* This magic "pseudo-address" is used as `elements` to implement
828 * gl_PointCoord. When read from a fragment shader, it generates a point
829 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
830 * require an affine transformation in the shader. */
831
832 #define MALI_VARYING_POINT_COORD (0x61)
833
834 /* Used for comparison to check if an address is special. Mostly a guess, but
835 * it doesn't really matter. */
836
837 #define MALI_RECORD_SPECIAL (0x100)
838
839 union mali_attr {
840 /* This is used for actual attributes. */
841 struct {
842 /* The bottom 3 bits are the mode */
843 mali_ptr elements : 64 - 8;
844 u32 shift : 5;
845 u32 extra_flags : 3;
846 u32 stride;
847 u32 size;
848 };
849 /* The entry after an NPOT_DIVIDE entry has this format. It stores
850 * extra information that wouldn't fit in a normal entry.
851 */
852 struct {
853 u32 unk; /* = 0x20 */
854 u32 magic_divisor;
855 u32 zero;
856 /* This is the original, GL-level divisor. */
857 u32 divisor;
858 };
859 } __attribute__((packed));
860
861 struct mali_attr_meta {
862 /* Vertex buffer index */
863 u8 index;
864
865 unsigned unknown1 : 2;
866 unsigned swizzle : 12;
867 enum mali_format format : 8;
868
869 /* Always observed to be zero at the moment */
870 unsigned unknown3 : 2;
871
872 /* When packing multiple attributes in a buffer, offset addresses by
873 * this value. Obscurely, this is signed. */
874 int32_t src_offset;
875 } __attribute__((packed));
876
877 #define FBD_MASK (~0x3f)
878
879 /* MFBD, rather than SFBD */
880 #define MALI_MFBD (0x1)
881
882 /* ORed into an MFBD address to specify the fbx section is included */
883 #define MALI_MFBD_TAG_EXTRA (0x2)
884
885 /* Uniform buffer objects are 64-bit fields divided as:
886 *
887 * u64 size : 10;
888 * mali_ptr ptr : 64 - 10;
889 *
890 * The size is actually the size minus 1 (MALI_POSITIVE), in units of 16 bytes.
891 * This gives a maximum of 2^14 bytes, which just so happens to be the GL
892 * minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
893 *
894 * The pointer is missing the bottom 2 bits and top 8 bits. The top 8 bits
895 * should be 0 for userspace pointers, according to
896 * https://lwn.net/Articles/718895/. By reusing these bits, we can make each
897 * entry in the table only 64 bits.
898 */
899
900 #define MALI_MAKE_UBO(elements, ptr) \
901 (MALI_POSITIVE((elements)) | (((ptr) >> 2) << 10))
902
903 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
904 * They also seem to be the same between Bifrost and Midgard. They're shared in
905 * fused payloads.
906 */
907
908 /* Applies to unknown_draw */
909
910 #define MALI_DRAW_INDEXED_UINT8 (0x10)
911 #define MALI_DRAW_INDEXED_UINT16 (0x20)
912 #define MALI_DRAW_INDEXED_UINT32 (0x30)
913 #define MALI_DRAW_INDEXED_SIZE (0x30)
914 #define MALI_DRAW_INDEXED_SHIFT (4)
915
916 #define MALI_DRAW_VARYING_SIZE (0x100)
917
918 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
919 * use the last vertex. This is the default in DX and VK, but not in GL. */
920
921 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
922
923 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
924
925 struct mali_vertex_tiler_prefix {
926 /* This is a dynamic bitfield containing the following things in this order:
927 *
928 * - gl_WorkGroupSize.x
929 * - gl_WorkGroupSize.y
930 * - gl_WorkGroupSize.z
931 * - gl_NumWorkGroups.x
932 * - gl_NumWorkGroups.y
933 * - gl_NumWorkGroups.z
934 *
935 * The number of bits allocated for each number is based on the *_shift
936 * fields below. For example, workgroups_y_shift gives the bit that
937 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
938 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
939 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
940 * value is one more than the stored value, since if any of the values
941 * are zero, then there would be no invocations (and hence no job). If
942 * there were 0 bits allocated to a given field, then it must be zero,
943 * and hence the real value is one.
944 *
945 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
946 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
947 * where vertex count is the number of vertices.
948 */
949 u32 invocation_count;
950
951 /* Bitfield for shifts:
952 *
953 * size_y_shift : 5
954 * size_z_shift : 5
955 * workgroups_x_shift : 6
956 * workgroups_y_shift : 6
957 * workgroups_z_shift : 6
958 * workgroups_x_shift_2 : 4
959 */
960 u32 invocation_shifts;
961
962 u32 draw_mode : 4;
963 u32 unknown_draw : 22;
964
965 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
966 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
967 * something to do with how many quads get put in the same execution
968 * engine, which is a balance (you don't want to starve the engine, but
969 * you also want to distribute work evenly).
970 */
971 u32 workgroups_x_shift_3 : 6;
972
973
974 /* Negative of min_index. This is used to compute
975 * the unbiased index in tiler/fragment shader runs.
976 *
977 * The hardware adds offset_bias_correction in each run,
978 * so that absent an index bias, the first vertex processed is
979 * genuinely the first vertex (0). But with an index bias,
980 * the first vertex process is numbered the same as the bias.
981 *
982 * To represent this more conviniently:
983 * unbiased_index = lower_bound_index +
984 * index_bias +
985 * offset_bias_correction
986 *
987 * This is done since the hardware doesn't accept a index_bias
988 * and this allows it to recover the unbiased index.
989 */
990 int32_t offset_bias_correction;
991 u32 zero1;
992
993 /* Like many other strictly nonzero quantities, index_count is
994 * subtracted by one. For an indexed cube, this is equal to 35 = 6
995 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
996 * for an indexed draw, index_count is the number of actual vertices
997 * rendered whereas invocation_count is the number of unique vertices
998 * rendered (the number of times the vertex shader must be invoked).
999 * For non-indexed draws, this is just equal to invocation_count. */
1000
1001 u32 index_count;
1002
1003 /* No hidden structure; literally just a pointer to an array of uint
1004 * indices (width depends on flags). Thanks, guys, for not making my
1005 * life insane for once! NULL for non-indexed draws. */
1006
1007 u64 indices;
1008 } __attribute__((packed));
1009
1010 /* Point size / line width can either be specified as a 32-bit float (for
1011 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
1012 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1013 * payload, the contents of varying_pointer will be intepreted as an array of
1014 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1015 * creating a special MALI_R16F varying writing to varying_pointer. */
1016
1017 union midgard_primitive_size {
1018 float constant;
1019 u64 pointer;
1020 };
1021
1022 struct bifrost_tiler_heap_meta {
1023 u32 zero;
1024 u32 heap_size;
1025 /* note: these are just guesses! */
1026 mali_ptr tiler_heap_start;
1027 mali_ptr tiler_heap_free;
1028 mali_ptr tiler_heap_end;
1029
1030 /* hierarchy weights? but they're still 0 after the job has run... */
1031 u32 zeros[10];
1032 u32 unk1;
1033 u32 unk7e007e;
1034 } __attribute__((packed));
1035
1036 struct bifrost_tiler_meta {
1037 u64 zero0;
1038 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
1039 u16 flags;
1040 u16 width;
1041 u16 height;
1042 u64 zero1;
1043 mali_ptr tiler_heap_meta;
1044 /* TODO what is this used for? */
1045 u64 zeros[20];
1046 } __attribute__((packed));
1047
1048 struct bifrost_tiler_only {
1049 /* 0x20 */
1050 union midgard_primitive_size primitive_size;
1051
1052 mali_ptr tiler_meta;
1053
1054 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1055 } __attribute__((packed));
1056
1057 struct mali_vertex_tiler_postfix {
1058 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
1059
1060 /* Both zero for non-instanced draws. For instanced draws, a
1061 * decomposition of padded_num_vertices. See the comments about the
1062 * corresponding fields in mali_attr for context. */
1063
1064 unsigned instance_shift : 5;
1065 unsigned instance_odd : 3;
1066
1067 u8 zero4;
1068
1069 /* Offset for first vertex in buffer */
1070 u32 offset_start;
1071
1072 u64 zero5;
1073
1074 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1075 * output from the vertex shader for tiler jobs.
1076 */
1077
1078 u64 position_varying;
1079
1080 /* An array of mali_uniform_buffer_meta's. The size is given by the
1081 * shader_meta.
1082 */
1083 u64 uniform_buffers;
1084
1085 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
1086 * On Midgard, this is a pointer to an array of pointers to the texture
1087 * descriptors, number of pointers bounded by number of textures. The
1088 * indirection is needed to accomodate varying numbers and sizes of
1089 * texture descriptors */
1090 u64 textures;
1091
1092 /* For OpenGL, from what I've seen, this is intimately connected to
1093 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1094 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1095 * array of sampler descriptors (which are uniform in size) */
1096 u64 sampler_descriptor;
1097
1098 u64 uniforms;
1099 u64 shader;
1100 u64 attributes; /* struct attribute_buffer[] */
1101 u64 attribute_meta; /* attribute_meta[] */
1102 u64 varyings; /* struct attr */
1103 u64 varying_meta; /* pointer */
1104 u64 viewport;
1105 u64 occlusion_counter; /* A single bit as far as I can tell */
1106
1107 /* On Bifrost, this points directly to a mali_shared_memory structure.
1108 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
1109 * tagged), which embeds a mali_shared_memory structure */
1110 mali_ptr shared_memory;
1111 } __attribute__((packed));
1112
1113 struct midgard_payload_vertex_tiler {
1114 struct mali_vertex_tiler_prefix prefix;
1115 struct mali_vertex_tiler_postfix postfix;
1116
1117 union midgard_primitive_size primitive_size;
1118 } __attribute__((packed));
1119
1120 struct bifrost_payload_vertex {
1121 struct mali_vertex_tiler_prefix prefix;
1122 struct mali_vertex_tiler_postfix postfix;
1123 } __attribute__((packed));
1124
1125 struct bifrost_payload_tiler {
1126 struct mali_vertex_tiler_prefix prefix;
1127 struct bifrost_tiler_only tiler;
1128 struct mali_vertex_tiler_postfix postfix;
1129 } __attribute__((packed));
1130
1131 struct bifrost_payload_fused {
1132 struct mali_vertex_tiler_prefix prefix;
1133 struct bifrost_tiler_only tiler;
1134 struct mali_vertex_tiler_postfix tiler_postfix;
1135 u64 padding; /* zero */
1136 struct mali_vertex_tiler_postfix vertex_postfix;
1137 } __attribute__((packed));
1138
1139 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1140 * texture is stored as (63, 63) in these fields. This adjusts for that.
1141 * There's an identical pattern in the framebuffer descriptor. Even vertex
1142 * count fields work this way, hence the generic name -- integral fields that
1143 * are strictly positive generally need this adjustment. */
1144
1145 #define MALI_POSITIVE(dim) (dim - 1)
1146
1147 /* Used with wrapping. Unclear what top bit conveys */
1148
1149 enum mali_wrap_mode {
1150 MALI_WRAP_REPEAT = 0x8 | 0x0,
1151 MALI_WRAP_CLAMP_TO_EDGE = 0x8 | 0x1,
1152 MALI_WRAP_CLAMP = 0x8 | 0x2,
1153 MALI_WRAP_CLAMP_TO_BORDER = 0x8 | 0x3,
1154 MALI_WRAP_MIRRORED_REPEAT = 0x8 | 0x4 | 0x0,
1155 MALI_WRAP_MIRRORED_CLAMP_TO_EDGE = 0x8 | 0x4 | 0x1,
1156 MALI_WRAP_MIRRORED_CLAMP = 0x8 | 0x4 | 0x2,
1157 MALI_WRAP_MIRRORED_CLAMP_TO_BORDER = 0x8 | 0x4 | 0x3,
1158 };
1159
1160 /* Shared across both command stream and Midgard, and even with Bifrost */
1161
1162 enum mali_texture_type {
1163 MALI_TEX_CUBE = 0x0,
1164 MALI_TEX_1D = 0x1,
1165 MALI_TEX_2D = 0x2,
1166 MALI_TEX_3D = 0x3
1167 };
1168
1169 /* 8192x8192 */
1170 #define MAX_MIP_LEVELS (13)
1171
1172 /* Cubemap bloats everything up */
1173 #define MAX_CUBE_FACES (6)
1174
1175 /* For each pointer, there is an address and optionally also a stride */
1176 #define MAX_ELEMENTS (2)
1177
1178 /* It's not known why there are 4-bits allocated -- this enum is almost
1179 * certainly incomplete */
1180
1181 enum mali_texture_layout {
1182 /* For a Z/S texture, this is linear */
1183 MALI_TEXTURE_TILED = 0x1,
1184
1185 /* Z/S textures cannot be tiled */
1186 MALI_TEXTURE_LINEAR = 0x2,
1187
1188 /* 16x16 sparse */
1189 MALI_TEXTURE_AFBC = 0xC
1190 };
1191
1192 /* Corresponds to the type passed to glTexImage2D and so forth */
1193
1194 struct mali_texture_format {
1195 unsigned swizzle : 12;
1196 enum mali_format format : 8;
1197
1198 unsigned srgb : 1;
1199 unsigned unknown1 : 1;
1200
1201 enum mali_texture_type type : 2;
1202 enum mali_texture_layout layout : 4;
1203
1204 /* Always set */
1205 unsigned unknown2 : 1;
1206
1207 /* Set to allow packing an explicit stride */
1208 unsigned manual_stride : 1;
1209
1210 unsigned zero : 2;
1211 } __attribute__((packed));
1212
1213 struct mali_texture_descriptor {
1214 uint16_t width;
1215 uint16_t height;
1216 uint16_t depth;
1217 uint16_t array_size;
1218
1219 struct mali_texture_format format;
1220
1221 uint16_t unknown3;
1222
1223 /* One for non-mipmapped, zero for mipmapped */
1224 uint8_t unknown3A;
1225
1226 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1227 uint8_t levels;
1228
1229 /* Swizzling is a single 32-bit word, broken up here for convenience.
1230 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1231 * level swizzling, not the internal pixel-level swizzling which is
1232 * below OpenGL's reach */
1233
1234 unsigned swizzle : 12;
1235 unsigned swizzle_zero : 20;
1236
1237 uint32_t unknown5;
1238 uint32_t unknown6;
1239 uint32_t unknown7;
1240 } __attribute__((packed));
1241
1242 /* While Midgard texture descriptors are variable length, Bifrost descriptors
1243 * are fixed like samplers with more pointers to expand if necessary */
1244
1245 struct bifrost_texture_descriptor {
1246 unsigned format_unk : 4; /* 2 */
1247 enum mali_texture_type type : 2;
1248 unsigned format_unk2 : 16; /* 0 */
1249 enum mali_format format : 8;
1250 unsigned srgb : 1;
1251 unsigned format_unk3 : 1; /* 0 */
1252
1253 uint16_t width; /* MALI_POSITIVE */
1254 uint16_t height; /* MALI_POSITIVE */
1255
1256 /* OpenGL swizzle */
1257 unsigned swizzle : 12;
1258 enum mali_texture_layout layout : 4;
1259 uint8_t levels : 8; /* Number of levels-1 if mipmapped, 0 if not */
1260 unsigned unk1 : 4;
1261
1262 unsigned levels_unk : 24; /* 0 */
1263 unsigned level_2 : 8; /* Number of levels, again? */
1264
1265 mali_ptr payload;
1266
1267 uint16_t array_size;
1268 uint16_t unk4;
1269
1270 uint16_t depth;
1271 uint16_t unk5;
1272 } __attribute__((packed));
1273
1274 /* filter_mode */
1275
1276 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1277 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1278
1279 /* TODO: What do these bits mean individually? Only seen set together */
1280
1281 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1282 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1283
1284 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1285 * sampler_t flag. For typical OpenGL textures, this is always set. */
1286
1287 #define MALI_SAMP_NORM_COORDS (1 << 5)
1288
1289 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1290 * be cleaned up a lot. */
1291
1292 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1293
1294 static inline int16_t
1295 FIXED_16(float x, bool allow_negative)
1296 {
1297 /* Clamp inputs, accounting for float error */
1298 float max_lod = (32.0 - (1.0 / 512.0));
1299 float min_lod = allow_negative ? -max_lod : 0.0;
1300
1301 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1302
1303 return (int) (x * 256.0);
1304 }
1305
1306 struct mali_sampler_descriptor {
1307 uint16_t filter_mode;
1308
1309 /* Fixed point, signed.
1310 * Upper 7 bits before the decimal point, although it caps [0-31].
1311 * Lower 8 bits after the decimal point: int(round(x * 256)) */
1312
1313 int16_t lod_bias;
1314 int16_t min_lod;
1315 int16_t max_lod;
1316
1317 /* All one word in reality, but packed a bit. Comparisons are flipped
1318 * from OpenGL. */
1319
1320 enum mali_wrap_mode wrap_s : 4;
1321 enum mali_wrap_mode wrap_t : 4;
1322 enum mali_wrap_mode wrap_r : 4;
1323 enum mali_func compare_func : 3;
1324
1325 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1326 * ES2, controlling seamless cubemapping */
1327 unsigned seamless_cube_map : 1;
1328
1329 unsigned zero : 16;
1330
1331 uint32_t zero2;
1332 float border_color[4];
1333 } __attribute__((packed));
1334
1335 /* Bifrost sampler descriptors look pretty similar */
1336
1337 #define BIFROST_SAMP_MIN_NEAREST (1)
1338 #define BIFROST_SAMP_MAG_LINEAR (1)
1339
1340 struct bifrost_sampler_descriptor {
1341 uint8_t unk1;
1342
1343 enum mali_wrap_mode wrap_s : 4;
1344 enum mali_wrap_mode wrap_t : 4;
1345 enum mali_wrap_mode wrap_r : 4;
1346 uint8_t unk8 : 4;
1347
1348 uint8_t unk2 : 3;
1349 uint8_t min_filter : 1;
1350 uint8_t norm_coords : 1;
1351 uint8_t zero1 : 1;
1352 uint8_t mip_filter : 1;
1353 uint8_t mag_filter : 1;
1354
1355 int16_t min_lod;
1356 int16_t max_lod;
1357 int8_t zero2;
1358 int8_t zero3;
1359
1360 uint32_t zero4;
1361 uint32_t zero5;
1362 } __attribute__((packed));
1363
1364 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1365 * modified by MALI_POSITIVE; viewport0 is as-is.
1366 */
1367
1368 struct mali_viewport {
1369 /* XY clipping planes */
1370 float clip_minx;
1371 float clip_miny;
1372 float clip_maxx;
1373 float clip_maxy;
1374
1375 /* Depth clipping planes */
1376 float clip_minz;
1377 float clip_maxz;
1378
1379 u16 viewport0[2];
1380 u16 viewport1[2];
1381 } __attribute__((packed));
1382
1383 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1384 * of tile numbers. */
1385
1386 #define MALI_TILE_SHIFT 4
1387 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1388
1389 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1390 * each component. Notice that this provides a theoretical upper bound of (1 <<
1391 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1392 * 65536x65536. Multiplying that together, times another four given that Mali
1393 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1394 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1395 * alone rendering in real-time to such a buffer.
1396 *
1397 * Nice job, guys.*/
1398
1399 /* From mali_kbase_10969_workaround.c */
1400 #define MALI_X_COORD_MASK 0x00000FFF
1401 #define MALI_Y_COORD_MASK 0x0FFF0000
1402
1403 /* Extract parts of a tile coordinate */
1404
1405 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1406 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1407
1408 /* Helpers to generate tile coordinates based on the boundary coordinates in
1409 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1410 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1411 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1412 * problem. */
1413
1414 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1415 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1416 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1417 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1418 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1419
1420 struct mali_payload_fragment {
1421 u32 min_tile_coord;
1422 u32 max_tile_coord;
1423 mali_ptr framebuffer;
1424 } __attribute__((packed));
1425
1426 /* Single Framebuffer Descriptor */
1427
1428 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1429 * configured for 4x. With MSAA_8, it is configured for 8x. */
1430
1431 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1432 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1433 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1434 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1435
1436 /* Fast/slow based on whether all three buffers are cleared at once */
1437
1438 #define MALI_CLEAR_FAST (1 << 18)
1439 #define MALI_CLEAR_SLOW (1 << 28)
1440 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1441
1442 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1443 * within the larget framebuffer descriptor). Analogous to
1444 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1445
1446 /* See pan_tiler.c for derivation */
1447 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1448
1449 /* Flag disabling the tiler for clear-only jobs, with
1450 hierarchical tiling */
1451 #define MALI_TILER_DISABLED (1 << 12)
1452
1453 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1454 * hierarhical tiling. */
1455 #define MALI_TILER_USER 0xFFF
1456
1457 /* Absent any geometry, the minimum size of the polygon list header */
1458 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1459
1460 struct midgard_tiler_descriptor {
1461 /* Size of the entire polygon list; see pan_tiler.c for the
1462 * computation. It's based on hierarchical tiling */
1463
1464 u32 polygon_list_size;
1465
1466 /* Name known from the replay workaround in the kernel. What exactly is
1467 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1468 * specifies a mask of hierarchy weights, which explains some of the
1469 * performance mysteries around setting it. We also see the bottom bit
1470 * of tiler_flags set in the kernel, but no comment why.
1471 *
1472 * hierarchy_mask can have the TILER_DISABLED flag */
1473
1474 u16 hierarchy_mask;
1475 u16 flags;
1476
1477 /* See mali_tiler.c for an explanation */
1478 mali_ptr polygon_list;
1479 mali_ptr polygon_list_body;
1480
1481 /* Names based on we see symmetry with replay jobs which name these
1482 * explicitly */
1483
1484 mali_ptr heap_start; /* tiler heap_free_address */
1485 mali_ptr heap_end;
1486
1487 /* Hierarchy weights. We know these are weights based on the kernel,
1488 * but I've never seen them be anything other than zero */
1489 u32 weights[8];
1490 };
1491
1492 enum mali_block_format {
1493 MALI_BLOCK_TILED = 0x0,
1494 MALI_BLOCK_UNKNOWN = 0x1,
1495 MALI_BLOCK_LINEAR = 0x2,
1496 MALI_BLOCK_AFBC = 0x3,
1497 };
1498
1499 struct mali_sfbd_format {
1500 /* 0x1 */
1501 unsigned unk1 : 6;
1502
1503 /* mali_channel_swizzle */
1504 unsigned swizzle : 12;
1505
1506 /* MALI_POSITIVE */
1507 unsigned nr_channels : 2;
1508
1509 /* 0x4 */
1510 unsigned unk2 : 6;
1511
1512 enum mali_block_format block : 2;
1513
1514 /* 0xb */
1515 unsigned unk3 : 4;
1516 };
1517
1518 /* Shared structure at the start of framebuffer descriptors, or used bare for
1519 * compute jobs, configuring stack and shared memory */
1520
1521 struct mali_shared_memory {
1522 u32 stack_shift : 4;
1523 u32 unk0 : 28;
1524
1525 /* Configuration for shared memory for compute shaders.
1526 * shared_workgroup_count is logarithmic and may be computed for a
1527 * compute shader using shared memory as:
1528 *
1529 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1530 *
1531 * For compute shaders that don't use shared memory, or non-compute
1532 * shaders, this is set to ~0
1533 */
1534
1535 u32 shared_workgroup_count : 5;
1536 u32 shared_unk1 : 3;
1537 u32 shared_shift : 4;
1538 u32 shared_zero : 20;
1539
1540 mali_ptr scratchpad;
1541
1542 /* For compute shaders, the RAM backing of workgroup-shared memory. For
1543 * fragment shaders on Bifrost, apparently multisampling locations */
1544
1545 mali_ptr shared_memory;
1546 mali_ptr unknown1;
1547 } __attribute__((packed));
1548
1549 /* Configures multisampling on Bifrost fragment jobs */
1550
1551 struct bifrost_multisampling {
1552 u64 zero1;
1553 u64 zero2;
1554 mali_ptr sample_locations;
1555 u64 zero4;
1556 } __attribute__((packed));
1557
1558 struct mali_single_framebuffer {
1559 struct mali_shared_memory shared_memory;
1560 struct mali_sfbd_format format;
1561
1562 u32 clear_flags;
1563 u32 zero2;
1564
1565 /* Purposeful off-by-one in these fields should be accounted for by the
1566 * MALI_DIMENSION macro */
1567
1568 u16 width;
1569 u16 height;
1570
1571 u32 zero3[4];
1572 mali_ptr checksum;
1573 u32 checksum_stride;
1574 u32 zero5;
1575
1576 /* By default, the framebuffer is upside down from OpenGL's
1577 * perspective. Set framebuffer to the end and negate the stride to
1578 * flip in the Y direction */
1579
1580 mali_ptr framebuffer;
1581 int32_t stride;
1582
1583 u32 zero4;
1584
1585 /* Depth and stencil buffers are interleaved, it appears, as they are
1586 * set to the same address in captures. Both fields set to zero if the
1587 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1588 * get a zero enable despite the buffer being present; that still is
1589 * disabled. */
1590
1591 mali_ptr depth_buffer; // not SAME_VA
1592 u32 depth_stride_zero : 4;
1593 u32 depth_stride : 28;
1594 u32 zero7;
1595
1596 mali_ptr stencil_buffer; // not SAME_VA
1597 u32 stencil_stride_zero : 4;
1598 u32 stencil_stride : 28;
1599 u32 zero8;
1600
1601 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1602 u32 clear_color_2; // always equal, but unclear function?
1603 u32 clear_color_3; // always equal, but unclear function?
1604 u32 clear_color_4; // always equal, but unclear function?
1605
1606 /* Set to zero if not cleared */
1607
1608 float clear_depth_1; // float32, ditto
1609 float clear_depth_2; // float32, ditto
1610 float clear_depth_3; // float32, ditto
1611 float clear_depth_4; // float32, ditto
1612
1613 u32 clear_stencil; // Exactly as it appears in OpenGL
1614
1615 u32 zero6[7];
1616
1617 struct midgard_tiler_descriptor tiler;
1618
1619 /* More below this, maybe */
1620 } __attribute__((packed));
1621
1622 /* Format bits for the render target flags */
1623
1624 #define MALI_MFBD_FORMAT_MSAA (1 << 1)
1625 #define MALI_MFBD_FORMAT_SRGB (1 << 2)
1626
1627 struct mali_rt_format {
1628 unsigned unk1 : 32;
1629 unsigned unk2 : 3;
1630
1631 unsigned nr_channels : 2; /* MALI_POSITIVE */
1632
1633 unsigned unk3 : 5;
1634 enum mali_block_format block : 2;
1635 unsigned flags : 4;
1636
1637 unsigned swizzle : 12;
1638
1639 unsigned zero : 3;
1640
1641 /* Disables MFBD preload. When this bit is set, the render target will
1642 * be cleared every frame. When this bit is clear, the hardware will
1643 * automatically wallpaper the render target back from main memory.
1644 * Unfortunately, MFBD preload is very broken on Midgard, so in
1645 * practice, this is a chicken bit that should always be set.
1646 * Discovered by accident, as all good chicken bits are. */
1647
1648 unsigned no_preload : 1;
1649 } __attribute__((packed));
1650
1651 struct mali_render_target {
1652 struct mali_rt_format format;
1653
1654 u64 zero1;
1655
1656 struct {
1657 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1658 * there is an extra metadata buffer that contains 16 bytes per tile.
1659 * The framebuffer needs to be the same size as before, since we don't
1660 * know ahead of time how much space it will take up. The
1661 * framebuffer_stride is set to 0, since the data isn't stored linearly
1662 * anymore.
1663 *
1664 * When AFBC is disabled, these fields are zero.
1665 */
1666
1667 mali_ptr metadata;
1668 u32 stride; // stride in units of tiles
1669 u32 unk; // = 0x20000
1670 } afbc;
1671
1672 mali_ptr framebuffer;
1673
1674 u32 zero2 : 4;
1675 u32 framebuffer_stride : 28; // in units of bytes
1676 u32 zero3;
1677
1678 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1679 u32 clear_color_2; // always equal, but unclear function?
1680 u32 clear_color_3; // always equal, but unclear function?
1681 u32 clear_color_4; // always equal, but unclear function?
1682 } __attribute__((packed));
1683
1684 /* An optional part of mali_framebuffer. It comes between the main structure
1685 * and the array of render targets. It must be included if any of these are
1686 * enabled:
1687 *
1688 * - Transaction Elimination
1689 * - Depth/stencil
1690 * - TODO: Anything else?
1691 */
1692
1693 /* flags_hi */
1694 #define MALI_EXTRA_PRESENT (0x10)
1695
1696 /* flags_lo */
1697 #define MALI_EXTRA_ZS (0x4)
1698
1699 struct mali_framebuffer_extra {
1700 mali_ptr checksum;
1701 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1702 u32 checksum_stride;
1703
1704 unsigned flags_lo : 4;
1705 enum mali_block_format zs_block : 2;
1706 unsigned flags_hi : 26;
1707
1708 union {
1709 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1710 struct {
1711 mali_ptr depth_stencil_afbc_metadata;
1712 u32 depth_stencil_afbc_stride; // in units of tiles
1713 u32 zero1;
1714
1715 mali_ptr depth_stencil;
1716
1717 u64 padding;
1718 } ds_afbc;
1719
1720 struct {
1721 /* Depth becomes depth/stencil in case of combined D/S */
1722 mali_ptr depth;
1723 u32 depth_stride_zero : 4;
1724 u32 depth_stride : 28;
1725 u32 zero1;
1726
1727 mali_ptr stencil;
1728 u32 stencil_stride_zero : 4;
1729 u32 stencil_stride : 28;
1730 u32 zero2;
1731 } ds_linear;
1732 };
1733
1734
1735 u32 clear_color_1;
1736 u32 clear_color_2;
1737 u64 zero3;
1738 } __attribute__((packed));
1739
1740 /* Flags for mfbd_flags */
1741
1742 /* Enables writing depth results back to main memory (rather than keeping them
1743 * on-chip in the tile buffer and then discarding) */
1744
1745 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1746
1747 /* The MFBD contains the extra mali_framebuffer_extra section */
1748
1749 #define MALI_MFBD_EXTRA (1 << 13)
1750
1751 struct mali_framebuffer {
1752 union {
1753 struct mali_shared_memory shared_memory;
1754 struct bifrost_multisampling msaa;
1755 };
1756
1757 /* 0x20 */
1758 u16 width1, height1;
1759 u32 zero3;
1760 u16 width2, height2;
1761 u32 unk1 : 19; // = 0x01000
1762 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1763 u32 unk2 : 3; // = 0
1764 u32 rt_count_2 : 3; // no off-by-one
1765 u32 zero4 : 5;
1766 /* 0x30 */
1767 u32 clear_stencil : 8;
1768 u32 mfbd_flags : 24; // = 0x100
1769 float clear_depth;
1770
1771 union {
1772 struct midgard_tiler_descriptor tiler;
1773 struct {
1774 mali_ptr tiler_meta;
1775 u32 zeros[16];
1776 };
1777 };
1778
1779 /* optional: struct mali_framebuffer_extra extra */
1780 /* struct mali_render_target rts[] */
1781 } __attribute__((packed));
1782
1783 #endif /* __PANFROST_JOB_H__ */