panfrost: Fix Z24 vs Z32 mixup
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <panfrost-misc.h>
34
35 enum mali_job_type {
36 JOB_NOT_STARTED = 0,
37 JOB_TYPE_NULL = 1,
38 JOB_TYPE_WRITE_VALUE = 2,
39 JOB_TYPE_CACHE_FLUSH = 3,
40 JOB_TYPE_COMPUTE = 4,
41 JOB_TYPE_VERTEX = 5,
42 JOB_TYPE_GEOMETRY = 6,
43 JOB_TYPE_TILER = 7,
44 JOB_TYPE_FUSED = 8,
45 JOB_TYPE_FRAGMENT = 9,
46 };
47
48 enum mali_draw_mode {
49 MALI_DRAW_NONE = 0x0,
50 MALI_POINTS = 0x1,
51 MALI_LINES = 0x2,
52 MALI_LINE_STRIP = 0x4,
53 MALI_LINE_LOOP = 0x6,
54 MALI_TRIANGLES = 0x8,
55 MALI_TRIANGLE_STRIP = 0xA,
56 MALI_TRIANGLE_FAN = 0xC,
57 MALI_POLYGON = 0xD,
58 MALI_QUADS = 0xE,
59 MALI_QUAD_STRIP = 0xF,
60
61 /* All other modes invalid */
62 };
63
64 /* Applies to tiler_gl_enables */
65
66 #define MALI_OCCLUSION_QUERY (1 << 3)
67 #define MALI_OCCLUSION_PRECISE (1 << 4)
68
69 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
70 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
71 * disagree about how to do viewport flipping, so the blob actually sets this
72 * for GL_CW but then has a negative viewport stride */
73
74 #define MALI_FRONT_CCW_TOP (1 << 5)
75
76 #define MALI_CULL_FACE_FRONT (1 << 6)
77 #define MALI_CULL_FACE_BACK (1 << 7)
78
79 /* Used in stencil and depth tests */
80
81 enum mali_func {
82 MALI_FUNC_NEVER = 0,
83 MALI_FUNC_LESS = 1,
84 MALI_FUNC_EQUAL = 2,
85 MALI_FUNC_LEQUAL = 3,
86 MALI_FUNC_GREATER = 4,
87 MALI_FUNC_NOTEQUAL = 5,
88 MALI_FUNC_GEQUAL = 6,
89 MALI_FUNC_ALWAYS = 7
90 };
91
92 /* Flags apply to unknown2_3? */
93
94 #define MALI_HAS_MSAA (1 << 0)
95 #define MALI_CAN_DISCARD (1 << 5)
96
97 /* Applies on SFBD systems, specifying that programmable blending is in use */
98 #define MALI_HAS_BLEND_SHADER (1 << 6)
99
100 /* func is mali_func */
101 #define MALI_DEPTH_FUNC(func) (func << 8)
102 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
103 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
104
105 #define MALI_DEPTH_WRITEMASK (1 << 11)
106
107 /* Next flags to unknown2_4 */
108 #define MALI_STENCIL_TEST (1 << 0)
109
110 /* What?! */
111 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
112
113 #define MALI_NO_DITHER (1 << 9)
114 #define MALI_DEPTH_RANGE_A (1 << 12)
115 #define MALI_DEPTH_RANGE_B (1 << 13)
116 #define MALI_NO_MSAA (1 << 14)
117
118 /* Stencil test state is all encoded in a single u32, just with a lot of
119 * enums... */
120
121 enum mali_stencil_op {
122 MALI_STENCIL_KEEP = 0,
123 MALI_STENCIL_REPLACE = 1,
124 MALI_STENCIL_ZERO = 2,
125 MALI_STENCIL_INVERT = 3,
126 MALI_STENCIL_INCR_WRAP = 4,
127 MALI_STENCIL_DECR_WRAP = 5,
128 MALI_STENCIL_INCR = 6,
129 MALI_STENCIL_DECR = 7
130 };
131
132 struct mali_stencil_test {
133 unsigned ref : 8;
134 unsigned mask : 8;
135 enum mali_func func : 3;
136 enum mali_stencil_op sfail : 3;
137 enum mali_stencil_op dpfail : 3;
138 enum mali_stencil_op dppass : 3;
139 unsigned zero : 4;
140 } __attribute__((packed));
141
142 #define MALI_MASK_R (1 << 0)
143 #define MALI_MASK_G (1 << 1)
144 #define MALI_MASK_B (1 << 2)
145 #define MALI_MASK_A (1 << 3)
146
147 enum mali_nondominant_mode {
148 MALI_BLEND_NON_MIRROR = 0,
149 MALI_BLEND_NON_ZERO = 1
150 };
151
152 enum mali_dominant_blend {
153 MALI_BLEND_DOM_SOURCE = 0,
154 MALI_BLEND_DOM_DESTINATION = 1
155 };
156
157 enum mali_dominant_factor {
158 MALI_DOMINANT_UNK0 = 0,
159 MALI_DOMINANT_ZERO = 1,
160 MALI_DOMINANT_SRC_COLOR = 2,
161 MALI_DOMINANT_DST_COLOR = 3,
162 MALI_DOMINANT_UNK4 = 4,
163 MALI_DOMINANT_SRC_ALPHA = 5,
164 MALI_DOMINANT_DST_ALPHA = 6,
165 MALI_DOMINANT_CONSTANT = 7,
166 };
167
168 enum mali_blend_modifier {
169 MALI_BLEND_MOD_UNK0 = 0,
170 MALI_BLEND_MOD_NORMAL = 1,
171 MALI_BLEND_MOD_SOURCE_ONE = 2,
172 MALI_BLEND_MOD_DEST_ONE = 3,
173 };
174
175 struct mali_blend_mode {
176 enum mali_blend_modifier clip_modifier : 2;
177 unsigned unused_0 : 1;
178 unsigned negate_source : 1;
179
180 enum mali_dominant_blend dominant : 1;
181
182 enum mali_nondominant_mode nondominant_mode : 1;
183
184 unsigned unused_1 : 1;
185
186 unsigned negate_dest : 1;
187
188 enum mali_dominant_factor dominant_factor : 3;
189 unsigned complement_dominant : 1;
190 } __attribute__((packed));
191
192 struct mali_blend_equation {
193 /* Of type mali_blend_mode */
194 unsigned rgb_mode : 12;
195 unsigned alpha_mode : 12;
196
197 unsigned zero1 : 4;
198
199 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
200
201 unsigned color_mask : 4;
202 } __attribute__((packed));
203
204 /* Used with channel swizzling */
205 enum mali_channel {
206 MALI_CHANNEL_RED = 0,
207 MALI_CHANNEL_GREEN = 1,
208 MALI_CHANNEL_BLUE = 2,
209 MALI_CHANNEL_ALPHA = 3,
210 MALI_CHANNEL_ZERO = 4,
211 MALI_CHANNEL_ONE = 5,
212 MALI_CHANNEL_RESERVED_0 = 6,
213 MALI_CHANNEL_RESERVED_1 = 7,
214 };
215
216 struct mali_channel_swizzle {
217 enum mali_channel r : 3;
218 enum mali_channel g : 3;
219 enum mali_channel b : 3;
220 enum mali_channel a : 3;
221 } __attribute__((packed));
222
223 /* Compressed per-pixel formats. Each of these formats expands to one to four
224 * floating-point or integer numbers, as defined by the OpenGL specification.
225 * There are various places in OpenGL where the user can specify a compressed
226 * format in memory, which all use the same 8-bit enum in the various
227 * descriptors, although different hardware units support different formats.
228 */
229
230 /* The top 3 bits specify how the bits of each component are interpreted. */
231
232 /* e.g. ETC2_RGB8 */
233 #define MALI_FORMAT_COMPRESSED (0 << 5)
234
235 /* e.g. R11F_G11F_B10F */
236 #define MALI_FORMAT_SPECIAL (2 << 5)
237
238 /* signed normalized, e.g. RGBA8_SNORM */
239 #define MALI_FORMAT_SNORM (3 << 5)
240
241 /* e.g. RGBA8UI */
242 #define MALI_FORMAT_UINT (4 << 5)
243
244 /* e.g. RGBA8 and RGBA32F */
245 #define MALI_FORMAT_UNORM (5 << 5)
246
247 /* e.g. RGBA8I and RGBA16F */
248 #define MALI_FORMAT_SINT (6 << 5)
249
250 /* These formats seem to largely duplicate the others. They're used at least
251 * for Bifrost framebuffer output.
252 */
253 #define MALI_FORMAT_SPECIAL2 (7 << 5)
254
255 /* If the high 3 bits are 3 to 6 these two bits say how many components
256 * there are.
257 */
258 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
259
260 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
261 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
262 * bits mean.
263 */
264
265 #define MALI_CHANNEL_4 2
266
267 #define MALI_CHANNEL_8 3
268
269 #define MALI_CHANNEL_16 4
270
271 #define MALI_CHANNEL_32 5
272
273 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
274 * MALI_FORMAT_UNORM, it means a 32-bit float.
275 */
276 #define MALI_CHANNEL_FLOAT 7
277
278 enum mali_format {
279 MALI_ETC2_RGB8 = MALI_FORMAT_COMPRESSED | 0x1,
280 MALI_ETC2_R11_UNORM = MALI_FORMAT_COMPRESSED | 0x2,
281 MALI_ETC2_RGBA8 = MALI_FORMAT_COMPRESSED | 0x3,
282 MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
283 MALI_ETC2_R11_SNORM = MALI_FORMAT_COMPRESSED | 0x11,
284 MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12,
285 MALI_ETC2_RGB8A1 = MALI_FORMAT_COMPRESSED | 0x13,
286 MALI_ASTC_SRGB_SUPP = MALI_FORMAT_COMPRESSED | 0x16,
287 MALI_ASTC_HDR_SUPP = MALI_FORMAT_COMPRESSED | 0x17,
288
289 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
290 MALI_RGB5_X1_UNORM = MALI_FORMAT_SPECIAL | 0x1,
291 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
292 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
293 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
294 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
295 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
296
297 MALI_RGB332_UNORM = MALI_FORMAT_SPECIAL | 0xb,
298 MALI_RGB233_UNORM = MALI_FORMAT_SPECIAL | 0xc,
299
300 MALI_Z24X8_UNORM = MALI_FORMAT_SPECIAL | 0xd,
301 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
302 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
303 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
304 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
305 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
306 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
307 /* Only used for varyings, to indicate the transformed gl_Position */
308 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
309 /* Only used for varyings, to indicate that the write should be
310 * discarded.
311 */
312 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
313
314 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
315 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
316 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
317 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
318 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
319 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
320 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
321 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
322 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
323 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
324 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
325 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
326
327 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
328 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
329 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
330 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
331 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
332 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
333 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
334 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
335 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
336 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
337 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
338 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
339
340 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
341 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
342 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
343 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
344 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
345 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
346 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
347 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
348 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
349 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
350 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
351 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
352 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
353 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
354 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
355 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
356 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
357
358 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
359 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
360 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
361 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
362 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
363 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
364 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
365 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
366 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
367 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
368 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
369 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
370 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
371 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
372 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
373 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
374
375 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
376 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
377 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
378 };
379
380
381 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
382 * literally performing a bitwise invert. This function produces slightly wrong
383 * results and I'm not sure why; some rounding issue I suppose... */
384
385 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
386 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
387
388 /* Applies to midgard1.flags_lo */
389
390 /* Should be set when the fragment shader updates the depth value. */
391 #define MALI_WRITES_Z (1 << 4)
392
393 /* Should the hardware perform early-Z testing? Normally should be set
394 * for performance reasons. Clear if you use: discard,
395 * alpha-to-coverage... * It's also possible this disables
396 * forward-pixel kill; we're not quite sure which bit is which yet.
397 * TODO: How does this interact with blending?*/
398
399 #define MALI_EARLY_Z (1 << 6)
400
401 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
402 * fragment shader that uses texturing or derivative functions */
403
404 #define MALI_HELPER_INVOCATIONS (1 << 7)
405
406 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
407 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
408 * it might read depth/stencil in particular, also set MALI_READS_ZS */
409
410 #define MALI_READS_ZS (1 << 8)
411 #define MALI_READS_TILEBUFFER (1 << 12)
412
413 /* Applies to midgard1.flags_hi */
414
415 /* Should be set when the fragment shader updates the stencil value. */
416 #define MALI_WRITES_S (1 << 2)
417
418 /* The raw Midgard blend payload can either be an equation or a shader
419 * address, depending on the context */
420
421 union midgard_blend {
422 mali_ptr shader;
423
424 struct {
425 struct mali_blend_equation equation;
426 float constant;
427 };
428 };
429
430 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
431 * ZERO) */
432
433 #define MALI_BLEND_LOAD_TIB (0x1)
434
435 /* A blend shader is used to blend this render target */
436 #define MALI_BLEND_MRT_SHADER (0x2)
437
438 /* On MRT Midgard systems (using an MFBD), each render target gets its own
439 * blend descriptor */
440
441 #define MALI_BLEND_SRGB (0x400)
442
443 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
444 #define MALI_BLEND_NO_DITHER (0x800)
445
446 struct midgard_blend_rt {
447 /* Flags base value of 0x200 to enable the render target.
448 * OR with 0x1 for blending (anything other than REPLACE).
449 * OR with 0x2 for programmable blending
450 * OR with MALI_BLEND_SRGB for implicit sRGB
451 */
452
453 u64 flags;
454 union midgard_blend blend;
455 } __attribute__((packed));
456
457 /* On Bifrost systems (all MRT), each render target gets one of these
458 * descriptors */
459
460 enum bifrost_shader_type {
461 BIFROST_BLEND_F16 = 0,
462 BIFROST_BLEND_F32 = 1,
463 BIFROST_BLEND_I32 = 2,
464 BIFROST_BLEND_U32 = 3,
465 BIFROST_BLEND_I16 = 4,
466 BIFROST_BLEND_U16 = 5,
467 };
468
469 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
470
471 struct bifrost_blend_rt {
472 /* This is likely an analogue of the flags on
473 * midgard_blend_rt */
474
475 u16 flags; // = 0x200
476
477 /* Single-channel blend constants are encoded in a sort of
478 * fixed-point. Basically, the float is mapped to a byte, becoming
479 * a high byte, and then the lower-byte is added for precision.
480 * For the original float f:
481 *
482 * f = (constant_hi / 255) + (constant_lo / 65535)
483 *
484 * constant_hi = int(f / 255)
485 * constant_lo = 65535*f - (65535/255) * constant_hi
486 */
487 u16 constant;
488
489 struct mali_blend_equation equation;
490
491 /*
492 * - 0x19 normally
493 * - 0x3 when this slot is unused (everything else is 0 except the index)
494 * - 0x11 when this is the fourth slot (and it's used)
495 * - 0 when there is a blend shader
496 */
497 u16 unk2;
498
499 /* increments from 0 to 3 */
500 u16 index;
501
502 union {
503 struct {
504 /* So far, I've only seen:
505 * - R001 for 1-component formats
506 * - RG01 for 2-component formats
507 * - RGB1 for 3-component formats
508 * - RGBA for 4-component formats
509 */
510 u32 swizzle : 12;
511 enum mali_format format : 8;
512
513 /* Type of the shader output variable. Note, this can
514 * be different from the format.
515 * enum bifrost_shader_type
516 */
517 u32 zero1 : 4;
518 u32 shader_type : 3;
519 u32 zero2 : 5;
520 };
521
522 /* Only the low 32 bits of the blend shader are stored, the
523 * high 32 bits are implicitly the same as the original shader.
524 * According to the kernel driver, the program counter for
525 * shaders is actually only 24 bits, so shaders cannot cross
526 * the 2^24-byte boundary, and neither can the blend shader.
527 * The blob handles this by allocating a 2^24 byte pool for
528 * shaders, and making sure that any blend shaders are stored
529 * in the same pool as the original shader. The kernel will
530 * make sure this allocation is aligned to 2^24 bytes.
531 */
532 u32 shader;
533 };
534 } __attribute__((packed));
535
536 /* Descriptor for the shader. Following this is at least one, up to four blend
537 * descriptors for each active render target */
538
539 struct mali_shader_meta {
540 mali_ptr shader;
541 u16 sampler_count;
542 u16 texture_count;
543 u16 attribute_count;
544 u16 varying_count;
545
546 union {
547 struct {
548 u32 uniform_buffer_count : 4;
549 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
550 } bifrost1;
551 struct {
552 unsigned uniform_buffer_count : 4;
553 unsigned flags_lo : 12;
554
555 /* vec4 units */
556 unsigned work_count : 5;
557 unsigned uniform_count : 5;
558 unsigned flags_hi : 6;
559 } midgard1;
560 };
561
562 /* Same as glPolygoOffset() arguments */
563 float depth_units;
564 float depth_factor;
565
566 u32 unknown2_2;
567
568 u16 alpha_coverage;
569 u16 unknown2_3;
570
571 u8 stencil_mask_front;
572 u8 stencil_mask_back;
573 u16 unknown2_4;
574
575 struct mali_stencil_test stencil_front;
576 struct mali_stencil_test stencil_back;
577
578 union {
579 struct {
580 u32 unk3 : 7;
581 /* On Bifrost, some system values are preloaded in
582 * registers R55-R62 by the thread dispatcher prior to
583 * the start of shader execution. This is a bitfield
584 * with one entry for each register saying which
585 * registers need to be preloaded. Right now, the known
586 * values are:
587 *
588 * Vertex/compute:
589 * - R55 : gl_LocalInvocationID.xy
590 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
591 * - R57 : gl_WorkGroupID.x
592 * - R58 : gl_WorkGroupID.y
593 * - R59 : gl_WorkGroupID.z
594 * - R60 : gl_GlobalInvocationID.x
595 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
596 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
597 *
598 * Fragment:
599 * - R55 : unknown, never seen (but the bit for this is
600 * always set?)
601 * - R56 : unknown (bit always unset)
602 * - R57 : gl_PrimitiveID
603 * - R58 : gl_FrontFacing in low bit, potentially other stuff
604 * - R59 : u16 fragment coordinates (used to compute
605 * gl_FragCoord.xy, together with sample positions)
606 * - R60 : gl_SampleMask (used in epilog, so pretty
607 * much always used, but the bit is always 0 -- is
608 * this just always pushed?)
609 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
610 * varying interpolation.
611 * - R62 : unknown (bit always unset).
612 *
613 * Later GPUs (starting with Mali-G52?) support
614 * preloading float varyings into r0-r7. This is
615 * indicated by setting 0x40. There is no distinction
616 * here between 1 varying and 2.
617 */
618 u32 preload_regs : 8;
619 /* In units of 8 bytes or 64 bits, since the
620 * uniform/const port loads 64 bits at a time.
621 */
622 u32 uniform_count : 7;
623 u32 unk4 : 10; // = 2
624 } bifrost2;
625 struct {
626 u32 unknown2_7;
627 } midgard2;
628 };
629
630 u32 padding;
631
632 /* Blending information for the older non-MRT Midgard HW. Check for
633 * MALI_HAS_BLEND_SHADER to decide how to interpret.
634 */
635
636 union midgard_blend blend;
637 } __attribute__((packed));
638
639 /* This only concerns hardware jobs */
640
641 /* Possible values for job_descriptor_size */
642
643 #define MALI_JOB_32 0
644 #define MALI_JOB_64 1
645
646 struct mali_job_descriptor_header {
647 u32 exception_status;
648 u32 first_incomplete_task;
649 u64 fault_pointer;
650 u8 job_descriptor_size : 1;
651 enum mali_job_type job_type : 7;
652 u8 job_barrier : 1;
653 u8 unknown_flags : 7;
654 u16 job_index;
655 u16 job_dependency_index_1;
656 u16 job_dependency_index_2;
657 u64 next_job;
658 } __attribute__((packed));
659
660 /* These concern exception_status */
661
662 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
663 * kernel */
664
665 enum mali_exception_access {
666 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
667 * fault so it's just unused */
668 MALI_EXCEPTION_ACCESS_NONE = 0,
669
670 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
671 MALI_EXCEPTION_ACCESS_READ = 2,
672 MALI_EXCEPTION_ACCESS_WRITE = 3
673 };
674
675 /* Details about write_value from panfrost igt tests which use it as a generic
676 * dword write primitive */
677
678 #define MALI_WRITE_VALUE_ZERO 3
679
680 struct mali_payload_write_value {
681 u64 address;
682 u32 value_descriptor;
683 u32 reserved;
684 u64 immediate;
685 } __attribute__((packed));
686
687 /*
688 * Mali Attributes
689 *
690 * This structure lets the attribute unit compute the address of an attribute
691 * given the vertex and instance ID. Unfortunately, the way this works is
692 * rather complicated when instancing is enabled.
693 *
694 * To explain this, first we need to explain how compute and vertex threads are
695 * dispatched. This is a guess (although a pretty firm guess!) since the
696 * details are mostly hidden from the driver, except for attribute instancing.
697 * When a quad is dispatched, it receives a single, linear index. However, we
698 * need to translate that index into a (vertex id, instance id) pair, or a
699 * (local id x, local id y, local id z) triple for compute shaders (although
700 * vertex shaders and compute shaders are handled almost identically).
701 * Focusing on vertex shaders, one option would be to do:
702 *
703 * vertex_id = linear_id % num_vertices
704 * instance_id = linear_id / num_vertices
705 *
706 * but this involves a costly division and modulus by an arbitrary number.
707 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
708 * num_instances threads instead of num_vertices * num_instances, which results
709 * in some "extra" threads with vertex_id >= num_vertices, which we have to
710 * discard. The more we pad num_vertices, the more "wasted" threads we
711 * dispatch, but the division is potentially easier.
712 *
713 * One straightforward choice is to pad num_vertices to the next power of two,
714 * which means that the division and modulus are just simple bit shifts and
715 * masking. But the actual algorithm is a bit more complicated. The thread
716 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
717 * to dividing by a power of two. This is possibly using the technique
718 * described in patent US20170010862A1. As a result, padded_num_vertices can be
719 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
720 * since we need less padding.
721 *
722 * padded_num_vertices is picked by the hardware. The driver just specifies the
723 * actual number of vertices. At least for Mali G71, the first few cases are
724 * given by:
725 *
726 * num_vertices | padded_num_vertices
727 * 3 | 4
728 * 4-7 | 8
729 * 8-11 | 12 (3 * 4)
730 * 12-15 | 16
731 * 16-19 | 20 (5 * 4)
732 *
733 * Note that padded_num_vertices is a multiple of four (presumably because
734 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
735 * at least one more than num_vertices, which seems like a quirk of the
736 * hardware. For larger num_vertices, the hardware uses the following
737 * algorithm: using the binary representation of num_vertices, we look at the
738 * most significant set bit as well as the following 3 bits. Let n be the
739 * number of bits after those 4 bits. Then we set padded_num_vertices according
740 * to the following table:
741 *
742 * high bits | padded_num_vertices
743 * 1000 | 9 * 2^n
744 * 1001 | 5 * 2^(n+1)
745 * 101x | 3 * 2^(n+2)
746 * 110x | 7 * 2^(n+1)
747 * 111x | 2^(n+4)
748 *
749 * For example, if num_vertices = 70 is passed to glDraw(), its binary
750 * representation is 1000110, so n = 3 and the high bits are 1000, and
751 * therefore padded_num_vertices = 9 * 2^3 = 72.
752 *
753 * The attribute unit works in terms of the original linear_id. if
754 * num_instances = 1, then they are the same, and everything is simple.
755 * However, with instancing things get more complicated. There are four
756 * possible modes, two of them we can group together:
757 *
758 * 1. Use the linear_id directly. Only used when there is no instancing.
759 *
760 * 2. Use the linear_id modulo a constant. This is used for per-vertex
761 * attributes with instancing enabled by making the constant equal
762 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
763 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
764 * The shift field specifies the power of two, while the extra_flags field
765 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
766 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
767 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
768 * shift = 3. Note that we must exactly follow the hardware algorithm used to
769 * get padded_num_vertices in order to correctly implement per-vertex
770 * attributes.
771 *
772 * 3. Divide the linear_id by a constant. In order to correctly implement
773 * instance divisors, we have to divide linear_id by padded_num_vertices times
774 * to user-specified divisor. So first we compute padded_num_vertices, again
775 * following the exact same algorithm that the hardware uses, then multiply it
776 * by the GL-level divisor to get the hardware-level divisor. This case is
777 * further divided into two more cases. If the hardware-level divisor is a
778 * power of two, then we just need to shift. The shift amount is specified by
779 * the shift field, so that the hardware-level divisor is just 2^shift.
780 *
781 * If it isn't a power of two, then we have to divide by an arbitrary integer.
782 * For that, we use the well-known technique of multiplying by an approximation
783 * of the inverse. The driver must compute the magic multiplier and shift
784 * amount, and then the hardware does the multiplication and shift. The
785 * hardware and driver also use the "round-down" optimization as described in
786 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
787 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
788 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
789 * presumably this simplifies the hardware multiplier a little. The hardware
790 * first multiplies linear_id by the multiplier and takes the high 32 bits,
791 * then applies the round-down correction if extra_flags = 1, then finally
792 * shifts right by the shift field.
793 *
794 * There are some differences between ridiculousfish's algorithm and the Mali
795 * hardware algorithm, which means that the reference code from ridiculousfish
796 * doesn't always produce the right constants. Mali does not use the pre-shift
797 * optimization, since that would make a hardware implementation slower (it
798 * would have to always do the pre-shift, multiply, and post-shift operations).
799 * It also forces the multplier to be at least 2^31, which means that the
800 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
801 * given the divisor d, the algorithm the driver must follow is:
802 *
803 * 1. Set shift = floor(log2(d)).
804 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
805 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
806 * magic_divisor = m - 1 and extra_flags = 1.
807 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
808 *
809 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
810 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
811 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
812 * (*NOT the row stride*). Size is set to the size of the image itself.
813 *
814 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
815 * use particular fixed addresses with modified structures.
816 */
817
818 enum mali_attr_mode {
819 MALI_ATTR_UNUSED = 0,
820 MALI_ATTR_LINEAR = 1,
821 MALI_ATTR_POT_DIVIDE = 2,
822 MALI_ATTR_MODULO = 3,
823 MALI_ATTR_NPOT_DIVIDE = 4,
824 MALI_ATTR_IMAGE = 5,
825 };
826
827 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
828
829 #define MALI_ATTR_VERTEXID (0x22)
830 #define MALI_ATTR_INSTANCEID (0x24)
831 #define MALI_VARYING_FRAG_COORD (0x25)
832 #define MALI_VARYING_FRONT_FACING (0x26)
833
834 /* This magic "pseudo-address" is used as `elements` to implement
835 * gl_PointCoord. When read from a fragment shader, it generates a point
836 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
837 * require an affine transformation in the shader. */
838
839 #define MALI_VARYING_POINT_COORD (0x61)
840
841 /* Used for comparison to check if an address is special. Mostly a guess, but
842 * it doesn't really matter. */
843
844 #define MALI_RECORD_SPECIAL (0x100)
845
846 union mali_attr {
847 /* This is used for actual attributes. */
848 struct {
849 /* The bottom 3 bits are the mode */
850 mali_ptr elements : 64 - 8;
851 u32 shift : 5;
852 u32 extra_flags : 3;
853 u32 stride;
854 u32 size;
855 };
856 /* The entry after an NPOT_DIVIDE entry has this format. It stores
857 * extra information that wouldn't fit in a normal entry.
858 */
859 struct {
860 u32 unk; /* = 0x20 */
861 u32 magic_divisor;
862 u32 zero;
863 /* This is the original, GL-level divisor. */
864 u32 divisor;
865 };
866 } __attribute__((packed));
867
868 struct mali_attr_meta {
869 /* Vertex buffer index */
870 u8 index;
871
872 unsigned unknown1 : 2;
873 unsigned swizzle : 12;
874 enum mali_format format : 8;
875
876 /* Always observed to be zero at the moment */
877 unsigned unknown3 : 2;
878
879 /* When packing multiple attributes in a buffer, offset addresses by
880 * this value. Obscurely, this is signed. */
881 int32_t src_offset;
882 } __attribute__((packed));
883
884 #define FBD_MASK (~0x3f)
885
886 /* MFBD, rather than SFBD */
887 #define MALI_MFBD (0x1)
888
889 /* ORed into an MFBD address to specify the fbx section is included */
890 #define MALI_MFBD_TAG_EXTRA (0x2)
891
892 /* Uniform buffer objects are 64-bit fields divided as:
893 *
894 * u64 size : 10;
895 * mali_ptr ptr : 64 - 10;
896 *
897 * The size is actually the size minus 1 (MALI_POSITIVE), in units of 16 bytes.
898 * This gives a maximum of 2^14 bytes, which just so happens to be the GL
899 * minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
900 *
901 * The pointer is missing the bottom 2 bits and top 8 bits. The top 8 bits
902 * should be 0 for userspace pointers, according to
903 * https://lwn.net/Articles/718895/. By reusing these bits, we can make each
904 * entry in the table only 64 bits.
905 */
906
907 #define MALI_MAKE_UBO(elements, ptr) \
908 (MALI_POSITIVE((elements)) | (((ptr) >> 2) << 10))
909
910 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
911 * They also seem to be the same between Bifrost and Midgard. They're shared in
912 * fused payloads.
913 */
914
915 /* Applies to unknown_draw */
916
917 #define MALI_DRAW_INDEXED_UINT8 (0x10)
918 #define MALI_DRAW_INDEXED_UINT16 (0x20)
919 #define MALI_DRAW_INDEXED_UINT32 (0x30)
920 #define MALI_DRAW_INDEXED_SIZE (0x30)
921 #define MALI_DRAW_INDEXED_SHIFT (4)
922
923 #define MALI_DRAW_VARYING_SIZE (0x100)
924
925 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
926 * use the last vertex. This is the default in DX and VK, but not in GL. */
927
928 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
929
930 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
931
932 struct mali_vertex_tiler_prefix {
933 /* This is a dynamic bitfield containing the following things in this order:
934 *
935 * - gl_WorkGroupSize.x
936 * - gl_WorkGroupSize.y
937 * - gl_WorkGroupSize.z
938 * - gl_NumWorkGroups.x
939 * - gl_NumWorkGroups.y
940 * - gl_NumWorkGroups.z
941 *
942 * The number of bits allocated for each number is based on the *_shift
943 * fields below. For example, workgroups_y_shift gives the bit that
944 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
945 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
946 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
947 * value is one more than the stored value, since if any of the values
948 * are zero, then there would be no invocations (and hence no job). If
949 * there were 0 bits allocated to a given field, then it must be zero,
950 * and hence the real value is one.
951 *
952 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
953 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
954 * where vertex count is the number of vertices.
955 */
956 u32 invocation_count;
957
958 /* Bitfield for shifts:
959 *
960 * size_y_shift : 5
961 * size_z_shift : 5
962 * workgroups_x_shift : 6
963 * workgroups_y_shift : 6
964 * workgroups_z_shift : 6
965 * workgroups_x_shift_2 : 4
966 */
967 u32 invocation_shifts;
968
969 u32 draw_mode : 4;
970 u32 unknown_draw : 22;
971
972 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
973 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
974 * something to do with how many quads get put in the same execution
975 * engine, which is a balance (you don't want to starve the engine, but
976 * you also want to distribute work evenly).
977 */
978 u32 workgroups_x_shift_3 : 6;
979
980
981 /* Negative of min_index. This is used to compute
982 * the unbiased index in tiler/fragment shader runs.
983 *
984 * The hardware adds offset_bias_correction in each run,
985 * so that absent an index bias, the first vertex processed is
986 * genuinely the first vertex (0). But with an index bias,
987 * the first vertex process is numbered the same as the bias.
988 *
989 * To represent this more conviniently:
990 * unbiased_index = lower_bound_index +
991 * index_bias +
992 * offset_bias_correction
993 *
994 * This is done since the hardware doesn't accept a index_bias
995 * and this allows it to recover the unbiased index.
996 */
997 int32_t offset_bias_correction;
998 u32 zero1;
999
1000 /* Like many other strictly nonzero quantities, index_count is
1001 * subtracted by one. For an indexed cube, this is equal to 35 = 6
1002 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
1003 * for an indexed draw, index_count is the number of actual vertices
1004 * rendered whereas invocation_count is the number of unique vertices
1005 * rendered (the number of times the vertex shader must be invoked).
1006 * For non-indexed draws, this is just equal to invocation_count. */
1007
1008 u32 index_count;
1009
1010 /* No hidden structure; literally just a pointer to an array of uint
1011 * indices (width depends on flags). Thanks, guys, for not making my
1012 * life insane for once! NULL for non-indexed draws. */
1013
1014 u64 indices;
1015 } __attribute__((packed));
1016
1017 /* Point size / line width can either be specified as a 32-bit float (for
1018 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
1019 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1020 * payload, the contents of varying_pointer will be intepreted as an array of
1021 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1022 * creating a special MALI_R16F varying writing to varying_pointer. */
1023
1024 union midgard_primitive_size {
1025 float constant;
1026 u64 pointer;
1027 };
1028
1029 struct bifrost_tiler_heap_meta {
1030 u32 zero;
1031 u32 heap_size;
1032 /* note: these are just guesses! */
1033 mali_ptr tiler_heap_start;
1034 mali_ptr tiler_heap_free;
1035 mali_ptr tiler_heap_end;
1036
1037 /* hierarchy weights? but they're still 0 after the job has run... */
1038 u32 zeros[10];
1039 u32 unk1;
1040 u32 unk7e007e;
1041 } __attribute__((packed));
1042
1043 struct bifrost_tiler_meta {
1044 u32 tiler_heap_next_start; /* To be written by the GPU */
1045 u32 used_hierarchy_mask; /* To be written by the GPU */
1046 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
1047 u16 flags;
1048 u16 width;
1049 u16 height;
1050 u64 zero0;
1051 mali_ptr tiler_heap_meta;
1052 /* TODO what is this used for? */
1053 u64 zeros[20];
1054 } __attribute__((packed));
1055
1056 struct bifrost_tiler_only {
1057 /* 0x20 */
1058 union midgard_primitive_size primitive_size;
1059
1060 mali_ptr tiler_meta;
1061
1062 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1063 } __attribute__((packed));
1064
1065 struct mali_vertex_tiler_postfix {
1066 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
1067
1068 /* Both zero for non-instanced draws. For instanced draws, a
1069 * decomposition of padded_num_vertices. See the comments about the
1070 * corresponding fields in mali_attr for context. */
1071
1072 unsigned instance_shift : 5;
1073 unsigned instance_odd : 3;
1074
1075 u8 zero4;
1076
1077 /* Offset for first vertex in buffer */
1078 u32 offset_start;
1079
1080 u64 zero5;
1081
1082 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1083 * output from the vertex shader for tiler jobs.
1084 */
1085
1086 u64 position_varying;
1087
1088 /* An array of mali_uniform_buffer_meta's. The size is given by the
1089 * shader_meta.
1090 */
1091 u64 uniform_buffers;
1092
1093 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
1094 * On Midgard, this is a pointer to an array of pointers to the texture
1095 * descriptors, number of pointers bounded by number of textures. The
1096 * indirection is needed to accomodate varying numbers and sizes of
1097 * texture descriptors */
1098 u64 textures;
1099
1100 /* For OpenGL, from what I've seen, this is intimately connected to
1101 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1102 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1103 * array of sampler descriptors (which are uniform in size) */
1104 u64 sampler_descriptor;
1105
1106 u64 uniforms;
1107 u64 shader;
1108 u64 attributes; /* struct attribute_buffer[] */
1109 u64 attribute_meta; /* attribute_meta[] */
1110 u64 varyings; /* struct attr */
1111 u64 varying_meta; /* pointer */
1112 u64 viewport;
1113 u64 occlusion_counter; /* A single bit as far as I can tell */
1114
1115 /* On Bifrost, this points directly to a mali_shared_memory structure.
1116 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
1117 * tagged), which embeds a mali_shared_memory structure */
1118 mali_ptr shared_memory;
1119 } __attribute__((packed));
1120
1121 struct midgard_payload_vertex_tiler {
1122 struct mali_vertex_tiler_prefix prefix;
1123 struct mali_vertex_tiler_postfix postfix;
1124
1125 union midgard_primitive_size primitive_size;
1126 } __attribute__((packed));
1127
1128 struct bifrost_payload_vertex {
1129 struct mali_vertex_tiler_prefix prefix;
1130 struct mali_vertex_tiler_postfix postfix;
1131 } __attribute__((packed));
1132
1133 struct bifrost_payload_tiler {
1134 struct mali_vertex_tiler_prefix prefix;
1135 struct bifrost_tiler_only tiler;
1136 struct mali_vertex_tiler_postfix postfix;
1137 } __attribute__((packed));
1138
1139 struct bifrost_payload_fused {
1140 struct mali_vertex_tiler_prefix prefix;
1141 struct bifrost_tiler_only tiler;
1142 struct mali_vertex_tiler_postfix tiler_postfix;
1143 u64 padding; /* zero */
1144 struct mali_vertex_tiler_postfix vertex_postfix;
1145 } __attribute__((packed));
1146
1147 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1148 * texture is stored as (63, 63) in these fields. This adjusts for that.
1149 * There's an identical pattern in the framebuffer descriptor. Even vertex
1150 * count fields work this way, hence the generic name -- integral fields that
1151 * are strictly positive generally need this adjustment. */
1152
1153 #define MALI_POSITIVE(dim) (dim - 1)
1154
1155 /* Used with wrapping. Unclear what top bit conveys */
1156
1157 enum mali_wrap_mode {
1158 MALI_WRAP_REPEAT = 0x8 | 0x0,
1159 MALI_WRAP_CLAMP_TO_EDGE = 0x8 | 0x1,
1160 MALI_WRAP_CLAMP = 0x8 | 0x2,
1161 MALI_WRAP_CLAMP_TO_BORDER = 0x8 | 0x3,
1162 MALI_WRAP_MIRRORED_REPEAT = 0x8 | 0x4 | 0x0,
1163 MALI_WRAP_MIRRORED_CLAMP_TO_EDGE = 0x8 | 0x4 | 0x1,
1164 MALI_WRAP_MIRRORED_CLAMP = 0x8 | 0x4 | 0x2,
1165 MALI_WRAP_MIRRORED_CLAMP_TO_BORDER = 0x8 | 0x4 | 0x3,
1166 };
1167
1168 /* Shared across both command stream and Midgard, and even with Bifrost */
1169
1170 enum mali_texture_type {
1171 MALI_TEX_CUBE = 0x0,
1172 MALI_TEX_1D = 0x1,
1173 MALI_TEX_2D = 0x2,
1174 MALI_TEX_3D = 0x3
1175 };
1176
1177 /* 8192x8192 */
1178 #define MAX_MIP_LEVELS (13)
1179
1180 /* Cubemap bloats everything up */
1181 #define MAX_CUBE_FACES (6)
1182
1183 /* For each pointer, there is an address and optionally also a stride */
1184 #define MAX_ELEMENTS (2)
1185
1186 /* It's not known why there are 4-bits allocated -- this enum is almost
1187 * certainly incomplete */
1188
1189 enum mali_texture_layout {
1190 /* For a Z/S texture, this is linear */
1191 MALI_TEXTURE_TILED = 0x1,
1192
1193 /* Z/S textures cannot be tiled */
1194 MALI_TEXTURE_LINEAR = 0x2,
1195
1196 /* 16x16 sparse */
1197 MALI_TEXTURE_AFBC = 0xC
1198 };
1199
1200 /* Corresponds to the type passed to glTexImage2D and so forth */
1201
1202 struct mali_texture_format {
1203 unsigned swizzle : 12;
1204 enum mali_format format : 8;
1205
1206 unsigned srgb : 1;
1207 unsigned unknown1 : 1;
1208
1209 enum mali_texture_type type : 2;
1210 enum mali_texture_layout layout : 4;
1211
1212 /* Always set */
1213 unsigned unknown2 : 1;
1214
1215 /* Set to allow packing an explicit stride */
1216 unsigned manual_stride : 1;
1217
1218 unsigned zero : 2;
1219 } __attribute__((packed));
1220
1221 struct mali_texture_descriptor {
1222 uint16_t width;
1223 uint16_t height;
1224 uint16_t depth;
1225 uint16_t array_size;
1226
1227 struct mali_texture_format format;
1228
1229 uint16_t unknown3;
1230
1231 /* One for non-mipmapped, zero for mipmapped */
1232 uint8_t unknown3A;
1233
1234 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1235 uint8_t levels;
1236
1237 /* Swizzling is a single 32-bit word, broken up here for convenience.
1238 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1239 * level swizzling, not the internal pixel-level swizzling which is
1240 * below OpenGL's reach */
1241
1242 unsigned swizzle : 12;
1243 unsigned swizzle_zero : 20;
1244
1245 uint32_t unknown5;
1246 uint32_t unknown6;
1247 uint32_t unknown7;
1248 } __attribute__((packed));
1249
1250 /* While Midgard texture descriptors are variable length, Bifrost descriptors
1251 * are fixed like samplers with more pointers to expand if necessary */
1252
1253 struct bifrost_texture_descriptor {
1254 unsigned format_unk : 4; /* 2 */
1255 enum mali_texture_type type : 2;
1256 unsigned format_unk2 : 16; /* 0 */
1257 enum mali_format format : 8;
1258 unsigned srgb : 1;
1259 unsigned format_unk3 : 1; /* 0 */
1260
1261 uint16_t width; /* MALI_POSITIVE */
1262 uint16_t height; /* MALI_POSITIVE */
1263
1264 /* OpenGL swizzle */
1265 unsigned swizzle : 12;
1266 enum mali_texture_layout layout : 4;
1267 uint8_t levels : 8; /* Number of levels-1 if mipmapped, 0 if not */
1268 unsigned unk1 : 8;
1269
1270 unsigned levels_unk : 24; /* 0 */
1271 unsigned level_2 : 8; /* Number of levels, again? */
1272
1273 mali_ptr payload;
1274
1275 uint16_t array_size;
1276 uint16_t unk4;
1277
1278 uint16_t depth;
1279 uint16_t unk5;
1280 } __attribute__((packed));
1281
1282 /* filter_mode */
1283
1284 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1285 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1286
1287 /* TODO: What do these bits mean individually? Only seen set together */
1288
1289 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1290 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1291
1292 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1293 * sampler_t flag. For typical OpenGL textures, this is always set. */
1294
1295 #define MALI_SAMP_NORM_COORDS (1 << 5)
1296
1297 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1298 * be cleaned up a lot. */
1299
1300 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1301
1302 static inline int16_t
1303 FIXED_16(float x, bool allow_negative)
1304 {
1305 /* Clamp inputs, accounting for float error */
1306 float max_lod = (32.0 - (1.0 / 512.0));
1307 float min_lod = allow_negative ? -max_lod : 0.0;
1308
1309 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1310
1311 return (int) (x * 256.0);
1312 }
1313
1314 struct mali_sampler_descriptor {
1315 uint16_t filter_mode;
1316
1317 /* Fixed point, signed.
1318 * Upper 7 bits before the decimal point, although it caps [0-31].
1319 * Lower 8 bits after the decimal point: int(round(x * 256)) */
1320
1321 int16_t lod_bias;
1322 int16_t min_lod;
1323 int16_t max_lod;
1324
1325 /* All one word in reality, but packed a bit. Comparisons are flipped
1326 * from OpenGL. */
1327
1328 enum mali_wrap_mode wrap_s : 4;
1329 enum mali_wrap_mode wrap_t : 4;
1330 enum mali_wrap_mode wrap_r : 4;
1331 enum mali_func compare_func : 3;
1332
1333 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1334 * ES2, controlling seamless cubemapping */
1335 unsigned seamless_cube_map : 1;
1336
1337 unsigned zero : 16;
1338
1339 uint32_t zero2;
1340 float border_color[4];
1341 } __attribute__((packed));
1342
1343 /* Bifrost sampler descriptors look pretty similar */
1344
1345 #define BIFROST_SAMP_MIN_NEAREST (1)
1346 #define BIFROST_SAMP_MAG_LINEAR (1)
1347
1348 struct bifrost_sampler_descriptor {
1349 uint8_t unk1;
1350
1351 enum mali_wrap_mode wrap_r : 4;
1352 enum mali_wrap_mode wrap_t : 4;
1353 enum mali_wrap_mode wrap_s : 4;
1354 uint8_t unk8 : 4;
1355
1356 uint8_t unk2 : 1;
1357 uint8_t norm_coords : 1;
1358 uint8_t unk3 : 1;
1359 uint8_t min_filter : 1;
1360 uint8_t zero1 : 1;
1361 uint8_t mag_filter : 1;
1362 uint8_t mip_filter : 1;
1363
1364 int16_t min_lod;
1365 int16_t max_lod;
1366
1367 uint64_t zero2;
1368 uint64_t zero3;
1369 uint64_t zero4;
1370 } __attribute__((packed));
1371
1372 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1373 * modified by MALI_POSITIVE; viewport0 is as-is.
1374 */
1375
1376 struct mali_viewport {
1377 /* XY clipping planes */
1378 float clip_minx;
1379 float clip_miny;
1380 float clip_maxx;
1381 float clip_maxy;
1382
1383 /* Depth clipping planes */
1384 float clip_minz;
1385 float clip_maxz;
1386
1387 u16 viewport0[2];
1388 u16 viewport1[2];
1389 } __attribute__((packed));
1390
1391 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1392 * of tile numbers. */
1393
1394 #define MALI_TILE_SHIFT 4
1395 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1396
1397 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1398 * each component. Notice that this provides a theoretical upper bound of (1 <<
1399 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1400 * 65536x65536. Multiplying that together, times another four given that Mali
1401 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1402 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1403 * alone rendering in real-time to such a buffer.
1404 *
1405 * Nice job, guys.*/
1406
1407 /* From mali_kbase_10969_workaround.c */
1408 #define MALI_X_COORD_MASK 0x00000FFF
1409 #define MALI_Y_COORD_MASK 0x0FFF0000
1410
1411 /* Extract parts of a tile coordinate */
1412
1413 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1414 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1415
1416 /* Helpers to generate tile coordinates based on the boundary coordinates in
1417 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1418 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1419 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1420 * problem. */
1421
1422 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1423 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1424 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1425 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1426 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1427
1428 struct mali_payload_fragment {
1429 u32 min_tile_coord;
1430 u32 max_tile_coord;
1431 mali_ptr framebuffer;
1432 } __attribute__((packed));
1433
1434 /* Single Framebuffer Descriptor */
1435
1436 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1437 * configured for 4x. With MSAA_8, it is configured for 8x. */
1438
1439 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1440 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1441 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1442 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1443
1444 /* Fast/slow based on whether all three buffers are cleared at once */
1445
1446 #define MALI_CLEAR_FAST (1 << 18)
1447 #define MALI_CLEAR_SLOW (1 << 28)
1448 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1449
1450 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1451 * within the larget framebuffer descriptor). Analogous to
1452 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1453
1454 /* See pan_tiler.c for derivation */
1455 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1456
1457 /* Flag disabling the tiler for clear-only jobs, with
1458 hierarchical tiling */
1459 #define MALI_TILER_DISABLED (1 << 12)
1460
1461 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1462 * hierarhical tiling. */
1463 #define MALI_TILER_USER 0xFFF
1464
1465 /* Absent any geometry, the minimum size of the polygon list header */
1466 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1467
1468 struct midgard_tiler_descriptor {
1469 /* Size of the entire polygon list; see pan_tiler.c for the
1470 * computation. It's based on hierarchical tiling */
1471
1472 u32 polygon_list_size;
1473
1474 /* Name known from the replay workaround in the kernel. What exactly is
1475 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1476 * specifies a mask of hierarchy weights, which explains some of the
1477 * performance mysteries around setting it. We also see the bottom bit
1478 * of tiler_flags set in the kernel, but no comment why.
1479 *
1480 * hierarchy_mask can have the TILER_DISABLED flag */
1481
1482 u16 hierarchy_mask;
1483 u16 flags;
1484
1485 /* See mali_tiler.c for an explanation */
1486 mali_ptr polygon_list;
1487 mali_ptr polygon_list_body;
1488
1489 /* Names based on we see symmetry with replay jobs which name these
1490 * explicitly */
1491
1492 mali_ptr heap_start; /* tiler heap_free_address */
1493 mali_ptr heap_end;
1494
1495 /* Hierarchy weights. We know these are weights based on the kernel,
1496 * but I've never seen them be anything other than zero */
1497 u32 weights[8];
1498 };
1499
1500 enum mali_block_format {
1501 MALI_BLOCK_TILED = 0x0,
1502 MALI_BLOCK_UNKNOWN = 0x1,
1503 MALI_BLOCK_LINEAR = 0x2,
1504 MALI_BLOCK_AFBC = 0x3,
1505 };
1506
1507 struct mali_sfbd_format {
1508 /* 0x1 */
1509 unsigned unk1 : 6;
1510
1511 /* mali_channel_swizzle */
1512 unsigned swizzle : 12;
1513
1514 /* MALI_POSITIVE */
1515 unsigned nr_channels : 2;
1516
1517 /* 0x4 */
1518 unsigned unk2 : 6;
1519
1520 enum mali_block_format block : 2;
1521
1522 /* 0xb */
1523 unsigned unk3 : 4;
1524 };
1525
1526 /* Shared structure at the start of framebuffer descriptors, or used bare for
1527 * compute jobs, configuring stack and shared memory */
1528
1529 struct mali_shared_memory {
1530 u32 stack_shift : 4;
1531 u32 unk0 : 28;
1532
1533 /* Configuration for shared memory for compute shaders.
1534 * shared_workgroup_count is logarithmic and may be computed for a
1535 * compute shader using shared memory as:
1536 *
1537 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1538 *
1539 * For compute shaders that don't use shared memory, or non-compute
1540 * shaders, this is set to ~0
1541 */
1542
1543 u32 shared_workgroup_count : 5;
1544 u32 shared_unk1 : 3;
1545 u32 shared_shift : 4;
1546 u32 shared_zero : 20;
1547
1548 mali_ptr scratchpad;
1549
1550 /* For compute shaders, the RAM backing of workgroup-shared memory. For
1551 * fragment shaders on Bifrost, apparently multisampling locations */
1552
1553 mali_ptr shared_memory;
1554 mali_ptr unknown1;
1555 } __attribute__((packed));
1556
1557 /* Configures multisampling on Bifrost fragment jobs */
1558
1559 struct bifrost_multisampling {
1560 u64 zero1;
1561 u64 zero2;
1562 mali_ptr sample_locations;
1563 u64 zero4;
1564 } __attribute__((packed));
1565
1566 struct mali_single_framebuffer {
1567 struct mali_shared_memory shared_memory;
1568 struct mali_sfbd_format format;
1569
1570 u32 clear_flags;
1571 u32 zero2;
1572
1573 /* Purposeful off-by-one in these fields should be accounted for by the
1574 * MALI_DIMENSION macro */
1575
1576 u16 width;
1577 u16 height;
1578
1579 u32 zero3[4];
1580 mali_ptr checksum;
1581 u32 checksum_stride;
1582 u32 zero5;
1583
1584 /* By default, the framebuffer is upside down from OpenGL's
1585 * perspective. Set framebuffer to the end and negate the stride to
1586 * flip in the Y direction */
1587
1588 mali_ptr framebuffer;
1589 int32_t stride;
1590
1591 u32 zero4;
1592
1593 /* Depth and stencil buffers are interleaved, it appears, as they are
1594 * set to the same address in captures. Both fields set to zero if the
1595 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1596 * get a zero enable despite the buffer being present; that still is
1597 * disabled. */
1598
1599 mali_ptr depth_buffer; // not SAME_VA
1600 u32 depth_stride_zero : 4;
1601 u32 depth_stride : 28;
1602 u32 zero7;
1603
1604 mali_ptr stencil_buffer; // not SAME_VA
1605 u32 stencil_stride_zero : 4;
1606 u32 stencil_stride : 28;
1607 u32 zero8;
1608
1609 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1610 u32 clear_color_2; // always equal, but unclear function?
1611 u32 clear_color_3; // always equal, but unclear function?
1612 u32 clear_color_4; // always equal, but unclear function?
1613
1614 /* Set to zero if not cleared */
1615
1616 float clear_depth_1; // float32, ditto
1617 float clear_depth_2; // float32, ditto
1618 float clear_depth_3; // float32, ditto
1619 float clear_depth_4; // float32, ditto
1620
1621 u32 clear_stencil; // Exactly as it appears in OpenGL
1622
1623 u32 zero6[7];
1624
1625 struct midgard_tiler_descriptor tiler;
1626
1627 /* More below this, maybe */
1628 } __attribute__((packed));
1629
1630 /* Format bits for the render target flags */
1631
1632 #define MALI_MFBD_FORMAT_MSAA (1 << 1)
1633 #define MALI_MFBD_FORMAT_SRGB (1 << 2)
1634
1635 struct mali_rt_format {
1636 unsigned unk1 : 32;
1637 unsigned unk2 : 3;
1638
1639 unsigned nr_channels : 2; /* MALI_POSITIVE */
1640
1641 unsigned unk3 : 4;
1642 unsigned unk4 : 1;
1643 enum mali_block_format block : 2;
1644 unsigned flags : 4;
1645
1646 unsigned swizzle : 12;
1647
1648 unsigned zero : 3;
1649
1650 /* Disables MFBD preload. When this bit is set, the render target will
1651 * be cleared every frame. When this bit is clear, the hardware will
1652 * automatically wallpaper the render target back from main memory.
1653 * Unfortunately, MFBD preload is very broken on Midgard, so in
1654 * practice, this is a chicken bit that should always be set.
1655 * Discovered by accident, as all good chicken bits are. */
1656
1657 unsigned no_preload : 1;
1658 } __attribute__((packed));
1659
1660 struct mali_render_target {
1661 struct mali_rt_format format;
1662
1663 u64 zero1;
1664
1665 struct {
1666 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1667 * there is an extra metadata buffer that contains 16 bytes per tile.
1668 * The framebuffer needs to be the same size as before, since we don't
1669 * know ahead of time how much space it will take up. The
1670 * framebuffer_stride is set to 0, since the data isn't stored linearly
1671 * anymore.
1672 *
1673 * When AFBC is disabled, these fields are zero.
1674 */
1675
1676 mali_ptr metadata;
1677 u32 stride; // stride in units of tiles
1678 u32 unk; // = 0x20000
1679 } afbc;
1680
1681 mali_ptr framebuffer;
1682
1683 u32 zero2 : 4;
1684 u32 framebuffer_stride : 28; // in units of bytes
1685 u32 zero3;
1686
1687 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1688 u32 clear_color_2; // always equal, but unclear function?
1689 u32 clear_color_3; // always equal, but unclear function?
1690 u32 clear_color_4; // always equal, but unclear function?
1691 } __attribute__((packed));
1692
1693 /* An optional part of mali_framebuffer. It comes between the main structure
1694 * and the array of render targets. It must be included if any of these are
1695 * enabled:
1696 *
1697 * - Transaction Elimination
1698 * - Depth/stencil
1699 * - TODO: Anything else?
1700 */
1701
1702 /* flags_hi */
1703 #define MALI_EXTRA_PRESENT (0x10)
1704
1705 /* flags_lo */
1706 #define MALI_EXTRA_ZS (0x4)
1707
1708 struct mali_framebuffer_extra {
1709 mali_ptr checksum;
1710 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1711 u32 checksum_stride;
1712
1713 unsigned flags_lo : 4;
1714 enum mali_block_format zs_block : 2;
1715 unsigned flags_hi : 26;
1716
1717 union {
1718 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1719 struct {
1720 mali_ptr depth_stencil_afbc_metadata;
1721 u32 depth_stencil_afbc_stride; // in units of tiles
1722 u32 zero1;
1723
1724 mali_ptr depth_stencil;
1725
1726 u64 padding;
1727 } ds_afbc;
1728
1729 struct {
1730 /* Depth becomes depth/stencil in case of combined D/S */
1731 mali_ptr depth;
1732 u32 depth_stride_zero : 4;
1733 u32 depth_stride : 28;
1734 u32 zero1;
1735
1736 mali_ptr stencil;
1737 u32 stencil_stride_zero : 4;
1738 u32 stencil_stride : 28;
1739 u32 zero2;
1740 } ds_linear;
1741 };
1742
1743
1744 u32 clear_color_1;
1745 u32 clear_color_2;
1746 u64 zero3;
1747 } __attribute__((packed));
1748
1749 /* Flags for mfbd_flags */
1750
1751 /* Enables writing depth results back to main memory (rather than keeping them
1752 * on-chip in the tile buffer and then discarding) */
1753
1754 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1755
1756 /* The MFBD contains the extra mali_framebuffer_extra section */
1757
1758 #define MALI_MFBD_EXTRA (1 << 13)
1759
1760 struct mali_framebuffer {
1761 union {
1762 struct mali_shared_memory shared_memory;
1763 struct bifrost_multisampling msaa;
1764 };
1765
1766 /* 0x20 */
1767 u16 width1, height1;
1768 u32 zero3;
1769 u16 width2, height2;
1770 u32 unk1 : 19; // = 0x01000
1771 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1772 u32 unk2 : 3; // = 0
1773 u32 rt_count_2 : 3; // no off-by-one
1774 u32 zero4 : 5;
1775 /* 0x30 */
1776 u32 clear_stencil : 8;
1777 u32 mfbd_flags : 24; // = 0x100
1778 float clear_depth;
1779
1780 union {
1781 struct midgard_tiler_descriptor tiler;
1782 struct {
1783 mali_ptr tiler_meta;
1784 u32 zeros[16];
1785 };
1786 };
1787
1788 /* optional: struct mali_framebuffer_extra extra */
1789 /* struct mali_render_target rts[] */
1790 } __attribute__((packed));
1791
1792 #endif /* __PANFROST_JOB_H__ */