panfrost: XMLify bifrost1
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <inttypes.h>
34
35 typedef uint8_t u8;
36 typedef uint16_t u16;
37 typedef uint32_t u32;
38 typedef uint64_t u64;
39 typedef uint64_t mali_ptr;
40
41 /* Applies to tiler_gl_enables */
42
43 #define MALI_OCCLUSION_QUERY (1 << 3)
44 #define MALI_OCCLUSION_PRECISE (1 << 4)
45
46 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
47 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
48 * disagree about how to do viewport flipping, so the blob actually sets this
49 * for GL_CW but then has a negative viewport stride */
50
51 #define MALI_FRONT_CCW_TOP (1 << 5)
52
53 #define MALI_CULL_FACE_FRONT (1 << 6)
54 #define MALI_CULL_FACE_BACK (1 << 7)
55
56 /* Flags apply to unknown2_3? */
57
58 #define MALI_HAS_MSAA (1 << 0)
59
60 /* Execute fragment shader per-sample if set (e.g. to implement gl_SampleID
61 * reads) */
62 #define MALI_PER_SAMPLE (1 << 2)
63 #define MALI_CAN_DISCARD (1 << 5)
64
65 /* Applies on SFBD systems, specifying that programmable blending is in use */
66 #define MALI_HAS_BLEND_SHADER (1 << 6)
67
68 /* func is mali_func */
69 #define MALI_DEPTH_FUNC(func) (func << 8)
70 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
71 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
72
73 #define MALI_DEPTH_WRITEMASK (1 << 11)
74
75 #define MALI_DEPTH_CLIP_NEAR (1 << 12)
76 #define MALI_DEPTH_CLIP_FAR (1 << 13)
77
78 /* Next flags to unknown2_4 */
79 #define MALI_STENCIL_TEST (1 << 0)
80
81 #define MALI_ALPHA_TO_COVERAGE (1 << 1)
82
83 #define MALI_NO_DITHER (1 << 9)
84 #define MALI_DEPTH_RANGE_A (1 << 12)
85 #define MALI_DEPTH_RANGE_B (1 << 13)
86 #define MALI_NO_MSAA (1 << 14)
87
88 #define MALI_MASK_R (1 << 0)
89 #define MALI_MASK_G (1 << 1)
90 #define MALI_MASK_B (1 << 2)
91 #define MALI_MASK_A (1 << 3)
92
93 enum mali_nondominant_mode {
94 MALI_BLEND_NON_MIRROR = 0,
95 MALI_BLEND_NON_ZERO = 1
96 };
97
98 enum mali_dominant_blend {
99 MALI_BLEND_DOM_SOURCE = 0,
100 MALI_BLEND_DOM_DESTINATION = 1
101 };
102
103 enum mali_dominant_factor {
104 MALI_DOMINANT_UNK0 = 0,
105 MALI_DOMINANT_ZERO = 1,
106 MALI_DOMINANT_SRC_COLOR = 2,
107 MALI_DOMINANT_DST_COLOR = 3,
108 MALI_DOMINANT_UNK4 = 4,
109 MALI_DOMINANT_SRC_ALPHA = 5,
110 MALI_DOMINANT_DST_ALPHA = 6,
111 MALI_DOMINANT_CONSTANT = 7,
112 };
113
114 enum mali_blend_modifier {
115 MALI_BLEND_MOD_UNK0 = 0,
116 MALI_BLEND_MOD_NORMAL = 1,
117 MALI_BLEND_MOD_SOURCE_ONE = 2,
118 MALI_BLEND_MOD_DEST_ONE = 3,
119 };
120
121 struct mali_blend_mode {
122 enum mali_blend_modifier clip_modifier : 2;
123 unsigned unused_0 : 1;
124 unsigned negate_source : 1;
125
126 enum mali_dominant_blend dominant : 1;
127
128 enum mali_nondominant_mode nondominant_mode : 1;
129
130 unsigned unused_1 : 1;
131
132 unsigned negate_dest : 1;
133
134 enum mali_dominant_factor dominant_factor : 3;
135 unsigned complement_dominant : 1;
136 } __attribute__((packed));
137
138 /* Compressed per-pixel formats. Each of these formats expands to one to four
139 * floating-point or integer numbers, as defined by the OpenGL specification.
140 * There are various places in OpenGL where the user can specify a compressed
141 * format in memory, which all use the same 8-bit enum in the various
142 * descriptors, although different hardware units support different formats.
143 */
144
145 /* The top 3 bits specify how the bits of each component are interpreted. */
146
147 /* e.g. ETC2_RGB8 */
148 #define MALI_FORMAT_COMPRESSED (0 << 5)
149
150 /* e.g. R11F_G11F_B10F */
151 #define MALI_FORMAT_SPECIAL (2 << 5)
152
153 /* signed normalized, e.g. RGBA8_SNORM */
154 #define MALI_FORMAT_SNORM (3 << 5)
155
156 /* e.g. RGBA8UI */
157 #define MALI_FORMAT_UINT (4 << 5)
158
159 /* e.g. RGBA8 and RGBA32F */
160 #define MALI_FORMAT_UNORM (5 << 5)
161
162 /* e.g. RGBA8I and RGBA16F */
163 #define MALI_FORMAT_SINT (6 << 5)
164
165 /* These formats seem to largely duplicate the others. They're used at least
166 * for Bifrost framebuffer output.
167 */
168 #define MALI_FORMAT_SPECIAL2 (7 << 5)
169 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
170
171 /* If the high 3 bits are 3 to 6 these two bits say how many components
172 * there are.
173 */
174 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
175 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
176
177 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
178 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
179 * bits mean.
180 */
181
182 #define MALI_CHANNEL_4 2
183
184 #define MALI_CHANNEL_8 3
185
186 #define MALI_CHANNEL_16 4
187
188 #define MALI_CHANNEL_32 5
189
190 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
191 * MALI_FORMAT_UNORM, it means a 32-bit float.
192 */
193 #define MALI_CHANNEL_FLOAT 7
194 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
195
196 /* The raw Midgard blend payload can either be an equation or a shader
197 * address, depending on the context */
198
199 union midgard_blend {
200 mali_ptr shader;
201
202 struct {
203 struct mali_blend_equation_packed equation;
204 float constant;
205 };
206 };
207
208 struct midgard_blend_rt {
209 struct mali_blend_flags_packed flags;
210 u32 zero;
211 union midgard_blend blend;
212 } __attribute__((packed));
213
214 /* On Bifrost systems (all MRT), each render target gets one of these
215 * descriptors */
216
217 enum bifrost_shader_type {
218 BIFROST_BLEND_F16 = 0,
219 BIFROST_BLEND_F32 = 1,
220 BIFROST_BLEND_I32 = 2,
221 BIFROST_BLEND_U32 = 3,
222 BIFROST_BLEND_I16 = 4,
223 BIFROST_BLEND_U16 = 5,
224 };
225
226 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
227
228 struct bifrost_blend_rt {
229 /* This is likely an analogue of the flags on
230 * midgard_blend_rt */
231
232 u16 flags; // = 0x200
233
234 /* Single-channel blend constants are encoded in a sort of
235 * fixed-point. Basically, the float is mapped to a byte, becoming
236 * a high byte, and then the lower-byte is added for precision.
237 * For the original float f:
238 *
239 * f = (constant_hi / 255) + (constant_lo / 65535)
240 *
241 * constant_hi = int(f / 255)
242 * constant_lo = 65535*f - (65535/255) * constant_hi
243 */
244 u16 constant;
245
246 struct mali_blend_equation_packed equation;
247
248 /*
249 * - 0x19 normally
250 * - 0x3 when this slot is unused (everything else is 0 except the index)
251 * - 0x11 when this is the fourth slot (and it's used)
252 * - 0 when there is a blend shader
253 */
254 u16 unk2;
255
256 /* increments from 0 to 3 */
257 u16 index;
258
259 union {
260 struct {
261 /* So far, I've only seen:
262 * - R001 for 1-component formats
263 * - RG01 for 2-component formats
264 * - RGB1 for 3-component formats
265 * - RGBA for 4-component formats
266 */
267 u32 swizzle : 12;
268 enum mali_format format : 8;
269
270 /* Type of the shader output variable. Note, this can
271 * be different from the format.
272 * enum bifrost_shader_type
273 */
274 u32 zero1 : 4;
275 u32 shader_type : 3;
276 u32 zero2 : 5;
277 };
278
279 /* Only the low 32 bits of the blend shader are stored, the
280 * high 32 bits are implicitly the same as the original shader.
281 * According to the kernel driver, the program counter for
282 * shaders is actually only 24 bits, so shaders cannot cross
283 * the 2^24-byte boundary, and neither can the blend shader.
284 * The blob handles this by allocating a 2^24 byte pool for
285 * shaders, and making sure that any blend shaders are stored
286 * in the same pool as the original shader. The kernel will
287 * make sure this allocation is aligned to 2^24 bytes.
288 */
289 u32 shader;
290 };
291 } __attribute__((packed));
292
293 /* Descriptor for the shader. Following this is at least one, up to four blend
294 * descriptors for each active render target */
295
296 struct mali_shader_meta {
297 mali_ptr shader;
298 u16 sampler_count;
299 u16 texture_count;
300 u16 attribute_count;
301 u16 varying_count;
302
303 union {
304 struct mali_bifrost_properties_packed bifrost_props;
305 struct mali_midgard_properties_packed midgard_props;
306 };
307
308 /* Same as glPolygoOffset() arguments */
309 float depth_units;
310 float depth_factor;
311
312 u32 unknown2_2;
313
314 /* Generated from SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT. See
315 * 13.8.3 ("Multisample Fragment Operations") in the OpenGL ES 3.2
316 * specification. Only matters when multisampling is enabled. */
317 u16 coverage_mask;
318
319 u16 unknown2_3;
320
321 u8 stencil_mask_front;
322 u8 stencil_mask_back;
323 u16 unknown2_4;
324
325 struct mali_stencil_packed stencil_front;
326 struct mali_stencil_packed stencil_back;
327
328 union {
329 struct {
330 u32 unk3 : 7;
331 /* On Bifrost, some system values are preloaded in
332 * registers R55-R62 by the thread dispatcher prior to
333 * the start of shader execution. This is a bitfield
334 * with one entry for each register saying which
335 * registers need to be preloaded. Right now, the known
336 * values are:
337 *
338 * Vertex/compute:
339 * - R55 : gl_LocalInvocationID.xy
340 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
341 * - R57 : gl_WorkGroupID.x
342 * - R58 : gl_WorkGroupID.y
343 * - R59 : gl_WorkGroupID.z
344 * - R60 : gl_GlobalInvocationID.x
345 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
346 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
347 *
348 * Fragment:
349 * - R55 : unknown, never seen (but the bit for this is
350 * always set?)
351 * - R56 : unknown (bit always unset)
352 * - R57 : gl_PrimitiveID
353 * - R58 : gl_FrontFacing in low bit, potentially other stuff
354 * - R59 : u16 fragment coordinates (used to compute
355 * gl_FragCoord.xy, together with sample positions)
356 * - R60 : gl_SampleMask (used in epilog, so pretty
357 * much always used, but the bit is always 0 -- is
358 * this just always pushed?)
359 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
360 * varying interpolation.
361 * - R62 : unknown (bit always unset).
362 *
363 * Later GPUs (starting with Mali-G52?) support
364 * preloading float varyings into r0-r7. This is
365 * indicated by setting 0x40. There is no distinction
366 * here between 1 varying and 2.
367 */
368 u32 preload_regs : 8;
369 /* In units of 8 bytes or 64 bits, since the
370 * uniform/const port loads 64 bits at a time.
371 */
372 u32 uniform_count : 7;
373 u32 unk4 : 10; // = 2
374 } bifrost2;
375 struct {
376 u32 unknown2_7;
377 } midgard2;
378 };
379
380 u32 padding;
381
382 /* Blending information for the older non-MRT Midgard HW. Check for
383 * MALI_HAS_BLEND_SHADER to decide how to interpret.
384 */
385
386 union midgard_blend blend;
387 } __attribute__((packed));
388
389 /* This only concerns hardware jobs */
390
391 /* Possible values for job_descriptor_size */
392
393 #define MALI_JOB_32 0
394 #define MALI_JOB_64 1
395
396 struct mali_job_descriptor_header {
397 u32 exception_status;
398 u32 first_incomplete_task;
399 u64 fault_pointer;
400 u8 job_descriptor_size : 1;
401 enum mali_job_type job_type : 7;
402 u8 job_barrier : 1;
403 u8 unknown_flags : 7;
404 u16 job_index;
405 u16 job_dependency_index_1;
406 u16 job_dependency_index_2;
407 u64 next_job;
408 } __attribute__((packed));
409
410 /* Details about write_value from panfrost igt tests which use it as a generic
411 * dword write primitive */
412
413 #define MALI_WRITE_VALUE_ZERO 3
414
415 struct mali_payload_write_value {
416 u64 address;
417 u32 value_descriptor;
418 u32 reserved;
419 u64 immediate;
420 } __attribute__((packed));
421
422 /*
423 * Mali Attributes
424 *
425 * This structure lets the attribute unit compute the address of an attribute
426 * given the vertex and instance ID. Unfortunately, the way this works is
427 * rather complicated when instancing is enabled.
428 *
429 * To explain this, first we need to explain how compute and vertex threads are
430 * dispatched. This is a guess (although a pretty firm guess!) since the
431 * details are mostly hidden from the driver, except for attribute instancing.
432 * When a quad is dispatched, it receives a single, linear index. However, we
433 * need to translate that index into a (vertex id, instance id) pair, or a
434 * (local id x, local id y, local id z) triple for compute shaders (although
435 * vertex shaders and compute shaders are handled almost identically).
436 * Focusing on vertex shaders, one option would be to do:
437 *
438 * vertex_id = linear_id % num_vertices
439 * instance_id = linear_id / num_vertices
440 *
441 * but this involves a costly division and modulus by an arbitrary number.
442 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
443 * num_instances threads instead of num_vertices * num_instances, which results
444 * in some "extra" threads with vertex_id >= num_vertices, which we have to
445 * discard. The more we pad num_vertices, the more "wasted" threads we
446 * dispatch, but the division is potentially easier.
447 *
448 * One straightforward choice is to pad num_vertices to the next power of two,
449 * which means that the division and modulus are just simple bit shifts and
450 * masking. But the actual algorithm is a bit more complicated. The thread
451 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
452 * to dividing by a power of two. This is possibly using the technique
453 * described in patent US20170010862A1. As a result, padded_num_vertices can be
454 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
455 * since we need less padding.
456 *
457 * padded_num_vertices is picked by the hardware. The driver just specifies the
458 * actual number of vertices. At least for Mali G71, the first few cases are
459 * given by:
460 *
461 * num_vertices | padded_num_vertices
462 * 3 | 4
463 * 4-7 | 8
464 * 8-11 | 12 (3 * 4)
465 * 12-15 | 16
466 * 16-19 | 20 (5 * 4)
467 *
468 * Note that padded_num_vertices is a multiple of four (presumably because
469 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
470 * at least one more than num_vertices, which seems like a quirk of the
471 * hardware. For larger num_vertices, the hardware uses the following
472 * algorithm: using the binary representation of num_vertices, we look at the
473 * most significant set bit as well as the following 3 bits. Let n be the
474 * number of bits after those 4 bits. Then we set padded_num_vertices according
475 * to the following table:
476 *
477 * high bits | padded_num_vertices
478 * 1000 | 9 * 2^n
479 * 1001 | 5 * 2^(n+1)
480 * 101x | 3 * 2^(n+2)
481 * 110x | 7 * 2^(n+1)
482 * 111x | 2^(n+4)
483 *
484 * For example, if num_vertices = 70 is passed to glDraw(), its binary
485 * representation is 1000110, so n = 3 and the high bits are 1000, and
486 * therefore padded_num_vertices = 9 * 2^3 = 72.
487 *
488 * The attribute unit works in terms of the original linear_id. if
489 * num_instances = 1, then they are the same, and everything is simple.
490 * However, with instancing things get more complicated. There are four
491 * possible modes, two of them we can group together:
492 *
493 * 1. Use the linear_id directly. Only used when there is no instancing.
494 *
495 * 2. Use the linear_id modulo a constant. This is used for per-vertex
496 * attributes with instancing enabled by making the constant equal
497 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
498 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
499 * The shift field specifies the power of two, while the extra_flags field
500 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
501 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
502 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
503 * shift = 3. Note that we must exactly follow the hardware algorithm used to
504 * get padded_num_vertices in order to correctly implement per-vertex
505 * attributes.
506 *
507 * 3. Divide the linear_id by a constant. In order to correctly implement
508 * instance divisors, we have to divide linear_id by padded_num_vertices times
509 * to user-specified divisor. So first we compute padded_num_vertices, again
510 * following the exact same algorithm that the hardware uses, then multiply it
511 * by the GL-level divisor to get the hardware-level divisor. This case is
512 * further divided into two more cases. If the hardware-level divisor is a
513 * power of two, then we just need to shift. The shift amount is specified by
514 * the shift field, so that the hardware-level divisor is just 2^shift.
515 *
516 * If it isn't a power of two, then we have to divide by an arbitrary integer.
517 * For that, we use the well-known technique of multiplying by an approximation
518 * of the inverse. The driver must compute the magic multiplier and shift
519 * amount, and then the hardware does the multiplication and shift. The
520 * hardware and driver also use the "round-down" optimization as described in
521 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
522 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
523 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
524 * presumably this simplifies the hardware multiplier a little. The hardware
525 * first multiplies linear_id by the multiplier and takes the high 32 bits,
526 * then applies the round-down correction if extra_flags = 1, then finally
527 * shifts right by the shift field.
528 *
529 * There are some differences between ridiculousfish's algorithm and the Mali
530 * hardware algorithm, which means that the reference code from ridiculousfish
531 * doesn't always produce the right constants. Mali does not use the pre-shift
532 * optimization, since that would make a hardware implementation slower (it
533 * would have to always do the pre-shift, multiply, and post-shift operations).
534 * It also forces the multplier to be at least 2^31, which means that the
535 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
536 * given the divisor d, the algorithm the driver must follow is:
537 *
538 * 1. Set shift = floor(log2(d)).
539 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
540 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
541 * magic_divisor = m - 1 and extra_flags = 1.
542 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
543 */
544
545 #define FBD_MASK (~0x3f)
546
547 /* MFBD, rather than SFBD */
548 #define MALI_MFBD (0x1)
549
550 /* ORed into an MFBD address to specify the fbx section is included */
551 #define MALI_MFBD_TAG_EXTRA (0x2)
552
553 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
554 * They also seem to be the same between Bifrost and Midgard. They're shared in
555 * fused payloads.
556 */
557
558 /* Applies to unknown_draw */
559
560 #define MALI_DRAW_INDEXED_UINT8 (0x10)
561 #define MALI_DRAW_INDEXED_UINT16 (0x20)
562 #define MALI_DRAW_INDEXED_UINT32 (0x30)
563 #define MALI_DRAW_INDEXED_SIZE (0x30)
564 #define MALI_DRAW_INDEXED_SHIFT (4)
565
566 #define MALI_DRAW_VARYING_SIZE (0x100)
567
568 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
569 * use the last vertex. This is the default in DX and VK, but not in GL. */
570
571 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
572
573 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
574
575 struct mali_vertex_tiler_prefix {
576 /* This is a dynamic bitfield containing the following things in this order:
577 *
578 * - gl_WorkGroupSize.x
579 * - gl_WorkGroupSize.y
580 * - gl_WorkGroupSize.z
581 * - gl_NumWorkGroups.x
582 * - gl_NumWorkGroups.y
583 * - gl_NumWorkGroups.z
584 *
585 * The number of bits allocated for each number is based on the *_shift
586 * fields below. For example, workgroups_y_shift gives the bit that
587 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
588 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
589 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
590 * value is one more than the stored value, since if any of the values
591 * are zero, then there would be no invocations (and hence no job). If
592 * there were 0 bits allocated to a given field, then it must be zero,
593 * and hence the real value is one.
594 *
595 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
596 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
597 * where vertex count is the number of vertices.
598 */
599 u32 invocation_count;
600
601 /* Bitfield for shifts:
602 *
603 * size_y_shift : 5
604 * size_z_shift : 5
605 * workgroups_x_shift : 6
606 * workgroups_y_shift : 6
607 * workgroups_z_shift : 6
608 * workgroups_x_shift_2 : 4
609 */
610 u32 invocation_shifts;
611
612 u32 draw_mode : 4;
613 u32 unknown_draw : 22;
614
615 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
616 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
617 * something to do with how many quads get put in the same execution
618 * engine, which is a balance (you don't want to starve the engine, but
619 * you also want to distribute work evenly).
620 */
621 u32 workgroups_x_shift_3 : 6;
622
623
624 /* Negative of min_index. This is used to compute
625 * the unbiased index in tiler/fragment shader runs.
626 *
627 * The hardware adds offset_bias_correction in each run,
628 * so that absent an index bias, the first vertex processed is
629 * genuinely the first vertex (0). But with an index bias,
630 * the first vertex process is numbered the same as the bias.
631 *
632 * To represent this more conviniently:
633 * unbiased_index = lower_bound_index +
634 * index_bias +
635 * offset_bias_correction
636 *
637 * This is done since the hardware doesn't accept a index_bias
638 * and this allows it to recover the unbiased index.
639 */
640 int32_t offset_bias_correction;
641 u32 zero1;
642
643 /* Like many other strictly nonzero quantities, index_count is
644 * subtracted by one. For an indexed cube, this is equal to 35 = 6
645 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
646 * for an indexed draw, index_count is the number of actual vertices
647 * rendered whereas invocation_count is the number of unique vertices
648 * rendered (the number of times the vertex shader must be invoked).
649 * For non-indexed draws, this is just equal to invocation_count. */
650
651 u32 index_count;
652
653 /* No hidden structure; literally just a pointer to an array of uint
654 * indices (width depends on flags). Thanks, guys, for not making my
655 * life insane for once! NULL for non-indexed draws. */
656
657 u64 indices;
658 } __attribute__((packed));
659
660 /* Point size / line width can either be specified as a 32-bit float (for
661 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
662 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
663 * payload, the contents of varying_pointer will be intepreted as an array of
664 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
665 * creating a special MALI_R16F varying writing to varying_pointer. */
666
667 union midgard_primitive_size {
668 float constant;
669 u64 pointer;
670 };
671
672 struct bifrost_tiler_heap_meta {
673 u32 zero;
674 u32 heap_size;
675 /* note: these are just guesses! */
676 mali_ptr tiler_heap_start;
677 mali_ptr tiler_heap_free;
678 mali_ptr tiler_heap_end;
679
680 /* hierarchy weights? but they're still 0 after the job has run... */
681 u32 zeros[10];
682 u32 unk1;
683 u32 unk7e007e;
684 } __attribute__((packed));
685
686 struct bifrost_tiler_meta {
687 u32 tiler_heap_next_start; /* To be written by the GPU */
688 u32 used_hierarchy_mask; /* To be written by the GPU */
689 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
690 u16 flags;
691 u16 width;
692 u16 height;
693 u64 zero0;
694 mali_ptr tiler_heap_meta;
695 /* TODO what is this used for? */
696 u64 zeros[20];
697 } __attribute__((packed));
698
699 struct bifrost_tiler_only {
700 /* 0x20 */
701 union midgard_primitive_size primitive_size;
702
703 mali_ptr tiler_meta;
704
705 u64 zero1, zero2, zero3, zero4, zero5, zero6;
706 } __attribute__((packed));
707
708 struct mali_vertex_tiler_postfix {
709 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
710
711 /* Both zero for non-instanced draws. For instanced draws, a
712 * decomposition of padded_num_vertices. See the comments about the
713 * corresponding fields in mali_attr for context. */
714
715 unsigned instance_shift : 5;
716 unsigned instance_odd : 3;
717
718 u8 zero4;
719
720 /* Offset for first vertex in buffer */
721 u32 offset_start;
722
723 u64 zero5;
724
725 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
726 * output from the vertex shader for tiler jobs.
727 */
728
729 u64 position_varying;
730
731 /* An array of mali_uniform_buffer_meta's. The size is given by the
732 * shader_meta.
733 */
734 u64 uniform_buffers;
735
736 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
737 * On Midgard, this is a pointer to an array of pointers to the texture
738 * descriptors, number of pointers bounded by number of textures. The
739 * indirection is needed to accomodate varying numbers and sizes of
740 * texture descriptors */
741 u64 textures;
742
743 /* For OpenGL, from what I've seen, this is intimately connected to
744 * texture_meta. cwabbott says this is not the case under Vulkan, hence
745 * why this field is seperate (Midgard is Vulkan capable). Pointer to
746 * array of sampler descriptors (which are uniform in size) */
747 u64 sampler_descriptor;
748
749 u64 uniforms;
750 u64 shader;
751 u64 attributes; /* struct attribute_buffer[] */
752 u64 attribute_meta; /* attribute_meta[] */
753 u64 varyings; /* struct attr */
754 u64 varying_meta; /* pointer */
755 u64 viewport;
756 u64 occlusion_counter; /* A single bit as far as I can tell */
757
758 /* On Bifrost, this points directly to a mali_shared_memory structure.
759 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
760 * tagged), which embeds a mali_shared_memory structure */
761 mali_ptr shared_memory;
762 } __attribute__((packed));
763
764 struct midgard_payload_vertex_tiler {
765 struct mali_vertex_tiler_prefix prefix;
766 struct mali_vertex_tiler_postfix postfix;
767
768 union midgard_primitive_size primitive_size;
769 } __attribute__((packed));
770
771 struct bifrost_payload_vertex {
772 struct mali_vertex_tiler_prefix prefix;
773 struct mali_vertex_tiler_postfix postfix;
774 } __attribute__((packed));
775
776 struct bifrost_payload_tiler {
777 struct mali_vertex_tiler_prefix prefix;
778 struct bifrost_tiler_only tiler;
779 struct mali_vertex_tiler_postfix postfix;
780 } __attribute__((packed));
781
782 struct bifrost_payload_fused {
783 struct mali_vertex_tiler_prefix prefix;
784 struct bifrost_tiler_only tiler;
785 struct mali_vertex_tiler_postfix tiler_postfix;
786 u64 padding; /* zero */
787 struct mali_vertex_tiler_postfix vertex_postfix;
788 } __attribute__((packed));
789
790 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
791 * texture is stored as (63, 63) in these fields. This adjusts for that.
792 * There's an identical pattern in the framebuffer descriptor. Even vertex
793 * count fields work this way, hence the generic name -- integral fields that
794 * are strictly positive generally need this adjustment. */
795
796 #define MALI_POSITIVE(dim) (dim - 1)
797
798 /* 8192x8192 */
799 #define MAX_MIP_LEVELS (13)
800
801 /* Cubemap bloats everything up */
802 #define MAX_CUBE_FACES (6)
803
804 /* For each pointer, there is an address and optionally also a stride */
805 #define MAX_ELEMENTS (2)
806
807 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
808 * be cleaned up a lot. */
809
810 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
811
812 static inline int16_t
813 FIXED_16(float x, bool allow_negative)
814 {
815 /* Clamp inputs, accounting for float error */
816 float max_lod = (32.0 - (1.0 / 512.0));
817 float min_lod = allow_negative ? -max_lod : 0.0;
818
819 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
820
821 return (int) (x * 256.0);
822 }
823
824 /* From presentations, 16x16 tiles externally. Use shift for fast computation
825 * of tile numbers. */
826
827 #define MALI_TILE_SHIFT 4
828 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
829
830 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
831 * each component. Notice that this provides a theoretical upper bound of (1 <<
832 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
833 * 65536x65536. Multiplying that together, times another four given that Mali
834 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
835 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
836 * alone rendering in real-time to such a buffer.
837 *
838 * Nice job, guys.*/
839
840 /* From mali_kbase_10969_workaround.c */
841 #define MALI_X_COORD_MASK 0x00000FFF
842 #define MALI_Y_COORD_MASK 0x0FFF0000
843
844 /* Extract parts of a tile coordinate */
845
846 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
847 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
848
849 /* Helpers to generate tile coordinates based on the boundary coordinates in
850 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
851 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
852 * Intentional "off-by-one"; finding the tile number is a form of fencepost
853 * problem. */
854
855 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
856 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
857 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
858 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
859 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
860
861 struct mali_payload_fragment {
862 u32 min_tile_coord;
863 u32 max_tile_coord;
864 mali_ptr framebuffer;
865 } __attribute__((packed));
866
867 /* Single Framebuffer Descriptor */
868
869 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
870 * configured for 4x. With MSAA_8, it is configured for 8x. */
871
872 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
873 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
874 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
875 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
876
877 /* Fast/slow based on whether all three buffers are cleared at once */
878
879 #define MALI_CLEAR_FAST (1 << 18)
880 #define MALI_CLEAR_SLOW (1 << 28)
881 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
882
883 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
884 * within the larget framebuffer descriptor). Analogous to
885 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
886
887 /* See pan_tiler.c for derivation */
888 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
889
890 /* Flag disabling the tiler for clear-only jobs, with
891 hierarchical tiling */
892 #define MALI_TILER_DISABLED (1 << 12)
893
894 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
895 * hierarhical tiling. */
896 #define MALI_TILER_USER 0xFFF
897
898 /* Absent any geometry, the minimum size of the polygon list header */
899 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
900
901 struct midgard_tiler_descriptor {
902 /* Size of the entire polygon list; see pan_tiler.c for the
903 * computation. It's based on hierarchical tiling */
904
905 u32 polygon_list_size;
906
907 /* Name known from the replay workaround in the kernel. What exactly is
908 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
909 * specifies a mask of hierarchy weights, which explains some of the
910 * performance mysteries around setting it. We also see the bottom bit
911 * of tiler_flags set in the kernel, but no comment why.
912 *
913 * hierarchy_mask can have the TILER_DISABLED flag */
914
915 u16 hierarchy_mask;
916 u16 flags;
917
918 /* See mali_tiler.c for an explanation */
919 mali_ptr polygon_list;
920 mali_ptr polygon_list_body;
921
922 /* Names based on we see symmetry with replay jobs which name these
923 * explicitly */
924
925 mali_ptr heap_start; /* tiler heap_free_address */
926 mali_ptr heap_end;
927
928 /* Hierarchy weights. We know these are weights based on the kernel,
929 * but I've never seen them be anything other than zero */
930 u32 weights[8];
931 };
932
933 struct mali_sfbd_format {
934 /* 0x1 */
935 unsigned unk1 : 6;
936
937 /* mali_channel_swizzle */
938 unsigned swizzle : 12;
939
940 /* MALI_POSITIVE */
941 unsigned nr_channels : 2;
942
943 /* 0x4 */
944 unsigned unk2 : 6;
945
946 enum mali_block_format block : 2;
947
948 /* 0xb */
949 unsigned unk3 : 4;
950 };
951
952 /* Shared structure at the start of framebuffer descriptors, or used bare for
953 * compute jobs, configuring stack and shared memory */
954
955 struct mali_shared_memory {
956 u32 stack_shift : 4;
957 u32 unk0 : 28;
958
959 /* Configuration for shared memory for compute shaders.
960 * shared_workgroup_count is logarithmic and may be computed for a
961 * compute shader using shared memory as:
962 *
963 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
964 *
965 * For compute shaders that don't use shared memory, or non-compute
966 * shaders, this is set to ~0
967 */
968
969 u32 shared_workgroup_count : 5;
970 u32 shared_unk1 : 3;
971 u32 shared_shift : 4;
972 u32 shared_zero : 20;
973
974 mali_ptr scratchpad;
975
976 /* For compute shaders, the RAM backing of workgroup-shared memory. For
977 * fragment shaders on Bifrost, apparently multisampling locations */
978
979 mali_ptr shared_memory;
980 mali_ptr unknown1;
981 } __attribute__((packed));
982
983 /* Configures multisampling on Bifrost fragment jobs */
984
985 struct bifrost_multisampling {
986 u64 zero1;
987 u64 zero2;
988 mali_ptr sample_locations;
989 u64 zero4;
990 } __attribute__((packed));
991
992 struct mali_single_framebuffer {
993 struct mali_shared_memory shared_memory;
994 struct mali_sfbd_format format;
995
996 u32 clear_flags;
997 u32 zero2;
998
999 /* Purposeful off-by-one in these fields should be accounted for by the
1000 * MALI_DIMENSION macro */
1001
1002 u16 width;
1003 u16 height;
1004
1005 u32 zero3[4];
1006 mali_ptr checksum;
1007 u32 checksum_stride;
1008 u32 zero5;
1009
1010 /* By default, the framebuffer is upside down from OpenGL's
1011 * perspective. Set framebuffer to the end and negate the stride to
1012 * flip in the Y direction */
1013
1014 mali_ptr framebuffer;
1015 int32_t stride;
1016
1017 u32 zero4;
1018
1019 /* Depth and stencil buffers are interleaved, it appears, as they are
1020 * set to the same address in captures. Both fields set to zero if the
1021 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1022 * get a zero enable despite the buffer being present; that still is
1023 * disabled. */
1024
1025 mali_ptr depth_buffer; // not SAME_VA
1026 u32 depth_stride_zero : 4;
1027 u32 depth_stride : 28;
1028 u32 zero7;
1029
1030 mali_ptr stencil_buffer; // not SAME_VA
1031 u32 stencil_stride_zero : 4;
1032 u32 stencil_stride : 28;
1033 u32 zero8;
1034
1035 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1036 u32 clear_color_2; // always equal, but unclear function?
1037 u32 clear_color_3; // always equal, but unclear function?
1038 u32 clear_color_4; // always equal, but unclear function?
1039
1040 /* Set to zero if not cleared */
1041
1042 float clear_depth_1; // float32, ditto
1043 float clear_depth_2; // float32, ditto
1044 float clear_depth_3; // float32, ditto
1045 float clear_depth_4; // float32, ditto
1046
1047 u32 clear_stencil; // Exactly as it appears in OpenGL
1048
1049 u32 zero6[7];
1050
1051 struct midgard_tiler_descriptor tiler;
1052
1053 /* More below this, maybe */
1054 } __attribute__((packed));
1055
1056
1057 #define MALI_MFBD_FORMAT_SRGB (1 << 0)
1058
1059 struct mali_rt_format {
1060 unsigned unk1 : 32;
1061 unsigned unk2 : 3;
1062
1063 unsigned nr_channels : 2; /* MALI_POSITIVE */
1064
1065 unsigned unk3 : 4;
1066 unsigned unk4 : 1;
1067 enum mali_block_format block : 2;
1068 enum mali_msaa msaa : 2;
1069 unsigned flags : 2;
1070
1071 unsigned swizzle : 12;
1072
1073 unsigned zero : 3;
1074
1075 /* Disables MFBD preload. When this bit is set, the render target will
1076 * be cleared every frame. When this bit is clear, the hardware will
1077 * automatically wallpaper the render target back from main memory.
1078 * Unfortunately, MFBD preload is very broken on Midgard, so in
1079 * practice, this is a chicken bit that should always be set.
1080 * Discovered by accident, as all good chicken bits are. */
1081
1082 unsigned no_preload : 1;
1083 } __attribute__((packed));
1084
1085 /* Flags for afbc.flags and ds_afbc.flags */
1086
1087 #define MALI_AFBC_FLAGS 0x10009
1088
1089 /* Lossless RGB and RGBA colorspace transform */
1090 #define MALI_AFBC_YTR (1 << 17)
1091
1092 struct mali_render_target {
1093 struct mali_rt_format format;
1094
1095 u64 zero1;
1096
1097 struct {
1098 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1099 * there is an extra metadata buffer that contains 16 bytes per tile.
1100 * The framebuffer needs to be the same size as before, since we don't
1101 * know ahead of time how much space it will take up. The
1102 * framebuffer_stride is set to 0, since the data isn't stored linearly
1103 * anymore.
1104 *
1105 * When AFBC is disabled, these fields are zero.
1106 */
1107
1108 mali_ptr metadata;
1109 u32 stride; // stride in units of tiles
1110 u32 flags; // = 0x20000
1111 } afbc;
1112
1113 mali_ptr framebuffer;
1114
1115 u32 zero2 : 4;
1116 u32 framebuffer_stride : 28; // in units of bytes, row to next
1117 u32 layer_stride; /* For multisample rendering */
1118
1119 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1120 u32 clear_color_2; // always equal, but unclear function?
1121 u32 clear_color_3; // always equal, but unclear function?
1122 u32 clear_color_4; // always equal, but unclear function?
1123 } __attribute__((packed));
1124
1125 /* An optional part of mali_framebuffer. It comes between the main structure
1126 * and the array of render targets. It must be included if any of these are
1127 * enabled:
1128 *
1129 * - Transaction Elimination
1130 * - Depth/stencil
1131 * - TODO: Anything else?
1132 */
1133
1134 /* flags_hi */
1135 #define MALI_EXTRA_PRESENT (0x1)
1136
1137 /* flags_lo */
1138 #define MALI_EXTRA_ZS (0x4)
1139
1140 struct mali_framebuffer_extra {
1141 mali_ptr checksum;
1142 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1143 u32 checksum_stride;
1144
1145 unsigned flags_lo : 4;
1146 enum mali_block_format zs_block : 2;
1147
1148 /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
1149 * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
1150 unsigned zs_samples : 4;
1151 unsigned flags_hi : 22;
1152
1153 union {
1154 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1155 struct {
1156 mali_ptr depth_stencil_afbc_metadata;
1157 u32 depth_stencil_afbc_stride; // in units of tiles
1158 u32 flags;
1159
1160 mali_ptr depth_stencil;
1161
1162 u64 padding;
1163 } ds_afbc;
1164
1165 struct {
1166 /* Depth becomes depth/stencil in case of combined D/S */
1167 mali_ptr depth;
1168 u32 depth_stride_zero : 4;
1169 u32 depth_stride : 28;
1170 u32 depth_layer_stride;
1171
1172 mali_ptr stencil;
1173 u32 stencil_stride_zero : 4;
1174 u32 stencil_stride : 28;
1175 u32 stencil_layer_stride;
1176 } ds_linear;
1177 };
1178
1179
1180 u32 clear_color_1;
1181 u32 clear_color_2;
1182 u64 zero3;
1183 } __attribute__((packed));
1184
1185 /* Flags for mfbd_flags */
1186
1187 /* Enables writing depth results back to main memory (rather than keeping them
1188 * on-chip in the tile buffer and then discarding) */
1189
1190 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1191
1192 /* The MFBD contains the extra mali_framebuffer_extra section */
1193
1194 #define MALI_MFBD_EXTRA (1 << 13)
1195
1196 struct mali_framebuffer {
1197 union {
1198 struct mali_shared_memory shared_memory;
1199 struct bifrost_multisampling msaa;
1200 };
1201
1202 /* 0x20 */
1203 u16 width1, height1;
1204 u32 zero3;
1205 u16 width2, height2;
1206 u32 unk1 : 19; // = 0x01000
1207 u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1208 u32 unk2 : 2; // = 0
1209 u32 rt_count_2 : 3; // no off-by-one
1210 u32 zero4 : 5;
1211 /* 0x30 */
1212 u32 clear_stencil : 8;
1213 u32 mfbd_flags : 24; // = 0x100
1214 float clear_depth;
1215
1216 union {
1217 struct midgard_tiler_descriptor tiler;
1218 struct {
1219 mali_ptr tiler_meta;
1220 u32 zeros[16];
1221 };
1222 };
1223
1224 /* optional: struct mali_framebuffer_extra extra */
1225 /* struct mali_render_target rts[] */
1226 } __attribute__((packed));
1227
1228 #endif /* __PANFROST_JOB_H__ */