pan/mdg: Move condense_writemask to disasm
[mesa.git] / src / panfrost / midgard / disassemble.c
1 /* Author(s):
2 * Connor Abbott
3 * Alyssa Rosenzweig
4 *
5 * Copyright (c) 2013 Connor Abbott (connor@abbott.cx)
6 * Copyright (c) 2018 Alyssa Rosenzweig (alyssa@rosenzweig.io)
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include <stdio.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <assert.h>
31 #include <inttypes.h>
32 #include <ctype.h>
33 #include <string.h>
34 #include "midgard.h"
35 #include "midgard_ops.h"
36 #include "midgard_quirks.h"
37 #include "disassemble.h"
38 #include "helpers.h"
39 #include "util/bitscan.h"
40 #include "util/half_float.h"
41 #include "util/u_math.h"
42
43 #define DEFINE_CASE(define, str) case define: { fprintf(fp, str); break; }
44
45 static unsigned *midg_tags;
46 static bool is_instruction_int = false;
47
48 /* Stats */
49
50 static struct midgard_disasm_stats midg_stats;
51
52 /* Transform an expanded writemask (duplicated 8-bit format) into its condensed
53 * form (one bit per component) */
54
55 static inline unsigned
56 condense_writemask(unsigned expanded_mask,
57 unsigned bits_per_component)
58 {
59 if (bits_per_component == 8)
60 unreachable("XXX TODO: sort out how 8-bit constant encoding works");
61
62 unsigned slots_per_component = bits_per_component / 16;
63 unsigned max_comp = (16 * 8) / bits_per_component;
64 unsigned condensed_mask = 0;
65
66 for (unsigned i = 0; i < max_comp; i++) {
67 if (expanded_mask & (1 << (i * slots_per_component)))
68 condensed_mask |= (1 << i);
69 }
70
71 return condensed_mask;
72 }
73
74 static void
75 print_alu_opcode(FILE *fp, midgard_alu_op op)
76 {
77 bool int_op = false;
78
79 if (alu_opcode_props[op].name) {
80 fprintf(fp, "%s", alu_opcode_props[op].name);
81
82 int_op = midgard_is_integer_op(op);
83 } else
84 fprintf(fp, "alu_op_%02X", op);
85
86 /* For constant analysis */
87 is_instruction_int = int_op;
88 }
89
90 static void
91 print_ld_st_opcode(FILE *fp, midgard_load_store_op op)
92 {
93 if (load_store_opcode_props[op].name)
94 fprintf(fp, "%s", load_store_opcode_props[op].name);
95 else
96 fprintf(fp, "ldst_op_%02X", op);
97 }
98
99 static bool is_embedded_constant_half = false;
100 static bool is_embedded_constant_int = false;
101
102 static char
103 prefix_for_bits(unsigned bits)
104 {
105 switch (bits) {
106 case 8:
107 return 'q';
108 case 16:
109 return 'h';
110 case 64:
111 return 'd';
112 default:
113 return 0;
114 }
115 }
116
117 /* For static analysis to ensure all registers are written at least once before
118 * use along the source code path (TODO: does this break done for complex CF?)
119 */
120
121 uint16_t midg_ever_written = 0;
122
123 static void
124 print_reg(FILE *fp, unsigned reg, unsigned bits)
125 {
126 /* Perform basic static analysis for expanding constants correctly */
127
128 if (reg == 26) {
129 is_embedded_constant_int = is_instruction_int;
130 is_embedded_constant_half = (bits < 32);
131 }
132
133 unsigned uniform_reg = 23 - reg;
134 bool is_uniform = false;
135
136 /* For r8-r15, it could be a work or uniform. We distinguish based on
137 * the fact work registers are ALWAYS written before use, but uniform
138 * registers are NEVER written before use. */
139
140 if ((reg >= 8 && reg < 16) && !(midg_ever_written & (1 << reg)))
141 is_uniform = true;
142
143 /* r16-r23 are always uniform */
144
145 if (reg >= 16 && reg <= 23)
146 is_uniform = true;
147
148 /* Update the uniform count appropriately */
149
150 if (is_uniform)
151 midg_stats.uniform_count =
152 MAX2(uniform_reg + 1, midg_stats.uniform_count);
153
154 char prefix = prefix_for_bits(bits);
155
156 if (prefix)
157 fputc(prefix, fp);
158
159 fprintf(fp, "r%u", reg);
160 }
161
162 static char *outmod_names_float[4] = {
163 "",
164 ".pos",
165 ".one",
166 ".sat"
167 };
168
169 static char *outmod_names_int[4] = {
170 ".isat",
171 ".usat",
172 "",
173 ".hi"
174 };
175
176 static char *srcmod_names_int[4] = {
177 "sext(",
178 "zext(",
179 "",
180 "("
181 };
182
183 static void
184 print_outmod(FILE *fp, unsigned outmod, bool is_int)
185 {
186 fprintf(fp, "%s", is_int ? outmod_names_int[outmod] :
187 outmod_names_float[outmod]);
188 }
189
190 static void
191 print_quad_word(FILE *fp, uint32_t *words, unsigned tabs)
192 {
193 unsigned i;
194
195 for (i = 0; i < 4; i++)
196 fprintf(fp, "0x%08X%s ", words[i], i == 3 ? "" : ",");
197
198 fprintf(fp, "\n");
199 }
200
201 static const char components[16] = "xyzwefghijklmnop";
202
203 /* Helper to print 4 chars of a swizzle */
204 static void
205 print_swizzle_helper(FILE *fp, unsigned swizzle, unsigned offset)
206 {
207 for (unsigned i = 0; i < 4; ++i) {
208 unsigned c = (swizzle >> (i * 2)) & 3;
209 c += offset;
210 fprintf(fp, "%c", components[c]);
211 }
212 }
213
214 /* Helper to print 8 chars of a swizzle, duplicating over */
215 static void
216 print_swizzle_helper_8(FILE *fp, unsigned swizzle, bool upper)
217 {
218 for (unsigned i = 0; i < 4; ++i) {
219 unsigned c = (swizzle >> (i * 2)) & 3;
220 c *= 2;
221 c += upper*8;
222 fprintf(fp, "%c%c", components[c], components[c+1]);
223 }
224 }
225
226 static void
227 print_swizzle_vec16(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low,
228 midgard_dest_override override)
229 {
230 fprintf(fp, ".");
231
232 if (override == midgard_dest_override_upper) {
233 if (rep_high)
234 fprintf(fp, " /* rep_high */ ");
235 if (rep_low)
236 fprintf(fp, " /* rep_low */ ");
237
238 if (!rep_high && rep_low)
239 print_swizzle_helper_8(fp, swizzle, true);
240 else
241 print_swizzle_helper_8(fp, swizzle, false);
242 } else {
243 print_swizzle_helper_8(fp, swizzle, rep_high & 1);
244 print_swizzle_helper_8(fp, swizzle, !(rep_low & 1));
245 }
246 }
247
248 static void
249 print_swizzle_vec8(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half)
250 {
251 fprintf(fp, ".");
252
253 /* TODO: Is it possible to unify half/full? */
254
255 if (half) {
256 print_swizzle_helper(fp, swizzle, (rep_low * 8));
257 print_swizzle_helper(fp, swizzle, (rep_low * 8) + !rep_high * 4);
258 } else {
259 print_swizzle_helper(fp, swizzle, rep_high * 4);
260 print_swizzle_helper(fp, swizzle, !rep_low * 4);
261 }
262 }
263
264 static void
265 print_swizzle_vec4(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half)
266 {
267 if (rep_high)
268 fprintf(fp, " /* rep_high */ ");
269
270 if (!half && rep_low)
271 fprintf(fp, " /* rep_low */ ");
272
273 if (swizzle == 0xE4 && !half) return; /* xyzw */
274
275 fprintf(fp, ".");
276 print_swizzle_helper(fp, swizzle, rep_low * 4);
277 }
278 static void
279 print_swizzle_vec2(FILE *fp, unsigned swizzle, bool rep_high, bool rep_low, bool half)
280 {
281 char *alphabet = "XY";
282
283 if (half) {
284 alphabet = rep_low ? "zw" : "xy";
285 } else if (rep_low)
286 fprintf(fp, " /* rep_low */ ");
287
288 if (rep_high)
289 fprintf(fp, " /* rep_high */ ");
290
291 if (swizzle == 0xE4 && !half) return; /* XY */
292
293 fprintf(fp, ".");
294
295 for (unsigned i = 0; i < 4; i += 2) {
296 unsigned a = (swizzle >> (i * 2)) & 3;
297 unsigned b = (swizzle >> ((i+1) * 2)) & 3;
298
299 /* Normally we're adjacent, but if there's an issue, don't make
300 * it ambiguous */
301
302 if (b == (a + 1))
303 fprintf(fp, "%c", alphabet[a >> 1]);
304 else
305 fprintf(fp, "[%c%c]", components[a], components[b]);
306 }
307 }
308
309 static int
310 bits_for_mode(midgard_reg_mode mode)
311 {
312 switch (mode) {
313 case midgard_reg_mode_8:
314 return 8;
315 case midgard_reg_mode_16:
316 return 16;
317 case midgard_reg_mode_32:
318 return 32;
319 case midgard_reg_mode_64:
320 return 64;
321 default:
322 unreachable("Invalid reg mode");
323 return 0;
324 }
325 }
326
327 static int
328 bits_for_mode_halved(midgard_reg_mode mode, bool half)
329 {
330 unsigned bits = bits_for_mode(mode);
331
332 if (half)
333 bits >>= 1;
334
335 return bits;
336 }
337
338 static void
339 print_scalar_constant(FILE *fp, unsigned src_binary,
340 const midgard_constants *consts,
341 midgard_scalar_alu *alu)
342 {
343 midgard_scalar_alu_src *src = (midgard_scalar_alu_src *)&src_binary;
344 unsigned mod = 0;
345
346 assert(consts != NULL);
347
348 if (!midgard_is_integer_op(alu->op)) {
349 if (src->abs)
350 mod |= MIDGARD_FLOAT_MOD_ABS;
351 if (src->negate)
352 mod |= MIDGARD_FLOAT_MOD_NEG;
353 } else {
354 mod = midgard_int_normal;
355 }
356
357 fprintf(fp, "#");
358 mir_print_constant_component(fp, consts, src->component,
359 src->full ?
360 midgard_reg_mode_32 : midgard_reg_mode_16,
361 false, mod, alu->op);
362 }
363
364 static void
365 print_vector_constants(FILE *fp, unsigned src_binary,
366 const midgard_constants *consts,
367 midgard_vector_alu *alu)
368 {
369 midgard_vector_alu_src *src = (midgard_vector_alu_src *)&src_binary;
370 unsigned bits = bits_for_mode_halved(alu->reg_mode, src->half);
371 unsigned max_comp = MIN2((sizeof(*consts) * 8) / bits, 8);
372 unsigned comp_mask, num_comp = 0;
373
374 assert(consts);
375
376 comp_mask = effective_writemask(alu, condense_writemask(alu->mask, bits));
377 num_comp = util_bitcount(comp_mask);
378
379 fprintf(fp, "#");
380 if (num_comp > 1)
381 fprintf(fp, "vec%d(", num_comp);
382
383 bool first = true;
384
385 for (unsigned i = 0; i < max_comp; ++i) {
386 if (!(comp_mask & (1 << i))) continue;
387
388 unsigned c = (src->swizzle >> (i * 2)) & 3;
389
390 if (first)
391 first = false;
392 else
393 fprintf(fp, ", ");
394
395 mir_print_constant_component(fp, consts, c, alu->reg_mode,
396 src->half, src->mod, alu->op);
397 }
398
399 if (num_comp > 1)
400 fprintf(fp, ")");
401 }
402
403 static void
404 print_vector_src(FILE *fp, unsigned src_binary,
405 midgard_reg_mode mode, unsigned reg,
406 midgard_dest_override override, bool is_int)
407 {
408 midgard_vector_alu_src *src = (midgard_vector_alu_src *)&src_binary;
409
410 /* Modifiers change meaning depending on the op's context */
411
412 midgard_int_mod int_mod = src->mod;
413
414 if (is_int) {
415 fprintf(fp, "%s", srcmod_names_int[int_mod]);
416 } else {
417 if (src->mod & MIDGARD_FLOAT_MOD_NEG)
418 fprintf(fp, "-");
419
420 if (src->mod & MIDGARD_FLOAT_MOD_ABS)
421 fprintf(fp, "abs(");
422 }
423
424 //register
425 unsigned bits = bits_for_mode_halved(mode, src->half);
426 print_reg(fp, reg, bits);
427
428 /* When the source was stepped down via `half`, rep_low means "higher
429 * half" and rep_high is never seen. When it's not native,
430 * rep_low/rep_high are for, well, replication */
431
432 if (mode == midgard_reg_mode_8) {
433 assert(!src->half);
434 print_swizzle_vec16(fp, src->swizzle, src->rep_high, src->rep_low, override);
435 } else if (mode == midgard_reg_mode_16) {
436 print_swizzle_vec8(fp, src->swizzle, src->rep_high, src->rep_low, src->half);
437 } else if (mode == midgard_reg_mode_32) {
438 print_swizzle_vec4(fp, src->swizzle, src->rep_high, src->rep_low, src->half);
439 } else if (mode == midgard_reg_mode_64) {
440 print_swizzle_vec2(fp, src->swizzle, src->rep_high, src->rep_low, src->half);
441 }
442
443 /* Since we wrapped with a function-looking thing */
444
445 if (is_int && int_mod == midgard_int_shift)
446 fprintf(fp, ") << %u", bits);
447 else if ((is_int && (int_mod != midgard_int_normal))
448 || (!is_int && src->mod & MIDGARD_FLOAT_MOD_ABS))
449 fprintf(fp, ")");
450 }
451
452 static uint16_t
453 decode_vector_imm(unsigned src2_reg, unsigned imm)
454 {
455 uint16_t ret;
456 ret = src2_reg << 11;
457 ret |= (imm & 0x7) << 8;
458 ret |= (imm >> 3) & 0xFF;
459 return ret;
460 }
461
462 static void
463 print_immediate(FILE *fp, uint16_t imm)
464 {
465 if (is_instruction_int)
466 fprintf(fp, "#%u", imm);
467 else
468 fprintf(fp, "#%g", _mesa_half_to_float(imm));
469 }
470
471 static void
472 update_dest(unsigned reg)
473 {
474 /* We should record writes as marking this as a work register. Store
475 * the max register in work_count; we'll add one at the end */
476
477 if (reg < 16) {
478 midg_stats.work_count = MAX2(reg, midg_stats.work_count);
479 midg_ever_written |= (1 << reg);
480 }
481 }
482
483 static void
484 print_dest(FILE *fp, unsigned reg, midgard_reg_mode mode, midgard_dest_override override)
485 {
486 /* Depending on the mode and override, we determine the type of
487 * destination addressed. Absent an override, we address just the
488 * type of the operation itself */
489
490 unsigned bits = bits_for_mode(mode);
491
492 if (override != midgard_dest_override_none)
493 bits /= 2;
494
495 update_dest(reg);
496 print_reg(fp, reg, bits);
497 }
498
499 static void
500 print_mask_vec16(FILE *fp, uint8_t mask, midgard_dest_override override)
501 {
502 fprintf(fp, ".");
503
504 for (unsigned i = 0; i < 8; i++) {
505 if (mask & (1 << i))
506 fprintf(fp, "%c%c",
507 components[i*2 + 0],
508 components[i*2 + 1]);
509 }
510 }
511
512 /* For 16-bit+ masks, we read off from the 8-bit mask field. For 16-bit (vec8),
513 * it's just one bit per channel, easy peasy. For 32-bit (vec4), it's one bit
514 * per channel with one duplicate bit in the middle. For 64-bit (vec2), it's
515 * one-bit per channel with _3_ duplicate bits in the middle. Basically, just
516 * subdividing the 128-bit word in 16-bit increments. For 64-bit, we uppercase
517 * the mask to make it obvious what happened */
518
519 static void
520 print_mask(FILE *fp, uint8_t mask, unsigned bits, midgard_dest_override override)
521 {
522 if (bits == 8) {
523 print_mask_vec16(fp, mask, override);
524 return;
525 }
526
527 /* Skip 'complete' masks */
528
529 if (override == midgard_dest_override_none)
530 if (bits >= 32 && mask == 0xFF) return;
531
532 fprintf(fp, ".");
533
534 unsigned skip = (bits / 16);
535 bool uppercase = bits > 32;
536 bool tripped = false;
537
538 /* To apply an upper destination override, we "shift" the alphabet.
539 * E.g. with an upper override on 32-bit, instead of xyzw, print efgh.
540 * For upper 16-bit, instead of xyzwefgh, print ijklmnop */
541
542 const char *alphabet = components;
543
544 if (override == midgard_dest_override_upper)
545 alphabet += (128 / bits);
546
547 for (unsigned i = 0; i < 8; i += skip) {
548 bool a = (mask & (1 << i)) != 0;
549
550 for (unsigned j = 1; j < skip; ++j) {
551 bool dupe = (mask & (1 << (i + j))) != 0;
552 tripped |= (dupe != a);
553 }
554
555 if (a) {
556 char c = alphabet[i / skip];
557
558 if (uppercase)
559 c = toupper(c);
560
561 fprintf(fp, "%c", c);
562 }
563 }
564
565 if (tripped)
566 fprintf(fp, " /* %X */", mask);
567 }
568
569 /* Prints the 4-bit masks found in texture and load/store ops, as opposed to
570 * the 8-bit masks found in (vector) ALU ops. Supports texture-style 16-bit
571 * mode as well, but not load/store-style 16-bit mode. */
572
573 static void
574 print_mask_4(FILE *fp, unsigned mask, bool upper)
575 {
576 if (mask == 0xF) {
577 if (upper)
578 fprintf(fp, "'");
579
580 return;
581 }
582
583 fprintf(fp, ".");
584
585 for (unsigned i = 0; i < 4; ++i) {
586 bool a = (mask & (1 << i)) != 0;
587 if (a)
588 fprintf(fp, "%c", components[i + (upper ? 4 : 0)]);
589 }
590 }
591
592 static void
593 print_vector_field(FILE *fp, const char *name, uint16_t *words, uint16_t reg_word,
594 const midgard_constants *consts, unsigned tabs)
595 {
596 midgard_reg_info *reg_info = (midgard_reg_info *)&reg_word;
597 midgard_vector_alu *alu_field = (midgard_vector_alu *) words;
598 midgard_reg_mode mode = alu_field->reg_mode;
599 unsigned override = alu_field->dest_override;
600
601 /* For now, prefix instruction names with their unit, until we
602 * understand how this works on a deeper level */
603 fprintf(fp, "%s.", name);
604
605 print_alu_opcode(fp, alu_field->op);
606
607 /* Postfix with the size to disambiguate if necessary */
608 char postfix = prefix_for_bits(bits_for_mode(mode));
609 bool size_ambiguous = override != midgard_dest_override_none;
610
611 if (size_ambiguous)
612 fprintf(fp, "%c", postfix ? postfix : 'r');
613
614 /* Print the outmod, if there is one */
615 print_outmod(fp, alu_field->outmod,
616 midgard_is_integer_out_op(alu_field->op));
617
618 fprintf(fp, " ");
619
620 /* Mask denoting status of 8-lanes */
621 uint8_t mask = alu_field->mask;
622
623 /* First, print the destination */
624 print_dest(fp, reg_info->out_reg, mode, alu_field->dest_override);
625
626 if (override != midgard_dest_override_none) {
627 bool modeable = (mode != midgard_reg_mode_8);
628 bool known = override != 0x3; /* Unused value */
629
630 if (!(modeable && known))
631 fprintf(fp, "/* do%u */ ", override);
632 }
633
634 print_mask(fp, mask, bits_for_mode(mode), override);
635
636 fprintf(fp, ", ");
637
638 bool is_int = midgard_is_integer_op(alu_field->op);
639
640 if (reg_info->src1_reg == 26)
641 print_vector_constants(fp, alu_field->src1, consts, alu_field);
642 else
643 print_vector_src(fp, alu_field->src1, mode, reg_info->src1_reg, override, is_int);
644
645 fprintf(fp, ", ");
646
647 if (reg_info->src2_imm) {
648 uint16_t imm = decode_vector_imm(reg_info->src2_reg, alu_field->src2 >> 2);
649 print_immediate(fp, imm);
650 } else if (reg_info->src2_reg == 26) {
651 print_vector_constants(fp, alu_field->src2, consts, alu_field);
652 } else {
653 print_vector_src(fp, alu_field->src2, mode,
654 reg_info->src2_reg, override, is_int);
655 }
656
657 midg_stats.instruction_count++;
658 fprintf(fp, "\n");
659 }
660
661 static void
662 print_scalar_src(FILE *fp, unsigned src_binary, unsigned reg)
663 {
664 midgard_scalar_alu_src *src = (midgard_scalar_alu_src *)&src_binary;
665
666 if (src->negate)
667 fprintf(fp, "-");
668
669 if (src->abs)
670 fprintf(fp, "abs(");
671
672 print_reg(fp, reg, src->full ? 32 : 16);
673
674 unsigned c = src->component;
675
676 if (src->full) {
677 assert((c & 1) == 0);
678 c >>= 1;
679 }
680
681 fprintf(fp, ".%c", components[c]);
682
683 if (src->abs)
684 fprintf(fp, ")");
685
686 }
687
688 static uint16_t
689 decode_scalar_imm(unsigned src2_reg, unsigned imm)
690 {
691 uint16_t ret;
692 ret = src2_reg << 11;
693 ret |= (imm & 3) << 9;
694 ret |= (imm & 4) << 6;
695 ret |= (imm & 0x38) << 2;
696 ret |= imm >> 6;
697 return ret;
698 }
699
700 static void
701 print_scalar_field(FILE *fp, const char *name, uint16_t *words, uint16_t reg_word,
702 const midgard_constants *consts, unsigned tabs)
703 {
704 midgard_reg_info *reg_info = (midgard_reg_info *)&reg_word;
705 midgard_scalar_alu *alu_field = (midgard_scalar_alu *) words;
706
707 if (alu_field->unknown)
708 fprintf(fp, "scalar ALU unknown bit set\n");
709
710 fprintf(fp, "%s.", name);
711 print_alu_opcode(fp, alu_field->op);
712 print_outmod(fp, alu_field->outmod,
713 midgard_is_integer_out_op(alu_field->op));
714 fprintf(fp, " ");
715
716 bool full = alu_field->output_full;
717 update_dest(reg_info->out_reg);
718 print_reg(fp, reg_info->out_reg, full ? 32 : 16);
719 unsigned c = alu_field->output_component;
720
721 if (full) {
722 assert((c & 1) == 0);
723 c >>= 1;
724 }
725
726 fprintf(fp, ".%c, ", components[c]);
727
728 if (reg_info->src1_reg == 26)
729 print_scalar_constant(fp, alu_field->src1, consts, alu_field);
730 else
731 print_scalar_src(fp, alu_field->src1, reg_info->src1_reg);
732
733 fprintf(fp, ", ");
734
735 if (reg_info->src2_imm) {
736 uint16_t imm = decode_scalar_imm(reg_info->src2_reg,
737 alu_field->src2);
738 print_immediate(fp, imm);
739 } else if (reg_info->src2_reg == 26) {
740 print_scalar_constant(fp, alu_field->src2, consts, alu_field);
741 } else
742 print_scalar_src(fp, alu_field->src2, reg_info->src2_reg);
743
744 midg_stats.instruction_count++;
745 fprintf(fp, "\n");
746 }
747
748 static void
749 print_branch_op(FILE *fp, unsigned op)
750 {
751 switch (op) {
752 case midgard_jmp_writeout_op_branch_uncond:
753 fprintf(fp, "uncond.");
754 break;
755
756 case midgard_jmp_writeout_op_branch_cond:
757 fprintf(fp, "cond.");
758 break;
759
760 case midgard_jmp_writeout_op_writeout:
761 fprintf(fp, "write.");
762 break;
763
764 case midgard_jmp_writeout_op_tilebuffer_pending:
765 fprintf(fp, "tilebuffer.");
766 break;
767
768 case midgard_jmp_writeout_op_discard:
769 fprintf(fp, "discard.");
770 break;
771
772 default:
773 fprintf(fp, "unk%u.", op);
774 break;
775 }
776 }
777
778 static void
779 print_branch_cond(FILE *fp, int cond)
780 {
781 switch (cond) {
782 case midgard_condition_write0:
783 fprintf(fp, "write0");
784 break;
785
786 case midgard_condition_false:
787 fprintf(fp, "false");
788 break;
789
790 case midgard_condition_true:
791 fprintf(fp, "true");
792 break;
793
794 case midgard_condition_always:
795 fprintf(fp, "always");
796 break;
797
798 default:
799 fprintf(fp, "unk%X", cond);
800 break;
801 }
802 }
803
804 static bool
805 print_compact_branch_writeout_field(FILE *fp, uint16_t word)
806 {
807 midgard_jmp_writeout_op op = word & 0x7;
808 midg_stats.instruction_count++;
809
810 switch (op) {
811 case midgard_jmp_writeout_op_branch_uncond: {
812 midgard_branch_uncond br_uncond;
813 memcpy((char *) &br_uncond, (char *) &word, sizeof(br_uncond));
814 fprintf(fp, "br.uncond ");
815
816 if (br_uncond.unknown != 1)
817 fprintf(fp, "unknown:%u, ", br_uncond.unknown);
818
819 if (br_uncond.offset >= 0)
820 fprintf(fp, "+");
821
822 fprintf(fp, "%d -> %s", br_uncond.offset,
823 midgard_tag_props[br_uncond.dest_tag].name);
824 fprintf(fp, "\n");
825
826 return br_uncond.offset >= 0;
827 }
828
829 case midgard_jmp_writeout_op_branch_cond:
830 case midgard_jmp_writeout_op_writeout:
831 case midgard_jmp_writeout_op_discard:
832 default: {
833 midgard_branch_cond br_cond;
834 memcpy((char *) &br_cond, (char *) &word, sizeof(br_cond));
835
836 fprintf(fp, "br.");
837
838 print_branch_op(fp, br_cond.op);
839 print_branch_cond(fp, br_cond.cond);
840
841 fprintf(fp, " ");
842
843 if (br_cond.offset >= 0)
844 fprintf(fp, "+");
845
846 fprintf(fp, "%d -> %s", br_cond.offset,
847 midgard_tag_props[br_cond.dest_tag].name);
848 fprintf(fp, "\n");
849
850 return br_cond.offset >= 0;
851 }
852 }
853
854 return false;
855 }
856
857 static bool
858 print_extended_branch_writeout_field(FILE *fp, uint8_t *words, unsigned next)
859 {
860 midgard_branch_extended br;
861 memcpy((char *) &br, (char *) words, sizeof(br));
862
863 fprintf(fp, "brx.");
864
865 print_branch_op(fp, br.op);
866
867 /* Condition codes are a LUT in the general case, but simply repeated 8 times for single-channel conditions.. Check this. */
868
869 bool single_channel = true;
870
871 for (unsigned i = 0; i < 16; i += 2) {
872 single_channel &= (((br.cond >> i) & 0x3) == (br.cond & 0x3));
873 }
874
875 if (single_channel)
876 print_branch_cond(fp, br.cond & 0x3);
877 else
878 fprintf(fp, "lut%X", br.cond);
879
880 if (br.unknown)
881 fprintf(fp, ".unknown%u", br.unknown);
882
883 fprintf(fp, " ");
884
885 if (br.offset >= 0)
886 fprintf(fp, "+");
887
888 fprintf(fp, "%d -> %s\n", br.offset,
889 midgard_tag_props[br.dest_tag].name);
890
891 unsigned I = next + br.offset * 4;
892
893 if (midg_tags[I] && midg_tags[I] != br.dest_tag) {
894 fprintf(fp, "\t/* XXX TAG ERROR: jumping to %s but tagged %s \n",
895 midgard_tag_props[br.dest_tag].name,
896 midgard_tag_props[midg_tags[I]].name);
897 }
898
899 midg_tags[I] = br.dest_tag;
900
901 midg_stats.instruction_count++;
902 return br.offset >= 0;
903 }
904
905 static unsigned
906 num_alu_fields_enabled(uint32_t control_word)
907 {
908 unsigned ret = 0;
909
910 if ((control_word >> 17) & 1)
911 ret++;
912
913 if ((control_word >> 19) & 1)
914 ret++;
915
916 if ((control_word >> 21) & 1)
917 ret++;
918
919 if ((control_word >> 23) & 1)
920 ret++;
921
922 if ((control_word >> 25) & 1)
923 ret++;
924
925 return ret;
926 }
927
928 static bool
929 print_alu_word(FILE *fp, uint32_t *words, unsigned num_quad_words,
930 unsigned tabs, unsigned next)
931 {
932 uint32_t control_word = words[0];
933 uint16_t *beginning_ptr = (uint16_t *)(words + 1);
934 unsigned num_fields = num_alu_fields_enabled(control_word);
935 uint16_t *word_ptr = beginning_ptr + num_fields;
936 unsigned num_words = 2 + num_fields;
937 const midgard_constants *consts = NULL;
938 bool branch_forward = false;
939
940 if ((control_word >> 17) & 1)
941 num_words += 3;
942
943 if ((control_word >> 19) & 1)
944 num_words += 2;
945
946 if ((control_word >> 21) & 1)
947 num_words += 3;
948
949 if ((control_word >> 23) & 1)
950 num_words += 2;
951
952 if ((control_word >> 25) & 1)
953 num_words += 3;
954
955 if ((control_word >> 26) & 1)
956 num_words += 1;
957
958 if ((control_word >> 27) & 1)
959 num_words += 3;
960
961 if (num_quad_words > (num_words + 7) / 8) {
962 assert(num_quad_words == (num_words + 15) / 8);
963 //Assume that the extra quadword is constants
964 consts = (midgard_constants *)(words + (4 * num_quad_words - 4));
965 }
966
967 if ((control_word >> 16) & 1)
968 fprintf(fp, "unknown bit 16 enabled\n");
969
970 if ((control_word >> 17) & 1) {
971 print_vector_field(fp, "vmul", word_ptr, *beginning_ptr, consts, tabs);
972 beginning_ptr += 1;
973 word_ptr += 3;
974 }
975
976 if ((control_word >> 18) & 1)
977 fprintf(fp, "unknown bit 18 enabled\n");
978
979 if ((control_word >> 19) & 1) {
980 print_scalar_field(fp, "sadd", word_ptr, *beginning_ptr, consts, tabs);
981 beginning_ptr += 1;
982 word_ptr += 2;
983 }
984
985 if ((control_word >> 20) & 1)
986 fprintf(fp, "unknown bit 20 enabled\n");
987
988 if ((control_word >> 21) & 1) {
989 print_vector_field(fp, "vadd", word_ptr, *beginning_ptr, consts, tabs);
990 beginning_ptr += 1;
991 word_ptr += 3;
992 }
993
994 if ((control_word >> 22) & 1)
995 fprintf(fp, "unknown bit 22 enabled\n");
996
997 if ((control_word >> 23) & 1) {
998 print_scalar_field(fp, "smul", word_ptr, *beginning_ptr, consts, tabs);
999 beginning_ptr += 1;
1000 word_ptr += 2;
1001 }
1002
1003 if ((control_word >> 24) & 1)
1004 fprintf(fp, "unknown bit 24 enabled\n");
1005
1006 if ((control_word >> 25) & 1) {
1007 print_vector_field(fp, "lut", word_ptr, *beginning_ptr, consts, tabs);
1008 word_ptr += 3;
1009 }
1010
1011 if ((control_word >> 26) & 1) {
1012 branch_forward |= print_compact_branch_writeout_field(fp, *word_ptr);
1013 word_ptr += 1;
1014 }
1015
1016 if ((control_word >> 27) & 1) {
1017 branch_forward |= print_extended_branch_writeout_field(fp, (uint8_t *) word_ptr, next);
1018 word_ptr += 3;
1019 }
1020
1021 if (consts)
1022 fprintf(fp, "uconstants 0x%X, 0x%X, 0x%X, 0x%X\n",
1023 consts->u32[0], consts->u32[1],
1024 consts->u32[2], consts->u32[3]);
1025
1026 return branch_forward;
1027 }
1028
1029 static void
1030 print_varying_parameters(FILE *fp, midgard_load_store_word *word)
1031 {
1032 midgard_varying_parameter param;
1033 unsigned v = word->varying_parameters;
1034 memcpy(&param, &v, sizeof(param));
1035
1036 if (param.is_varying) {
1037 /* If a varying, there are qualifiers */
1038 if (param.flat)
1039 fprintf(fp, ".flat");
1040
1041 if (param.interpolation != midgard_interp_default) {
1042 if (param.interpolation == midgard_interp_centroid)
1043 fprintf(fp, ".centroid");
1044 else
1045 fprintf(fp, ".interp%d", param.interpolation);
1046 }
1047
1048 if (param.modifier != midgard_varying_mod_none) {
1049 if (param.modifier == midgard_varying_mod_perspective_w)
1050 fprintf(fp, ".perspectivew");
1051 else if (param.modifier == midgard_varying_mod_perspective_z)
1052 fprintf(fp, ".perspectivez");
1053 else
1054 fprintf(fp, ".mod%d", param.modifier);
1055 }
1056 } else if (param.flat || param.interpolation || param.modifier) {
1057 fprintf(fp, " /* is_varying not set but varying metadata attached */");
1058 }
1059
1060 if (param.zero0 || param.zero1 || param.zero2)
1061 fprintf(fp, " /* zero tripped, %u %u %u */ ", param.zero0, param.zero1, param.zero2);
1062 }
1063
1064 static bool
1065 is_op_varying(unsigned op)
1066 {
1067 switch (op) {
1068 case midgard_op_st_vary_16:
1069 case midgard_op_st_vary_32:
1070 case midgard_op_st_vary_32i:
1071 case midgard_op_st_vary_32u:
1072 case midgard_op_ld_vary_16:
1073 case midgard_op_ld_vary_32:
1074 case midgard_op_ld_vary_32i:
1075 case midgard_op_ld_vary_32u:
1076 return true;
1077 }
1078
1079 return false;
1080 }
1081
1082 static bool
1083 is_op_attribute(unsigned op)
1084 {
1085 switch (op) {
1086 case midgard_op_ld_attr_16:
1087 case midgard_op_ld_attr_32:
1088 case midgard_op_ld_attr_32i:
1089 case midgard_op_ld_attr_32u:
1090 return true;
1091 }
1092
1093 return false;
1094 }
1095
1096 static void
1097 print_load_store_arg(FILE *fp, uint8_t arg, unsigned index)
1098 {
1099 /* Try to interpret as a register */
1100 midgard_ldst_register_select sel;
1101 memcpy(&sel, &arg, sizeof(arg));
1102
1103 /* If unknown is set, we're not sure what this is or how to
1104 * interpret it. But if it's zero, we get it. */
1105
1106 if (sel.unknown) {
1107 fprintf(fp, "0x%02X", arg);
1108 return;
1109 }
1110
1111 unsigned reg = REGISTER_LDST_BASE + sel.select;
1112 char comp = components[sel.component];
1113
1114 fprintf(fp, "r%u.%c", reg, comp);
1115
1116 /* Only print a shift if it's non-zero. Shifts only make sense for the
1117 * second index. For the first, we're not sure what it means yet */
1118
1119 if (index == 1) {
1120 if (sel.shift)
1121 fprintf(fp, " << %u", sel.shift);
1122 } else {
1123 fprintf(fp, " /* %X */", sel.shift);
1124 }
1125 }
1126
1127 static void
1128 update_stats(signed *stat, unsigned address)
1129 {
1130 if (*stat >= 0)
1131 *stat = MAX2(*stat, address + 1);
1132 }
1133
1134 static void
1135 print_load_store_instr(FILE *fp, uint64_t data,
1136 unsigned tabs)
1137 {
1138 midgard_load_store_word *word = (midgard_load_store_word *) &data;
1139
1140 print_ld_st_opcode(fp, word->op);
1141
1142 unsigned address = word->address;
1143
1144 if (is_op_varying(word->op)) {
1145 print_varying_parameters(fp, word);
1146
1147 /* Do some analysis: check if direct cacess */
1148
1149 if ((word->arg_2 == 0x1E) && midg_stats.varying_count >= 0)
1150 update_stats(&midg_stats.varying_count, address);
1151 else
1152 midg_stats.varying_count = -16;
1153 } else if (is_op_attribute(word->op)) {
1154 if ((word->arg_2 == 0x1E) && midg_stats.attribute_count >= 0)
1155 update_stats(&midg_stats.attribute_count, address);
1156 else
1157 midg_stats.attribute_count = -16;
1158 }
1159
1160 fprintf(fp, " r%u", word->reg + (OP_IS_STORE(word->op) ? 26 : 0));
1161 print_mask_4(fp, word->mask, false);
1162
1163 if (!OP_IS_STORE(word->op))
1164 update_dest(word->reg);
1165
1166 bool is_ubo = OP_IS_UBO_READ(word->op);
1167
1168 if (is_ubo) {
1169 /* UBOs use their own addressing scheme */
1170
1171 int lo = word->varying_parameters >> 7;
1172 int hi = word->address;
1173
1174 /* TODO: Combine fields logically */
1175 address = (hi << 3) | lo;
1176 }
1177
1178 fprintf(fp, ", %u", address);
1179
1180 print_swizzle_vec4(fp, word->swizzle, false, false, false);
1181
1182 fprintf(fp, ", ");
1183
1184 if (is_ubo) {
1185 fprintf(fp, "ubo%u", word->arg_1);
1186 update_stats(&midg_stats.uniform_buffer_count, word->arg_1);
1187 } else
1188 print_load_store_arg(fp, word->arg_1, 0);
1189
1190 fprintf(fp, ", ");
1191 print_load_store_arg(fp, word->arg_2, 1);
1192 fprintf(fp, " /* %X */\n", word->varying_parameters);
1193
1194 midg_stats.instruction_count++;
1195 }
1196
1197 static void
1198 print_load_store_word(FILE *fp, uint32_t *word, unsigned tabs)
1199 {
1200 midgard_load_store *load_store = (midgard_load_store *) word;
1201
1202 if (load_store->word1 != 3) {
1203 print_load_store_instr(fp, load_store->word1, tabs);
1204 }
1205
1206 if (load_store->word2 != 3) {
1207 print_load_store_instr(fp, load_store->word2, tabs);
1208 }
1209 }
1210
1211 static void
1212 print_texture_reg_select(FILE *fp, uint8_t u, unsigned base)
1213 {
1214 midgard_tex_register_select sel;
1215 memcpy(&sel, &u, sizeof(u));
1216
1217 if (!sel.full)
1218 fprintf(fp, "h");
1219
1220 fprintf(fp, "r%u", base + sel.select);
1221
1222 unsigned component = sel.component;
1223
1224 /* Use the upper half in half-reg mode */
1225 if (sel.upper) {
1226 assert(!sel.full);
1227 component += 4;
1228 }
1229
1230 fprintf(fp, ".%c", components[component]);
1231
1232 assert(sel.zero == 0);
1233 }
1234
1235 static void
1236 print_texture_format(FILE *fp, int format)
1237 {
1238 /* Act like a modifier */
1239 fprintf(fp, ".");
1240
1241 switch (format) {
1242 DEFINE_CASE(MALI_TEX_1D, "1d");
1243 DEFINE_CASE(MALI_TEX_2D, "2d");
1244 DEFINE_CASE(MALI_TEX_3D, "3d");
1245 DEFINE_CASE(MALI_TEX_CUBE, "cube");
1246
1247 default:
1248 unreachable("Bad format");
1249 }
1250 }
1251
1252 static bool
1253 midgard_op_has_helpers(unsigned op, bool gather)
1254 {
1255 if (gather)
1256 return true;
1257
1258 switch (op) {
1259 case TEXTURE_OP_NORMAL:
1260 case TEXTURE_OP_DFDX:
1261 case TEXTURE_OP_DFDY:
1262 return true;
1263 default:
1264 return false;
1265 }
1266 }
1267
1268 static void
1269 print_texture_op(FILE *fp, unsigned op, bool gather)
1270 {
1271 /* Act like a bare name, like ESSL functions */
1272
1273 if (gather) {
1274 fprintf(fp, "textureGather");
1275
1276 unsigned component = op >> 4;
1277 unsigned bottom = op & 0xF;
1278
1279 if (bottom != 0x2)
1280 fprintf(fp, "_unk%u", bottom);
1281
1282 fprintf(fp, ".%c", components[component]);
1283 return;
1284 }
1285
1286 switch (op) {
1287 DEFINE_CASE(TEXTURE_OP_NORMAL, "texture");
1288 DEFINE_CASE(TEXTURE_OP_LOD, "textureLod");
1289 DEFINE_CASE(TEXTURE_OP_TEXEL_FETCH, "texelFetch");
1290 DEFINE_CASE(TEXTURE_OP_BARRIER, "barrier");
1291 DEFINE_CASE(TEXTURE_OP_DFDX, "dFdx");
1292 DEFINE_CASE(TEXTURE_OP_DFDY, "dFdy");
1293
1294 default:
1295 fprintf(fp, "tex_%X", op);
1296 break;
1297 }
1298 }
1299
1300 static bool
1301 texture_op_takes_bias(unsigned op)
1302 {
1303 return op == TEXTURE_OP_NORMAL;
1304 }
1305
1306 static char
1307 sampler_type_name(enum mali_sampler_type t)
1308 {
1309 switch (t) {
1310 case MALI_SAMPLER_FLOAT:
1311 return 'f';
1312 case MALI_SAMPLER_UNSIGNED:
1313 return 'u';
1314 case MALI_SAMPLER_SIGNED:
1315 return 'i';
1316 default:
1317 return '?';
1318 }
1319
1320 }
1321
1322 static void
1323 print_texture_barrier(FILE *fp, uint32_t *word)
1324 {
1325 midgard_texture_barrier_word *barrier = (midgard_texture_barrier_word *) word;
1326
1327 if (barrier->type != TAG_TEXTURE_4_BARRIER)
1328 fprintf(fp, "/* barrier tag %X != tex/bar */ ", barrier->type);
1329
1330 if (!barrier->cont)
1331 fprintf(fp, "/* cont missing? */");
1332
1333 if (!barrier->last)
1334 fprintf(fp, "/* last missing? */");
1335
1336 if (barrier->zero1)
1337 fprintf(fp, "/* zero1 = 0x%X */ ", barrier->zero1);
1338
1339 if (barrier->zero2)
1340 fprintf(fp, "/* zero2 = 0x%X */ ", barrier->zero2);
1341
1342 if (barrier->zero3)
1343 fprintf(fp, "/* zero3 = 0x%X */ ", barrier->zero3);
1344
1345 if (barrier->zero4)
1346 fprintf(fp, "/* zero4 = 0x%X */ ", barrier->zero4);
1347
1348 if (barrier->zero5)
1349 fprintf(fp, "/* zero4 = 0x%" PRIx64 " */ ", barrier->zero5);
1350
1351
1352 /* Control barriers are always implied, so include for obviousness */
1353 fprintf(fp, " control");
1354
1355 if (barrier->buffer)
1356 fprintf(fp, " | buffer");
1357
1358 if (barrier->shared)
1359 fprintf(fp, " | shared");
1360
1361 if (barrier->stack)
1362 fprintf(fp, " | stack");
1363
1364 fprintf(fp, "\n");
1365 }
1366
1367 #undef DEFINE_CASE
1368
1369 static void
1370 print_texture_word(FILE *fp, uint32_t *word, unsigned tabs, unsigned in_reg_base, unsigned out_reg_base)
1371 {
1372 midgard_texture_word *texture = (midgard_texture_word *) word;
1373
1374 midg_stats.helper_invocations |=
1375 midgard_op_has_helpers(texture->op, texture->is_gather);
1376
1377 /* Broad category of texture operation in question */
1378 print_texture_op(fp, texture->op, texture->is_gather);
1379
1380 /* Barriers use a dramatically different code path */
1381 if (texture->op == TEXTURE_OP_BARRIER) {
1382 print_texture_barrier(fp, word);
1383 return;
1384 } else if (texture->type == TAG_TEXTURE_4_BARRIER)
1385 fprintf (fp, "/* nonbarrier had tex/bar tag */ ");
1386 else if (texture->type == TAG_TEXTURE_4_VTX)
1387 fprintf (fp, ".vtx");
1388
1389 /* Specific format in question */
1390 print_texture_format(fp, texture->format);
1391
1392 /* Instruction "modifiers" parallel the ALU instructions. */
1393
1394 if (texture->shadow)
1395 fprintf(fp, ".shadow");
1396
1397 if (texture->cont)
1398 fprintf(fp, ".cont");
1399
1400 if (texture->last)
1401 fprintf(fp, ".last");
1402
1403 if (texture->barrier_buffer)
1404 fprintf(fp, ".barrier_buffer /* XXX */");
1405
1406 if (texture->barrier_shared)
1407 fprintf(fp, ".barrier_shared /* XXX */");
1408
1409 /* Output modifiers are always interpreted floatly */
1410 print_outmod(fp, texture->outmod, false);
1411
1412 fprintf(fp, " %sr%u", texture->out_full ? "" : "h",
1413 out_reg_base + texture->out_reg_select);
1414 print_mask_4(fp, texture->mask, texture->out_upper);
1415 assert(!(texture->out_full && texture->out_upper));
1416 fprintf(fp, ", ");
1417
1418 /* Depending on whether we read from textures directly or indirectly,
1419 * we may be able to update our analysis */
1420
1421 if (texture->texture_register) {
1422 fprintf(fp, "texture[");
1423 print_texture_reg_select(fp, texture->texture_handle, in_reg_base);
1424 fprintf(fp, "], ");
1425
1426 /* Indirect, tut tut */
1427 midg_stats.texture_count = -16;
1428 } else {
1429 fprintf(fp, "texture%u, ", texture->texture_handle);
1430 update_stats(&midg_stats.texture_count, texture->texture_handle);
1431 }
1432
1433 /* Print the type, GL style */
1434 fprintf(fp, "%csampler", sampler_type_name(texture->sampler_type));
1435
1436 if (texture->sampler_register) {
1437 fprintf(fp, "[");
1438 print_texture_reg_select(fp, texture->sampler_handle, in_reg_base);
1439 fprintf(fp, "]");
1440
1441 midg_stats.sampler_count = -16;
1442 } else {
1443 fprintf(fp, "%u", texture->sampler_handle);
1444 update_stats(&midg_stats.sampler_count, texture->sampler_handle);
1445 }
1446
1447 print_swizzle_vec4(fp, texture->swizzle, false, false, false);
1448 fprintf(fp, ", %sr%u", texture->in_reg_full ? "" : "h", in_reg_base + texture->in_reg_select);
1449 assert(!(texture->in_reg_full && texture->in_reg_upper));
1450
1451 /* TODO: integrate with swizzle */
1452 if (texture->in_reg_upper)
1453 fprintf(fp, "'");
1454
1455 print_swizzle_vec4(fp, texture->in_reg_swizzle, false, false, false);
1456
1457 /* There is *always* an offset attached. Of
1458 * course, that offset is just immediate #0 for a
1459 * GLES call that doesn't take an offset. If there
1460 * is a non-negative non-zero offset, this is
1461 * specified in immediate offset mode, with the
1462 * values in the offset_* fields as immediates. If
1463 * this is a negative offset, we instead switch to
1464 * a register offset mode, where the offset_*
1465 * fields become register triplets */
1466
1467 if (texture->offset_register) {
1468 fprintf(fp, " + ");
1469
1470 bool full = texture->offset & 1;
1471 bool select = texture->offset & 2;
1472 bool upper = texture->offset & 4;
1473
1474 fprintf(fp, "%sr%u", full ? "" : "h", in_reg_base + select);
1475 assert(!(texture->out_full && texture->out_upper));
1476
1477 /* TODO: integrate with swizzle */
1478 if (upper)
1479 fprintf(fp, "'");
1480
1481 print_swizzle_vec4(fp, texture->offset >> 3, false, false, false);
1482
1483 fprintf(fp, ", ");
1484 } else if (texture->offset) {
1485 /* Only select ops allow negative immediate offsets, verify */
1486
1487 signed offset_x = (texture->offset & 0xF);
1488 signed offset_y = ((texture->offset >> 4) & 0xF);
1489 signed offset_z = ((texture->offset >> 8) & 0xF);
1490
1491 bool neg_x = offset_x < 0;
1492 bool neg_y = offset_y < 0;
1493 bool neg_z = offset_z < 0;
1494 bool any_neg = neg_x || neg_y || neg_z;
1495
1496 if (any_neg && texture->op != TEXTURE_OP_TEXEL_FETCH)
1497 fprintf(fp, "/* invalid negative */ ");
1498
1499 /* Regardless, just print the immediate offset */
1500
1501 fprintf(fp, " + <%d, %d, %d>, ", offset_x, offset_y, offset_z);
1502 } else {
1503 fprintf(fp, ", ");
1504 }
1505
1506 char lod_operand = texture_op_takes_bias(texture->op) ? '+' : '=';
1507
1508 if (texture->lod_register) {
1509 fprintf(fp, "lod %c ", lod_operand);
1510 print_texture_reg_select(fp, texture->bias, in_reg_base);
1511 fprintf(fp, ", ");
1512
1513 if (texture->bias_int)
1514 fprintf(fp, " /* bias_int = 0x%X */", texture->bias_int);
1515 } else if (texture->op == TEXTURE_OP_TEXEL_FETCH) {
1516 /* For texel fetch, the int LOD is in the fractional place and
1517 * there is no fraction / possibility of bias. We *always* have
1518 * an explicit LOD, even if it's zero. */
1519
1520 if (texture->bias_int)
1521 fprintf(fp, " /* bias_int = 0x%X */ ", texture->bias_int);
1522
1523 fprintf(fp, "lod = %u, ", texture->bias);
1524 } else if (texture->bias || texture->bias_int) {
1525 signed bias_int = texture->bias_int;
1526 float bias_frac = texture->bias / 256.0f;
1527 float bias = bias_int + bias_frac;
1528
1529 bool is_bias = texture_op_takes_bias(texture->op);
1530 char sign = (bias >= 0.0) ? '+' : '-';
1531 char operand = is_bias ? sign : '=';
1532
1533 fprintf(fp, "lod %c %f, ", operand, fabsf(bias));
1534 }
1535
1536 fprintf(fp, "\n");
1537
1538 /* While not zero in general, for these simple instructions the
1539 * following unknowns are zero, so we don't include them */
1540
1541 if (texture->unknown4 ||
1542 texture->unknown8) {
1543 fprintf(fp, "// unknown4 = 0x%x\n", texture->unknown4);
1544 fprintf(fp, "// unknown8 = 0x%x\n", texture->unknown8);
1545 }
1546
1547 midg_stats.instruction_count++;
1548 }
1549
1550 struct midgard_disasm_stats
1551 disassemble_midgard(FILE *fp, uint8_t *code, size_t size, unsigned gpu_id, gl_shader_stage stage)
1552 {
1553 uint32_t *words = (uint32_t *) code;
1554 unsigned num_words = size / 4;
1555 int tabs = 0;
1556
1557 bool branch_forward = false;
1558
1559 int last_next_tag = -1;
1560
1561 unsigned i = 0;
1562
1563 midg_tags = calloc(sizeof(midg_tags[0]), num_words);
1564
1565 /* Stats for shader-db */
1566 memset(&midg_stats, 0, sizeof(midg_stats));
1567 midg_ever_written = 0;
1568
1569 while (i < num_words) {
1570 unsigned tag = words[i] & 0xF;
1571 unsigned next_tag = (words[i] >> 4) & 0xF;
1572 unsigned num_quad_words = midgard_tag_props[tag].size;
1573
1574 if (midg_tags[i] && midg_tags[i] != tag) {
1575 fprintf(fp, "\t/* XXX: TAG ERROR branch, got %s expected %s */\n",
1576 midgard_tag_props[tag].name,
1577 midgard_tag_props[midg_tags[i]].name);
1578 }
1579
1580 midg_tags[i] = tag;
1581
1582 /* Check the tag. The idea is to ensure that next_tag is
1583 * *always* recoverable from the disassembly, such that we may
1584 * safely omit printing next_tag. To show this, we first
1585 * consider that next tags are semantically off-byone -- we end
1586 * up parsing tag n during step n+1. So, we ensure after we're
1587 * done disassembling the next tag of the final bundle is BREAK
1588 * and warn otherwise. We also ensure that the next tag is
1589 * never INVALID. Beyond that, since the last tag is checked
1590 * outside the loop, we can check one tag prior. If equal to
1591 * the current tag (which is unique), we're done. Otherwise, we
1592 * print if that tag was > TAG_BREAK, which implies the tag was
1593 * not TAG_BREAK or TAG_INVALID. But we already checked for
1594 * TAG_INVALID, so it's just if the last tag was TAG_BREAK that
1595 * we're silent. So we throw in a print for break-next on at
1596 * the end of the bundle (if it's not the final bundle, which
1597 * we already check for above), disambiguating this case as
1598 * well. Hence in all cases we are unambiguous, QED. */
1599
1600 if (next_tag == TAG_INVALID)
1601 fprintf(fp, "\t/* XXX: invalid next tag */\n");
1602
1603 if (last_next_tag > TAG_BREAK && last_next_tag != tag) {
1604 fprintf(fp, "\t/* XXX: TAG ERROR sequence, got %s expexted %s */\n",
1605 midgard_tag_props[tag].name,
1606 midgard_tag_props[last_next_tag].name);
1607 }
1608
1609 last_next_tag = next_tag;
1610
1611 /* Tags are unique in the following way:
1612 *
1613 * INVALID, BREAK, UNKNOWN_*: verbosely printed
1614 * TEXTURE_4_BARRIER: verified by barrier/!barrier op
1615 * TEXTURE_4_VTX: .vtx tag printed
1616 * TEXTURE_4: tetxure lack of barriers or .vtx
1617 * TAG_LOAD_STORE_4: only load/store
1618 * TAG_ALU_4/8/12/16: by number of instructions/constants
1619 * TAG_ALU_4_8/12/16_WRITEOUT: ^^ with .writeout tag
1620 */
1621
1622 switch (tag) {
1623 case TAG_TEXTURE_4_VTX ... TAG_TEXTURE_4_BARRIER: {
1624 bool interpipe_aliasing =
1625 midgard_get_quirks(gpu_id) & MIDGARD_INTERPIPE_REG_ALIASING;
1626
1627 print_texture_word(fp, &words[i], tabs,
1628 interpipe_aliasing ? 0 : REG_TEX_BASE,
1629 interpipe_aliasing ? REGISTER_LDST_BASE : REG_TEX_BASE);
1630 break;
1631 }
1632
1633 case TAG_LOAD_STORE_4:
1634 print_load_store_word(fp, &words[i], tabs);
1635 break;
1636
1637 case TAG_ALU_4 ... TAG_ALU_16_WRITEOUT:
1638 branch_forward = print_alu_word(fp, &words[i], num_quad_words, tabs, i + 4*num_quad_words);
1639
1640 /* Reset word static analysis state */
1641 is_embedded_constant_half = false;
1642 is_embedded_constant_int = false;
1643
1644 /* TODO: infer/verify me */
1645 if (tag >= TAG_ALU_4_WRITEOUT)
1646 fprintf(fp, "writeout\n");
1647
1648 break;
1649
1650 default:
1651 fprintf(fp, "Unknown word type %u:\n", words[i] & 0xF);
1652 num_quad_words = 1;
1653 print_quad_word(fp, &words[i], tabs);
1654 fprintf(fp, "\n");
1655 break;
1656 }
1657
1658 /* We are parsing per bundle anyway. Add before we start
1659 * breaking out so we don't miss the final bundle. */
1660
1661 midg_stats.bundle_count++;
1662 midg_stats.quadword_count += num_quad_words;
1663
1664 /* Include a synthetic "break" instruction at the end of the
1665 * bundle to signify that if, absent a branch, the shader
1666 * execution will stop here. Stop disassembly at such a break
1667 * based on a heuristic */
1668
1669 if (next_tag == TAG_BREAK) {
1670 if (branch_forward) {
1671 fprintf(fp, "break\n");
1672 } else {
1673 fprintf(fp, "\n");
1674 break;
1675 }
1676 }
1677
1678 fprintf(fp, "\n");
1679
1680 i += 4 * num_quad_words;
1681 }
1682
1683 if (last_next_tag != TAG_BREAK) {
1684 fprintf(fp, "/* XXX: shader ended with tag %s */\n",
1685 midgard_tag_props[last_next_tag].name);
1686 }
1687
1688 free(midg_tags);
1689
1690 /* We computed work_count as max_work_registers, so add one to get the
1691 * count. If no work registers are written, you still have one work
1692 * reported, which is exactly what the hardware expects */
1693
1694 midg_stats.work_count++;
1695
1696 return midg_stats;
1697 }