Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/u_math.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50 #include "midgard_quirks.h"
51 #include "panfrost-quirks.h"
52 #include "panfrost/util/pan_lower_framebuffer.h"
53
54 #include "disassemble.h"
55
56 static const struct debug_named_value debug_options[] = {
57 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
58 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
59 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
60 DEBUG_NAMED_VALUE_END
61 };
62
63 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
64
65 unsigned SHADER_DB_COUNT = 0;
66
67 int midgard_debug = 0;
68
69 #define DBG(fmt, ...) \
70 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
71 fprintf(stderr, "%s:%d: "fmt, \
72 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
73 static midgard_block *
74 create_empty_block(compiler_context *ctx)
75 {
76 midgard_block *blk = rzalloc(ctx, midgard_block);
77
78 blk->base.predecessors = _mesa_set_create(blk,
79 _mesa_hash_pointer,
80 _mesa_key_pointer_equal);
81
82 blk->base.name = ctx->block_source_count++;
83
84 return blk;
85 }
86
87 static void
88 schedule_barrier(compiler_context *ctx)
89 {
90 midgard_block *temp = ctx->after_block;
91 ctx->after_block = create_empty_block(ctx);
92 ctx->block_count++;
93 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
94 list_inithead(&ctx->after_block->base.instructions);
95 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
96 ctx->current_block = ctx->after_block;
97 ctx->after_block = temp;
98 }
99
100 /* Helpers to generate midgard_instruction's using macro magic, since every
101 * driver seems to do it that way */
102
103 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
104
105 #define M_LOAD_STORE(name, store, T) \
106 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
107 midgard_instruction i = { \
108 .type = TAG_LOAD_STORE_4, \
109 .mask = 0xF, \
110 .dest = ~0, \
111 .src = { ~0, ~0, ~0, ~0 }, \
112 .swizzle = SWIZZLE_IDENTITY_4, \
113 .op = midgard_op_##name, \
114 .load_store = { \
115 .address = address \
116 } \
117 }; \
118 \
119 if (store) { \
120 i.src[0] = ssa; \
121 i.src_types[0] = T; \
122 i.dest_type = T; \
123 } else { \
124 i.dest = ssa; \
125 i.dest_type = T; \
126 } \
127 return i; \
128 }
129
130 #define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
131 #define M_STORE(name, T) M_LOAD_STORE(name, true, T)
132
133 M_LOAD(ld_attr_32, nir_type_uint32);
134 M_LOAD(ld_vary_32, nir_type_uint32);
135 M_LOAD(ld_ubo_int4, nir_type_uint32);
136 M_LOAD(ld_int4, nir_type_uint32);
137 M_STORE(st_int4, nir_type_uint32);
138 M_LOAD(ld_color_buffer_32u, nir_type_uint32);
139 M_LOAD(ld_color_buffer_as_fp16, nir_type_float16);
140 M_LOAD(ld_color_buffer_as_fp32, nir_type_float32);
141 M_STORE(st_vary_32, nir_type_uint32);
142 M_LOAD(ld_cubemap_coords, nir_type_uint32);
143 M_LOAD(ld_compute_id, nir_type_uint32);
144
145 static midgard_instruction
146 v_branch(bool conditional, bool invert)
147 {
148 midgard_instruction ins = {
149 .type = TAG_ALU_4,
150 .unit = ALU_ENAB_BRANCH,
151 .compact_branch = true,
152 .branch = {
153 .conditional = conditional,
154 .invert_conditional = invert
155 },
156 .dest = ~0,
157 .src = { ~0, ~0, ~0, ~0 },
158 };
159
160 return ins;
161 }
162
163 static void
164 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
165 {
166 ins->has_constants = true;
167 memcpy(&ins->constants, constants, 16);
168 }
169
170 static int
171 glsl_type_size(const struct glsl_type *type, bool bindless)
172 {
173 return glsl_count_attribute_slots(type, false);
174 }
175
176 /* Lower fdot2 to a vector multiplication followed by channel addition */
177 static void
178 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
179 {
180 if (alu->op != nir_op_fdot2)
181 return;
182
183 b->cursor = nir_before_instr(&alu->instr);
184
185 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
186 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
187
188 nir_ssa_def *product = nir_fmul(b, src0, src1);
189
190 nir_ssa_def *sum = nir_fadd(b,
191 nir_channel(b, product, 0),
192 nir_channel(b, product, 1));
193
194 /* Replace the fdot2 with this sum */
195 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
196 }
197
198 static bool
199 midgard_nir_lower_fdot2(nir_shader *shader)
200 {
201 bool progress = false;
202
203 nir_foreach_function(function, shader) {
204 if (!function->impl) continue;
205
206 nir_builder _b;
207 nir_builder *b = &_b;
208 nir_builder_init(b, function->impl);
209
210 nir_foreach_block(block, function->impl) {
211 nir_foreach_instr_safe(instr, block) {
212 if (instr->type != nir_instr_type_alu) continue;
213
214 nir_alu_instr *alu = nir_instr_as_alu(instr);
215 midgard_nir_lower_fdot2_body(b, alu);
216
217 progress |= true;
218 }
219 }
220
221 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
222
223 }
224
225 return progress;
226 }
227
228 static const nir_variable *
229 search_var(nir_shader *nir, nir_variable_mode mode, unsigned driver_loc)
230 {
231 nir_foreach_variable_with_modes(var, nir, mode) {
232 if (var->data.driver_location == driver_loc)
233 return var;
234 }
235
236 return NULL;
237 }
238
239 /* Midgard can write all of color, depth and stencil in a single writeout
240 * operation, so we merge depth/stencil stores with color stores.
241 * If there are no color stores, we add a write to the "depth RT".
242 */
243 static bool
244 midgard_nir_lower_zs_store(nir_shader *nir)
245 {
246 if (nir->info.stage != MESA_SHADER_FRAGMENT)
247 return false;
248
249 nir_variable *z_var = NULL, *s_var = NULL;
250
251 nir_foreach_shader_out_variable(var, nir) {
252 if (var->data.location == FRAG_RESULT_DEPTH)
253 z_var = var;
254 else if (var->data.location == FRAG_RESULT_STENCIL)
255 s_var = var;
256 }
257
258 if (!z_var && !s_var)
259 return false;
260
261 bool progress = false;
262
263 nir_foreach_function(function, nir) {
264 if (!function->impl) continue;
265
266 nir_intrinsic_instr *z_store = NULL, *s_store = NULL;
267
268 nir_foreach_block(block, function->impl) {
269 nir_foreach_instr_safe(instr, block) {
270 if (instr->type != nir_instr_type_intrinsic)
271 continue;
272
273 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
274 if (intr->intrinsic != nir_intrinsic_store_output)
275 continue;
276
277 if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
278 assert(!z_store);
279 z_store = intr;
280 }
281
282 if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
283 assert(!s_store);
284 s_store = intr;
285 }
286 }
287 }
288
289 if (!z_store && !s_store) continue;
290
291 bool replaced = false;
292
293 nir_foreach_block(block, function->impl) {
294 nir_foreach_instr_safe(instr, block) {
295 if (instr->type != nir_instr_type_intrinsic)
296 continue;
297
298 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
299 if (intr->intrinsic != nir_intrinsic_store_output)
300 continue;
301
302 const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
303 assert(var);
304
305 if (var->data.location != FRAG_RESULT_COLOR &&
306 var->data.location < FRAG_RESULT_DATA0)
307 continue;
308
309 if (var->data.index)
310 continue;
311
312 assert(nir_src_is_const(intr->src[1]) && "no indirect outputs");
313
314 nir_builder b;
315 nir_builder_init(&b, function->impl);
316
317 assert(!z_store || z_store->instr.block == instr->block);
318 assert(!s_store || s_store->instr.block == instr->block);
319 b.cursor = nir_after_block_before_jump(instr->block);
320
321 nir_intrinsic_instr *combined_store;
322 combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
323
324 combined_store->num_components = intr->src[0].ssa->num_components;
325
326 nir_intrinsic_set_base(combined_store, nir_intrinsic_base(intr));
327
328 unsigned writeout = PAN_WRITEOUT_C;
329 if (z_store)
330 writeout |= PAN_WRITEOUT_Z;
331 if (s_store)
332 writeout |= PAN_WRITEOUT_S;
333
334 nir_intrinsic_set_component(combined_store, writeout);
335
336 struct nir_ssa_def *zero = nir_imm_int(&b, 0);
337
338 struct nir_ssa_def *src[4] = {
339 intr->src[0].ssa,
340 intr->src[1].ssa,
341 z_store ? z_store->src[0].ssa : zero,
342 s_store ? s_store->src[0].ssa : zero,
343 };
344
345 for (int i = 0; i < 4; ++i)
346 combined_store->src[i] = nir_src_for_ssa(src[i]);
347
348 nir_builder_instr_insert(&b, &combined_store->instr);
349
350 nir_instr_remove(instr);
351
352 replaced = true;
353 }
354 }
355
356 /* Insert a store to the depth RT (0xff) if needed */
357 if (!replaced) {
358 nir_builder b;
359 nir_builder_init(&b, function->impl);
360
361 nir_block *block = NULL;
362 if (z_store && s_store)
363 assert(z_store->instr.block == s_store->instr.block);
364
365 if (z_store)
366 block = z_store->instr.block;
367 else
368 block = s_store->instr.block;
369
370 b.cursor = nir_after_block_before_jump(block);
371
372 nir_intrinsic_instr *combined_store;
373 combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
374
375 combined_store->num_components = 4;
376
377 unsigned base;
378 if (z_store)
379 base = nir_intrinsic_base(z_store);
380 else
381 base = nir_intrinsic_base(s_store);
382 nir_intrinsic_set_base(combined_store, base);
383
384 unsigned writeout = 0;
385 if (z_store)
386 writeout |= PAN_WRITEOUT_Z;
387 if (s_store)
388 writeout |= PAN_WRITEOUT_S;
389
390 nir_intrinsic_set_component(combined_store, writeout);
391
392 struct nir_ssa_def *zero = nir_imm_int(&b, 0);
393
394 struct nir_ssa_def *src[4] = {
395 nir_imm_vec4(&b, 0, 0, 0, 0),
396 zero,
397 z_store ? z_store->src[0].ssa : zero,
398 s_store ? s_store->src[0].ssa : zero,
399 };
400
401 for (int i = 0; i < 4; ++i)
402 combined_store->src[i] = nir_src_for_ssa(src[i]);
403
404 nir_builder_instr_insert(&b, &combined_store->instr);
405 }
406
407 if (z_store)
408 nir_instr_remove(&z_store->instr);
409
410 if (s_store)
411 nir_instr_remove(&s_store->instr);
412
413 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
414 progress = true;
415 }
416
417 return progress;
418 }
419
420 /* Real writeout stores, which break execution, need to be moved to after
421 * dual-source stores, which are just standard register writes. */
422 static bool
423 midgard_nir_reorder_writeout(nir_shader *nir)
424 {
425 bool progress = false;
426
427 nir_foreach_function(function, nir) {
428 if (!function->impl) continue;
429
430 nir_foreach_block(block, function->impl) {
431 nir_instr *last_writeout = NULL;
432
433 nir_foreach_instr_reverse_safe(instr, block) {
434 if (instr->type != nir_instr_type_intrinsic)
435 continue;
436
437 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
438 if (intr->intrinsic != nir_intrinsic_store_output)
439 continue;
440
441 const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
442
443 if (var->data.index) {
444 if (!last_writeout)
445 last_writeout = instr;
446 continue;
447 }
448
449 if (!last_writeout)
450 continue;
451
452 /* This is a real store, so move it to after dual-source stores */
453 exec_node_remove(&instr->node);
454 exec_node_insert_after(&last_writeout->node, &instr->node);
455
456 progress = true;
457 }
458 }
459 }
460
461 return progress;
462 }
463
464 static bool
465 mdg_is_64(const nir_instr *instr, const void *_unused)
466 {
467 const nir_alu_instr *alu = nir_instr_as_alu(instr);
468
469 if (nir_dest_bit_size(alu->dest.dest) == 64)
470 return true;
471
472 switch (alu->op) {
473 case nir_op_umul_high:
474 case nir_op_imul_high:
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 /* Flushes undefined values to zero */
482
483 static void
484 optimise_nir(nir_shader *nir, unsigned quirks, bool is_blend)
485 {
486 bool progress;
487 unsigned lower_flrp =
488 (nir->options->lower_flrp16 ? 16 : 0) |
489 (nir->options->lower_flrp32 ? 32 : 0) |
490 (nir->options->lower_flrp64 ? 64 : 0);
491
492 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
493 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
494
495 nir_lower_tex_options lower_tex_options = {
496 .lower_txs_lod = true,
497 .lower_txp = ~0,
498 .lower_tex_without_implicit_lod =
499 (quirks & MIDGARD_EXPLICIT_LOD),
500 .lower_tg4_broadcom_swizzle = true,
501
502 /* TODO: we have native gradient.. */
503 .lower_txd = true,
504 };
505
506 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
507
508 /* Must lower fdot2 after tex is lowered */
509 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
510
511 /* T720 is broken. */
512
513 if (quirks & MIDGARD_BROKEN_LOD)
514 NIR_PASS_V(nir, midgard_nir_lod_errata);
515
516 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_early);
517
518 do {
519 progress = false;
520
521 NIR_PASS(progress, nir, nir_lower_var_copies);
522 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
523
524 NIR_PASS(progress, nir, nir_copy_prop);
525 NIR_PASS(progress, nir, nir_opt_remove_phis);
526 NIR_PASS(progress, nir, nir_opt_dce);
527 NIR_PASS(progress, nir, nir_opt_dead_cf);
528 NIR_PASS(progress, nir, nir_opt_cse);
529 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
530 NIR_PASS(progress, nir, nir_opt_algebraic);
531 NIR_PASS(progress, nir, nir_opt_constant_folding);
532
533 if (lower_flrp != 0) {
534 bool lower_flrp_progress = false;
535 NIR_PASS(lower_flrp_progress,
536 nir,
537 nir_lower_flrp,
538 lower_flrp,
539 false /* always_precise */);
540 if (lower_flrp_progress) {
541 NIR_PASS(progress, nir,
542 nir_opt_constant_folding);
543 progress = true;
544 }
545
546 /* Nothing should rematerialize any flrps, so we only
547 * need to do this lowering once.
548 */
549 lower_flrp = 0;
550 }
551
552 NIR_PASS(progress, nir, nir_opt_undef);
553 NIR_PASS(progress, nir, nir_undef_to_zero);
554
555 NIR_PASS(progress, nir, nir_opt_loop_unroll,
556 nir_var_shader_in |
557 nir_var_shader_out |
558 nir_var_function_temp);
559
560 NIR_PASS(progress, nir, nir_opt_vectorize, NULL, NULL);
561 } while (progress);
562
563 NIR_PASS_V(nir, nir_lower_alu_to_scalar, mdg_is_64, NULL);
564
565 /* Run after opts so it can hit more */
566 if (!is_blend)
567 NIR_PASS(progress, nir, nir_fuse_io_16);
568
569 /* Must be run at the end to prevent creation of fsin/fcos ops */
570 NIR_PASS(progress, nir, midgard_nir_scale_trig);
571
572 do {
573 progress = false;
574
575 NIR_PASS(progress, nir, nir_opt_dce);
576 NIR_PASS(progress, nir, nir_opt_algebraic);
577 NIR_PASS(progress, nir, nir_opt_constant_folding);
578 NIR_PASS(progress, nir, nir_copy_prop);
579 } while (progress);
580
581 NIR_PASS(progress, nir, nir_opt_algebraic_late);
582 NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
583
584 /* We implement booleans as 32-bit 0/~0 */
585 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
586
587 /* Now that booleans are lowered, we can run out late opts */
588 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
589 NIR_PASS(progress, nir, midgard_nir_cancel_inot);
590
591 NIR_PASS(progress, nir, nir_copy_prop);
592 NIR_PASS(progress, nir, nir_opt_dce);
593
594 /* Take us out of SSA */
595 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
596 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
597
598 /* We are a vector architecture; write combine where possible */
599 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
600 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
601
602 NIR_PASS(progress, nir, nir_opt_dce);
603 }
604
605 /* Do not actually emit a load; instead, cache the constant for inlining */
606
607 static void
608 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
609 {
610 nir_ssa_def def = instr->def;
611
612 midgard_constants *consts = rzalloc(NULL, midgard_constants);
613
614 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
615
616 #define RAW_CONST_COPY(bits) \
617 nir_const_value_to_array(consts->u##bits, instr->value, \
618 instr->def.num_components, u##bits)
619
620 switch (instr->def.bit_size) {
621 case 64:
622 RAW_CONST_COPY(64);
623 break;
624 case 32:
625 RAW_CONST_COPY(32);
626 break;
627 case 16:
628 RAW_CONST_COPY(16);
629 break;
630 case 8:
631 RAW_CONST_COPY(8);
632 break;
633 default:
634 unreachable("Invalid bit_size for load_const instruction\n");
635 }
636
637 /* Shifted for SSA, +1 for off-by-one */
638 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
639 }
640
641 /* Normally constants are embedded implicitly, but for I/O and such we have to
642 * explicitly emit a move with the constant source */
643
644 static void
645 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
646 {
647 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
648
649 if (constant_value) {
650 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
651 attach_constants(ctx, &ins, constant_value, node + 1);
652 emit_mir_instruction(ctx, ins);
653 }
654 }
655
656 static bool
657 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
658 {
659 unsigned comp = src->swizzle[0];
660
661 for (unsigned c = 1; c < nr_components; ++c) {
662 if (src->swizzle[c] != comp)
663 return true;
664 }
665
666 return false;
667 }
668
669 #define ATOMIC_CASE_IMPL(ctx, instr, nir, op, is_shared) \
670 case nir_intrinsic_##nir: \
671 emit_atomic(ctx, instr, is_shared, midgard_op_##op); \
672 break;
673
674 #define ATOMIC_CASE(ctx, instr, nir, op) \
675 ATOMIC_CASE_IMPL(ctx, instr, shared_atomic_##nir, atomic_##op, true); \
676 ATOMIC_CASE_IMPL(ctx, instr, global_atomic_##nir, atomic_##op, false);
677
678 #define ALU_CASE(nir, _op) \
679 case nir_op_##nir: \
680 op = midgard_alu_op_##_op; \
681 assert(src_bitsize == dst_bitsize); \
682 break;
683
684 #define ALU_CASE_RTZ(nir, _op) \
685 case nir_op_##nir: \
686 op = midgard_alu_op_##_op; \
687 roundmode = MIDGARD_RTZ; \
688 break;
689
690 #define ALU_CHECK_CMP(sext) \
691 assert(src_bitsize == 16 || src_bitsize == 32); \
692 assert(dst_bitsize == 16 || dst_bitsize == 32); \
693
694 #define ALU_CASE_BCAST(nir, _op, count) \
695 case nir_op_##nir: \
696 op = midgard_alu_op_##_op; \
697 broadcast_swizzle = count; \
698 ALU_CHECK_CMP(true); \
699 break;
700
701 #define ALU_CASE_CMP(nir, _op, sext) \
702 case nir_op_##nir: \
703 op = midgard_alu_op_##_op; \
704 ALU_CHECK_CMP(sext); \
705 break;
706
707 /* Compare mir_lower_invert */
708 static bool
709 nir_accepts_inot(nir_op op, unsigned src)
710 {
711 switch (op) {
712 case nir_op_ior:
713 case nir_op_iand: /* TODO: b2f16 */
714 case nir_op_ixor:
715 return true;
716 case nir_op_b32csel:
717 /* Only the condition */
718 return (src == 0);
719 default:
720 return false;
721 }
722 }
723
724 static bool
725 mir_accept_dest_mod(compiler_context *ctx, nir_dest **dest, nir_op op)
726 {
727 if (pan_has_dest_mod(dest, op)) {
728 assert((*dest)->is_ssa);
729 BITSET_SET(ctx->already_emitted, (*dest)->ssa.index);
730 return true;
731 }
732
733 return false;
734 }
735
736 /* Look for floating point mods. We have the mods fsat, fsat_signed,
737 * and fpos. We also have the relations (note 3 * 2 = 6 cases):
738 *
739 * fsat_signed(fpos(x)) = fsat(x)
740 * fsat_signed(fsat(x)) = fsat(x)
741 * fpos(fsat_signed(x)) = fsat(x)
742 * fpos(fsat(x)) = fsat(x)
743 * fsat(fsat_signed(x)) = fsat(x)
744 * fsat(fpos(x)) = fsat(x)
745 *
746 * So by cases any composition of output modifiers is equivalent to
747 * fsat alone.
748 */
749 static unsigned
750 mir_determine_float_outmod(compiler_context *ctx, nir_dest **dest, unsigned prior_outmod)
751 {
752 bool fpos = mir_accept_dest_mod(ctx, dest, nir_op_fclamp_pos);
753 bool fsat = mir_accept_dest_mod(ctx, dest, nir_op_fsat);
754 bool ssat = mir_accept_dest_mod(ctx, dest, nir_op_fsat_signed);
755 bool prior = (prior_outmod != midgard_outmod_none);
756 int count = (int) prior + (int) fpos + (int) ssat + (int) fsat;
757
758 return ((count > 1) || fsat) ? midgard_outmod_sat :
759 fpos ? midgard_outmod_pos :
760 ssat ? midgard_outmod_sat_signed :
761 prior_outmod;
762 }
763
764 static void
765 mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to, bool *abs, bool *neg, bool *not, enum midgard_roundmode *roundmode, bool is_int, unsigned bcast_count)
766 {
767 nir_alu_src src = instr->src[i];
768
769 if (!is_int) {
770 if (pan_has_source_mod(&src, nir_op_fneg))
771 *neg = !(*neg);
772
773 if (pan_has_source_mod(&src, nir_op_fabs))
774 *abs = true;
775 }
776
777 if (nir_accepts_inot(instr->op, i) && pan_has_source_mod(&src, nir_op_inot))
778 *not = true;
779
780 if (roundmode) {
781 if (pan_has_source_mod(&src, nir_op_fround_even))
782 *roundmode = MIDGARD_RTE;
783
784 if (pan_has_source_mod(&src, nir_op_ftrunc))
785 *roundmode = MIDGARD_RTZ;
786
787 if (pan_has_source_mod(&src, nir_op_ffloor))
788 *roundmode = MIDGARD_RTN;
789
790 if (pan_has_source_mod(&src, nir_op_fceil))
791 *roundmode = MIDGARD_RTP;
792 }
793
794 unsigned bits = nir_src_bit_size(src.src);
795
796 ins->src[to] = nir_src_index(NULL, &src.src);
797 ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
798
799 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) {
800 ins->swizzle[to][c] = src.swizzle[
801 (!bcast_count || c < bcast_count) ? c :
802 (bcast_count - 1)];
803 }
804 }
805
806 /* Midgard features both fcsel and icsel, depending on whether you want int or
807 * float modifiers. NIR's csel is typeless, so we want a heuristic to guess if
808 * we should emit an int or float csel depending on what modifiers could be
809 * placed. In the absense of modifiers, this is probably arbitrary. */
810
811 static bool
812 mir_is_bcsel_float(nir_alu_instr *instr)
813 {
814 nir_op intmods[] = {
815 nir_op_i2i8, nir_op_i2i16,
816 nir_op_i2i32, nir_op_i2i64
817 };
818
819 nir_op floatmods[] = {
820 nir_op_fabs, nir_op_fneg,
821 nir_op_f2f16, nir_op_f2f32,
822 nir_op_f2f64
823 };
824
825 nir_op floatdestmods[] = {
826 nir_op_fsat, nir_op_fsat_signed, nir_op_fclamp_pos,
827 nir_op_f2f16, nir_op_f2f32
828 };
829
830 signed score = 0;
831
832 for (unsigned i = 1; i < 3; ++i) {
833 nir_alu_src s = instr->src[i];
834 for (unsigned q = 0; q < ARRAY_SIZE(intmods); ++q) {
835 if (pan_has_source_mod(&s, intmods[q]))
836 score--;
837 }
838 }
839
840 for (unsigned i = 1; i < 3; ++i) {
841 nir_alu_src s = instr->src[i];
842 for (unsigned q = 0; q < ARRAY_SIZE(floatmods); ++q) {
843 if (pan_has_source_mod(&s, floatmods[q]))
844 score++;
845 }
846 }
847
848 for (unsigned q = 0; q < ARRAY_SIZE(floatdestmods); ++q) {
849 nir_dest *dest = &instr->dest.dest;
850 if (pan_has_dest_mod(&dest, floatdestmods[q]))
851 score++;
852 }
853
854 return (score > 0);
855 }
856
857 static void
858 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
859 {
860 nir_dest *dest = &instr->dest.dest;
861
862 if (dest->is_ssa && BITSET_TEST(ctx->already_emitted, dest->ssa.index))
863 return;
864
865 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
866 * is handled elsewhere */
867
868 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
869 midgard_emit_derivatives(ctx, instr);
870 return;
871 }
872
873 bool is_ssa = dest->is_ssa;
874
875 unsigned nr_components = nir_dest_num_components(*dest);
876 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
877 unsigned op = 0;
878
879 /* Number of components valid to check for the instruction (the rest
880 * will be forced to the last), or 0 to use as-is. Relevant as
881 * ball-type instructions have a channel count in NIR but are all vec4
882 * in Midgard */
883
884 unsigned broadcast_swizzle = 0;
885
886 /* Should we swap arguments? */
887 bool flip_src12 = false;
888
889 ASSERTED unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
890 ASSERTED unsigned dst_bitsize = nir_dest_bit_size(*dest);
891
892 enum midgard_roundmode roundmode = MIDGARD_RTE;
893
894 switch (instr->op) {
895 ALU_CASE(fadd, fadd);
896 ALU_CASE(fmul, fmul);
897 ALU_CASE(fmin, fmin);
898 ALU_CASE(fmax, fmax);
899 ALU_CASE(imin, imin);
900 ALU_CASE(imax, imax);
901 ALU_CASE(umin, umin);
902 ALU_CASE(umax, umax);
903 ALU_CASE(ffloor, ffloor);
904 ALU_CASE(fround_even, froundeven);
905 ALU_CASE(ftrunc, ftrunc);
906 ALU_CASE(fceil, fceil);
907 ALU_CASE(fdot3, fdot3);
908 ALU_CASE(fdot4, fdot4);
909 ALU_CASE(iadd, iadd);
910 ALU_CASE(isub, isub);
911 ALU_CASE(imul, imul);
912 ALU_CASE(imul_high, imul);
913 ALU_CASE(umul_high, imul);
914
915 /* Zero shoved as second-arg */
916 ALU_CASE(iabs, iabsdiff);
917
918 ALU_CASE(mov, imov);
919
920 ALU_CASE_CMP(feq32, feq, false);
921 ALU_CASE_CMP(fneu32, fne, false);
922 ALU_CASE_CMP(flt32, flt, false);
923 ALU_CASE_CMP(ieq32, ieq, true);
924 ALU_CASE_CMP(ine32, ine, true);
925 ALU_CASE_CMP(ilt32, ilt, true);
926 ALU_CASE_CMP(ult32, ult, false);
927
928 /* We don't have a native b2f32 instruction. Instead, like many
929 * GPUs, we exploit booleans as 0/~0 for false/true, and
930 * correspondingly AND
931 * by 1.0 to do the type conversion. For the moment, prime us
932 * to emit:
933 *
934 * iand [whatever], #0
935 *
936 * At the end of emit_alu (as MIR), we'll fix-up the constant
937 */
938
939 ALU_CASE_CMP(b2f32, iand, true);
940 ALU_CASE_CMP(b2f16, iand, true);
941 ALU_CASE_CMP(b2i32, iand, true);
942
943 /* Likewise, we don't have a dedicated f2b32 instruction, but
944 * we can do a "not equal to 0.0" test. */
945
946 ALU_CASE_CMP(f2b32, fne, false);
947 ALU_CASE_CMP(i2b32, ine, true);
948
949 ALU_CASE(frcp, frcp);
950 ALU_CASE(frsq, frsqrt);
951 ALU_CASE(fsqrt, fsqrt);
952 ALU_CASE(fexp2, fexp2);
953 ALU_CASE(flog2, flog2);
954
955 ALU_CASE_RTZ(f2i64, f2i_rte);
956 ALU_CASE_RTZ(f2u64, f2u_rte);
957 ALU_CASE_RTZ(i2f64, i2f_rte);
958 ALU_CASE_RTZ(u2f64, u2f_rte);
959
960 ALU_CASE_RTZ(f2i32, f2i_rte);
961 ALU_CASE_RTZ(f2u32, f2u_rte);
962 ALU_CASE_RTZ(i2f32, i2f_rte);
963 ALU_CASE_RTZ(u2f32, u2f_rte);
964
965 ALU_CASE_RTZ(f2i8, f2i_rte);
966 ALU_CASE_RTZ(f2u8, f2u_rte);
967
968 ALU_CASE_RTZ(f2i16, f2i_rte);
969 ALU_CASE_RTZ(f2u16, f2u_rte);
970 ALU_CASE_RTZ(i2f16, i2f_rte);
971 ALU_CASE_RTZ(u2f16, u2f_rte);
972
973 ALU_CASE(fsin, fsin);
974 ALU_CASE(fcos, fcos);
975
976 /* We'll get 0 in the second arg, so:
977 * ~a = ~(a | 0) = nor(a, 0) */
978 ALU_CASE(inot, inor);
979 ALU_CASE(iand, iand);
980 ALU_CASE(ior, ior);
981 ALU_CASE(ixor, ixor);
982 ALU_CASE(ishl, ishl);
983 ALU_CASE(ishr, iasr);
984 ALU_CASE(ushr, ilsr);
985
986 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
987 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
988 ALU_CASE_CMP(b32all_fequal4, fball_eq, true);
989
990 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
991 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
992 ALU_CASE_CMP(b32any_fnequal4, fbany_neq, true);
993
994 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
995 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
996 ALU_CASE_CMP(b32all_iequal4, iball_eq, true);
997
998 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
999 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
1000 ALU_CASE_CMP(b32any_inequal4, ibany_neq, true);
1001
1002 /* Source mods will be shoved in later */
1003 ALU_CASE(fabs, fmov);
1004 ALU_CASE(fneg, fmov);
1005 ALU_CASE(fsat, fmov);
1006 ALU_CASE(fsat_signed, fmov);
1007 ALU_CASE(fclamp_pos, fmov);
1008
1009 /* For size conversion, we use a move. Ideally though we would squash
1010 * these ops together; maybe that has to happen after in NIR as part of
1011 * propagation...? An earlier algebraic pass ensured we step down by
1012 * only / exactly one size. If stepping down, we use a dest override to
1013 * reduce the size; if stepping up, we use a larger-sized move with a
1014 * half source and a sign/zero-extension modifier */
1015
1016 case nir_op_i2i8:
1017 case nir_op_i2i16:
1018 case nir_op_i2i32:
1019 case nir_op_i2i64:
1020 case nir_op_u2u8:
1021 case nir_op_u2u16:
1022 case nir_op_u2u32:
1023 case nir_op_u2u64:
1024 case nir_op_f2f16:
1025 case nir_op_f2f32:
1026 case nir_op_f2f64: {
1027 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
1028 instr->op == nir_op_f2f64)
1029 op = midgard_alu_op_fmov;
1030 else
1031 op = midgard_alu_op_imov;
1032
1033 break;
1034 }
1035
1036 /* For greater-or-equal, we lower to less-or-equal and flip the
1037 * arguments */
1038
1039 case nir_op_fge:
1040 case nir_op_fge32:
1041 case nir_op_ige32:
1042 case nir_op_uge32: {
1043 op =
1044 instr->op == nir_op_fge ? midgard_alu_op_fle :
1045 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1046 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1047 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1048 0;
1049
1050 flip_src12 = true;
1051 ALU_CHECK_CMP(false);
1052 break;
1053 }
1054
1055 case nir_op_b32csel: {
1056 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
1057 bool is_float = mir_is_bcsel_float(instr);
1058 op = is_float ?
1059 (mixed ? midgard_alu_op_fcsel_v : midgard_alu_op_fcsel) :
1060 (mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel);
1061
1062 break;
1063 }
1064
1065 case nir_op_unpack_32_2x16:
1066 case nir_op_unpack_32_4x8:
1067 case nir_op_pack_32_2x16:
1068 case nir_op_pack_32_4x8: {
1069 op = midgard_alu_op_imov;
1070 break;
1071 }
1072
1073 default:
1074 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1075 assert(0);
1076 return;
1077 }
1078
1079 /* Promote imov to fmov if it might help inline a constant */
1080 if (op == midgard_alu_op_imov && nir_src_is_const(instr->src[0].src)
1081 && nir_src_bit_size(instr->src[0].src) == 32
1082 && nir_is_same_comp_swizzle(instr->src[0].swizzle,
1083 nir_src_num_components(instr->src[0].src))) {
1084 op = midgard_alu_op_fmov;
1085 }
1086
1087 /* Midgard can perform certain modifiers on output of an ALU op */
1088
1089 unsigned outmod = 0;
1090 bool is_int = midgard_is_integer_op(op);
1091
1092 if (instr->op == nir_op_umul_high || instr->op == nir_op_imul_high) {
1093 outmod = midgard_outmod_int_high;
1094 } else if (midgard_is_integer_out_op(op)) {
1095 outmod = midgard_outmod_int_wrap;
1096 } else if (instr->op == nir_op_fsat) {
1097 outmod = midgard_outmod_sat;
1098 } else if (instr->op == nir_op_fsat_signed) {
1099 outmod = midgard_outmod_sat_signed;
1100 } else if (instr->op == nir_op_fclamp_pos) {
1101 outmod = midgard_outmod_pos;
1102 }
1103
1104 /* Fetch unit, quirks, etc information */
1105 unsigned opcode_props = alu_opcode_props[op].props;
1106 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1107
1108 if (!midgard_is_integer_out_op(op)) {
1109 outmod = mir_determine_float_outmod(ctx, &dest, outmod);
1110 }
1111
1112 midgard_instruction ins = {
1113 .type = TAG_ALU_4,
1114 .dest = nir_dest_index(dest),
1115 .dest_type = nir_op_infos[instr->op].output_type
1116 | nir_dest_bit_size(*dest),
1117 .roundmode = roundmode,
1118 };
1119
1120 enum midgard_roundmode *roundptr = (opcode_props & MIDGARD_ROUNDS) ?
1121 &ins.roundmode : NULL;
1122
1123 for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
1124 ins.src[i] = ~0;
1125
1126 if (quirk_flipped_r24) {
1127 ins.src[0] = ~0;
1128 mir_copy_src(&ins, instr, 0, 1, &ins.src_abs[1], &ins.src_neg[1], &ins.src_invert[1], roundptr, is_int, broadcast_swizzle);
1129 } else {
1130 for (unsigned i = 0; i < nr_inputs; ++i) {
1131 unsigned to = i;
1132
1133 if (instr->op == nir_op_b32csel) {
1134 /* The condition is the first argument; move
1135 * the other arguments up one to be a binary
1136 * instruction for Midgard with the condition
1137 * last */
1138
1139 if (i == 0)
1140 to = 2;
1141 else if (flip_src12)
1142 to = 2 - i;
1143 else
1144 to = i - 1;
1145 } else if (flip_src12) {
1146 to = 1 - to;
1147 }
1148
1149 mir_copy_src(&ins, instr, i, to, &ins.src_abs[to], &ins.src_neg[to], &ins.src_invert[to], roundptr, is_int, broadcast_swizzle);
1150
1151 /* (!c) ? a : b = c ? b : a */
1152 if (instr->op == nir_op_b32csel && ins.src_invert[2]) {
1153 ins.src_invert[2] = false;
1154 flip_src12 ^= true;
1155 }
1156 }
1157 }
1158
1159 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1160 /* Lowered to move */
1161 if (instr->op == nir_op_fneg)
1162 ins.src_neg[1] ^= true;
1163
1164 if (instr->op == nir_op_fabs)
1165 ins.src_abs[1] = true;
1166 }
1167
1168 ins.mask = mask_of(nr_components);
1169
1170 /* Apply writemask if non-SSA, keeping in mind that we can't write to
1171 * components that don't exist. Note modifier => SSA => !reg => no
1172 * writemask, so we don't have to worry about writemasks here.*/
1173
1174 if (!is_ssa)
1175 ins.mask &= instr->dest.write_mask;
1176
1177 ins.op = op;
1178 ins.outmod = outmod;
1179
1180 /* Late fixup for emulated instructions */
1181
1182 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1183 /* Presently, our second argument is an inline #0 constant.
1184 * Switch over to an embedded 1.0 constant (that can't fit
1185 * inline, since we're 32-bit, not 16-bit like the inline
1186 * constants) */
1187
1188 ins.has_inline_constant = false;
1189 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1190 ins.src_types[1] = nir_type_float32;
1191 ins.has_constants = true;
1192
1193 if (instr->op == nir_op_b2f32)
1194 ins.constants.f32[0] = 1.0f;
1195 else
1196 ins.constants.i32[0] = 1;
1197
1198 for (unsigned c = 0; c < 16; ++c)
1199 ins.swizzle[1][c] = 0;
1200 } else if (instr->op == nir_op_b2f16) {
1201 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1202 ins.src_types[1] = nir_type_float16;
1203 ins.has_constants = true;
1204 ins.constants.i16[0] = _mesa_float_to_half(1.0);
1205
1206 for (unsigned c = 0; c < 16; ++c)
1207 ins.swizzle[1][c] = 0;
1208 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1209 /* Lots of instructions need a 0 plonked in */
1210 ins.has_inline_constant = false;
1211 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1212 ins.src_types[1] = ins.src_types[0];
1213 ins.has_constants = true;
1214 ins.constants.u32[0] = 0;
1215
1216 for (unsigned c = 0; c < 16; ++c)
1217 ins.swizzle[1][c] = 0;
1218 } else if (instr->op == nir_op_pack_32_2x16) {
1219 ins.dest_type = nir_type_uint16;
1220 ins.mask = mask_of(nr_components * 2);
1221 ins.is_pack = true;
1222 } else if (instr->op == nir_op_pack_32_4x8) {
1223 ins.dest_type = nir_type_uint8;
1224 ins.mask = mask_of(nr_components * 4);
1225 ins.is_pack = true;
1226 } else if (instr->op == nir_op_unpack_32_2x16) {
1227 ins.dest_type = nir_type_uint32;
1228 ins.mask = mask_of(nr_components >> 1);
1229 ins.is_pack = true;
1230 } else if (instr->op == nir_op_unpack_32_4x8) {
1231 ins.dest_type = nir_type_uint32;
1232 ins.mask = mask_of(nr_components >> 2);
1233 ins.is_pack = true;
1234 }
1235
1236 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1237 /* To avoid duplicating the lookup tables (probably), true LUT
1238 * instructions can only operate as if they were scalars. Lower
1239 * them here by changing the component. */
1240
1241 unsigned orig_mask = ins.mask;
1242
1243 unsigned swizzle_back[MIR_VEC_COMPONENTS];
1244 memcpy(&swizzle_back, ins.swizzle[0], sizeof(swizzle_back));
1245
1246 midgard_instruction ins_split[MIR_VEC_COMPONENTS];
1247 unsigned ins_count = 0;
1248
1249 for (int i = 0; i < nr_components; ++i) {
1250 /* Mask the associated component, dropping the
1251 * instruction if needed */
1252
1253 ins.mask = 1 << i;
1254 ins.mask &= orig_mask;
1255
1256 for (unsigned j = 0; j < ins_count; ++j) {
1257 if (swizzle_back[i] == ins_split[j].swizzle[0][0]) {
1258 ins_split[j].mask |= ins.mask;
1259 ins.mask = 0;
1260 break;
1261 }
1262 }
1263
1264 if (!ins.mask)
1265 continue;
1266
1267 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1268 ins.swizzle[0][j] = swizzle_back[i]; /* Pull from the correct component */
1269
1270 ins_split[ins_count] = ins;
1271
1272 ++ins_count;
1273 }
1274
1275 for (unsigned i = 0; i < ins_count; ++i) {
1276 emit_mir_instruction(ctx, ins_split[i]);
1277 }
1278 } else {
1279 emit_mir_instruction(ctx, ins);
1280 }
1281 }
1282
1283 #undef ALU_CASE
1284
1285 static void
1286 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1287 {
1288 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1289 unsigned nir_mask = 0;
1290 unsigned dsize = 0;
1291
1292 if (is_read) {
1293 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1294 dsize = nir_dest_bit_size(intr->dest);
1295 } else {
1296 nir_mask = nir_intrinsic_write_mask(intr);
1297 dsize = 32;
1298 }
1299
1300 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1301 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1302 ins->dest_type = nir_type_uint | dsize;
1303 mir_set_bytemask(ins, bytemask);
1304 }
1305
1306 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1307 * optimized) versions of UBO #0 */
1308
1309 static midgard_instruction *
1310 emit_ubo_read(
1311 compiler_context *ctx,
1312 nir_instr *instr,
1313 unsigned dest,
1314 unsigned offset,
1315 nir_src *indirect_offset,
1316 unsigned indirect_shift,
1317 unsigned index)
1318 {
1319 /* TODO: half-floats */
1320
1321 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1322 ins.constants.u32[0] = offset;
1323
1324 if (instr->type == nir_instr_type_intrinsic)
1325 mir_set_intr_mask(instr, &ins, true);
1326
1327 if (indirect_offset) {
1328 ins.src[2] = nir_src_index(ctx, indirect_offset);
1329 ins.src_types[2] = nir_type_uint32;
1330 ins.load_store.arg_2 = (indirect_shift << 5);
1331
1332 /* X component for the whole swizzle to prevent register
1333 * pressure from ballooning from the extra components */
1334 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[2]); ++i)
1335 ins.swizzle[2][i] = 0;
1336 } else {
1337 ins.load_store.arg_2 = 0x1E;
1338 }
1339
1340 ins.load_store.arg_1 = index;
1341
1342 return emit_mir_instruction(ctx, ins);
1343 }
1344
1345 /* Globals are like UBOs if you squint. And shared memory is like globals if
1346 * you squint even harder */
1347
1348 static void
1349 emit_global(
1350 compiler_context *ctx,
1351 nir_instr *instr,
1352 bool is_read,
1353 unsigned srcdest,
1354 nir_src *offset,
1355 bool is_shared)
1356 {
1357 /* TODO: types */
1358
1359 midgard_instruction ins;
1360
1361 if (is_read)
1362 ins = m_ld_int4(srcdest, 0);
1363 else
1364 ins = m_st_int4(srcdest, 0);
1365
1366 mir_set_offset(ctx, &ins, offset, is_shared);
1367 mir_set_intr_mask(instr, &ins, is_read);
1368
1369 /* Set a valid swizzle for masked out components */
1370 assert(ins.mask);
1371 unsigned first_component = __builtin_ffs(ins.mask) - 1;
1372
1373 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i) {
1374 if (!(ins.mask & (1 << i)))
1375 ins.swizzle[0][i] = first_component;
1376 }
1377
1378 emit_mir_instruction(ctx, ins);
1379 }
1380
1381 /* If is_shared is off, the only other possible value are globals, since
1382 * SSBO's are being lowered to globals through a NIR pass. */
1383 static void
1384 emit_atomic(
1385 compiler_context *ctx,
1386 nir_intrinsic_instr *instr,
1387 bool is_shared,
1388 midgard_load_store_op op)
1389 {
1390 unsigned bitsize = nir_src_bit_size(instr->src[1]);
1391 nir_alu_type type =
1392 (op == midgard_op_atomic_imin || op == midgard_op_atomic_imax) ?
1393 nir_type_int : nir_type_uint;
1394
1395 unsigned dest = nir_dest_index(&instr->dest);
1396 unsigned val = nir_src_index(ctx, &instr->src[1]);
1397 emit_explicit_constant(ctx, val, val);
1398
1399 midgard_instruction ins = {
1400 .type = TAG_LOAD_STORE_4,
1401 .mask = 0xF,
1402 .dest = dest,
1403 .src = { ~0, ~0, ~0, val },
1404 .src_types = { 0, 0, 0, type | bitsize },
1405 .op = op
1406 };
1407
1408 nir_src *src_offset = nir_get_io_offset_src(instr);
1409
1410 /* cmpxchg takes an extra value in arg_2, so we don't use it for the offset */
1411 if (op == midgard_op_atomic_cmpxchg) {
1412 unsigned addr = nir_src_index(ctx, src_offset);
1413
1414 ins.src[1] = addr;
1415 ins.src_types[1] = nir_type_uint | nir_src_bit_size(*src_offset);
1416
1417 unsigned xchg_val = nir_src_index(ctx, &instr->src[2]);
1418 emit_explicit_constant(ctx, xchg_val, xchg_val);
1419
1420 ins.src[2] = val;
1421 ins.src_types[2] = type | bitsize;
1422 ins.src[3] = xchg_val;
1423
1424 if (is_shared)
1425 ins.load_store.arg_1 |= 0x6E;
1426 } else {
1427 mir_set_offset(ctx, &ins, src_offset, is_shared);
1428 }
1429
1430 mir_set_intr_mask(&instr->instr, &ins, true);
1431
1432 emit_mir_instruction(ctx, ins);
1433 }
1434
1435 static void
1436 emit_varying_read(
1437 compiler_context *ctx,
1438 unsigned dest, unsigned offset,
1439 unsigned nr_comp, unsigned component,
1440 nir_src *indirect_offset, nir_alu_type type, bool flat)
1441 {
1442 /* XXX: Half-floats? */
1443 /* TODO: swizzle, mask */
1444
1445 midgard_instruction ins = m_ld_vary_32(dest, offset);
1446 ins.mask = mask_of(nr_comp);
1447 ins.dest_type = type;
1448
1449 if (type == nir_type_float16) {
1450 /* Ensure we are aligned so we can pack it later */
1451 ins.mask = mask_of(ALIGN_POT(nr_comp, 2));
1452 }
1453
1454 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1455 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1456
1457 midgard_varying_parameter p = {
1458 .is_varying = 1,
1459 .interpolation = midgard_interp_default,
1460 .flat = flat,
1461 };
1462
1463 unsigned u;
1464 memcpy(&u, &p, sizeof(p));
1465 ins.load_store.varying_parameters = u;
1466
1467 if (indirect_offset) {
1468 ins.src[2] = nir_src_index(ctx, indirect_offset);
1469 ins.src_types[2] = nir_type_uint32;
1470 } else
1471 ins.load_store.arg_2 = 0x1E;
1472
1473 ins.load_store.arg_1 = 0x9E;
1474
1475 /* Use the type appropriate load */
1476 switch (type) {
1477 case nir_type_uint32:
1478 case nir_type_bool32:
1479 ins.op = midgard_op_ld_vary_32u;
1480 break;
1481 case nir_type_int32:
1482 ins.op = midgard_op_ld_vary_32i;
1483 break;
1484 case nir_type_float32:
1485 ins.op = midgard_op_ld_vary_32;
1486 break;
1487 case nir_type_float16:
1488 ins.op = midgard_op_ld_vary_16;
1489 break;
1490 default:
1491 unreachable("Attempted to load unknown type");
1492 break;
1493 }
1494
1495 emit_mir_instruction(ctx, ins);
1496 }
1497
1498 static void
1499 emit_attr_read(
1500 compiler_context *ctx,
1501 unsigned dest, unsigned offset,
1502 unsigned nr_comp, nir_alu_type t)
1503 {
1504 midgard_instruction ins = m_ld_attr_32(dest, offset);
1505 ins.load_store.arg_1 = 0x1E;
1506 ins.load_store.arg_2 = 0x1E;
1507 ins.mask = mask_of(nr_comp);
1508
1509 /* Use the type appropriate load */
1510 switch (t) {
1511 case nir_type_uint:
1512 case nir_type_bool:
1513 ins.op = midgard_op_ld_attr_32u;
1514 break;
1515 case nir_type_int:
1516 ins.op = midgard_op_ld_attr_32i;
1517 break;
1518 case nir_type_float:
1519 ins.op = midgard_op_ld_attr_32;
1520 break;
1521 default:
1522 unreachable("Attempted to load unknown type");
1523 break;
1524 }
1525
1526 emit_mir_instruction(ctx, ins);
1527 }
1528
1529 static void
1530 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1531 unsigned nr_components, unsigned offset)
1532 {
1533 nir_dest nir_dest;
1534
1535 /* Figure out which uniform this is */
1536 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1537 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1538
1539 unsigned dest = nir_dest_index(&nir_dest);
1540
1541 /* Sysvals are prefix uniforms */
1542 unsigned uniform = ((uintptr_t) val) - 1;
1543
1544 /* Emit the read itself -- this is never indirect */
1545 midgard_instruction *ins =
1546 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1547
1548 ins->mask = mask_of(nr_components);
1549 }
1550
1551 static unsigned
1552 compute_builtin_arg(nir_op op)
1553 {
1554 switch (op) {
1555 case nir_intrinsic_load_work_group_id:
1556 return 0x14;
1557 case nir_intrinsic_load_local_invocation_id:
1558 return 0x10;
1559 default:
1560 unreachable("Invalid compute paramater loaded");
1561 }
1562 }
1563
1564 static void
1565 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned src_z, unsigned src_s, enum midgard_rt_id rt)
1566 {
1567 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1568
1569 midgard_instruction *br = ctx->writeout_branch[rt];
1570
1571 assert(!br);
1572
1573 emit_explicit_constant(ctx, src, src);
1574
1575 struct midgard_instruction ins =
1576 v_branch(false, false);
1577
1578 bool depth_only = (rt == MIDGARD_ZS_RT);
1579
1580 ins.writeout = depth_only ? 0 : PAN_WRITEOUT_C;
1581
1582 /* Add dependencies */
1583 ins.src[0] = src;
1584 ins.src_types[0] = nir_type_uint32;
1585 ins.constants.u32[0] = depth_only ? 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1586 for (int i = 0; i < 4; ++i)
1587 ins.swizzle[0][i] = i;
1588
1589 if (~src_z) {
1590 emit_explicit_constant(ctx, src_z, src_z);
1591 ins.src[2] = src_z;
1592 ins.src_types[2] = nir_type_uint32;
1593 ins.writeout |= PAN_WRITEOUT_Z;
1594 }
1595 if (~src_s) {
1596 emit_explicit_constant(ctx, src_s, src_s);
1597 ins.src[3] = src_s;
1598 ins.src_types[3] = nir_type_uint32;
1599 ins.writeout |= PAN_WRITEOUT_S;
1600 }
1601
1602 /* Emit the branch */
1603 br = emit_mir_instruction(ctx, ins);
1604 schedule_barrier(ctx);
1605 ctx->writeout_branch[rt] = br;
1606
1607 /* Push our current location = current block count - 1 = where we'll
1608 * jump to. Maybe a bit too clever for my own good */
1609
1610 br->branch.target_block = ctx->block_count - 1;
1611 }
1612
1613 static void
1614 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1615 {
1616 unsigned reg = nir_dest_index(&instr->dest);
1617 midgard_instruction ins = m_ld_compute_id(reg, 0);
1618 ins.mask = mask_of(3);
1619 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1620 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1621 emit_mir_instruction(ctx, ins);
1622 }
1623
1624 static unsigned
1625 vertex_builtin_arg(nir_op op)
1626 {
1627 switch (op) {
1628 case nir_intrinsic_load_vertex_id:
1629 return PAN_VERTEX_ID;
1630 case nir_intrinsic_load_instance_id:
1631 return PAN_INSTANCE_ID;
1632 default:
1633 unreachable("Invalid vertex builtin");
1634 }
1635 }
1636
1637 static void
1638 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1639 {
1640 unsigned reg = nir_dest_index(&instr->dest);
1641 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1642 }
1643
1644 static void
1645 emit_special(compiler_context *ctx, nir_intrinsic_instr *instr, unsigned idx)
1646 {
1647 unsigned reg = nir_dest_index(&instr->dest);
1648
1649 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1650 ld.op = midgard_op_ld_color_buffer_32u_old;
1651 ld.load_store.address = idx;
1652 ld.load_store.arg_2 = 0x1E;
1653
1654 for (int i = 0; i < 4; ++i)
1655 ld.swizzle[0][i] = COMPONENT_X;
1656
1657 emit_mir_instruction(ctx, ld);
1658 }
1659
1660 static void
1661 emit_control_barrier(compiler_context *ctx)
1662 {
1663 midgard_instruction ins = {
1664 .type = TAG_TEXTURE_4,
1665 .dest = ~0,
1666 .src = { ~0, ~0, ~0, ~0 },
1667 .op = TEXTURE_OP_BARRIER,
1668 };
1669
1670 emit_mir_instruction(ctx, ins);
1671 }
1672
1673 static unsigned
1674 mir_get_branch_cond(nir_src *src, bool *invert)
1675 {
1676 /* Wrap it. No swizzle since it's a scalar */
1677
1678 nir_alu_src alu = {
1679 .src = *src
1680 };
1681
1682 *invert = pan_has_source_mod(&alu, nir_op_inot);
1683 return nir_src_index(NULL, &alu.src);
1684 }
1685
1686 static uint8_t
1687 output_load_rt_addr(compiler_context *ctx, nir_intrinsic_instr *instr)
1688 {
1689 if (ctx->is_blend)
1690 return ctx->blend_rt;
1691
1692 const nir_variable *var;
1693 var = search_var(ctx->nir, nir_var_shader_out, nir_intrinsic_base(instr));
1694 assert(var);
1695
1696 unsigned loc = var->data.location;
1697
1698 if (loc == FRAG_RESULT_COLOR)
1699 loc = FRAG_RESULT_DATA0;
1700
1701 if (loc >= FRAG_RESULT_DATA0)
1702 return loc - FRAG_RESULT_DATA0;
1703
1704 if (loc == FRAG_RESULT_DEPTH)
1705 return 0x1F;
1706 if (loc == FRAG_RESULT_STENCIL)
1707 return 0x1E;
1708
1709 unreachable("Invalid RT to load from");
1710 }
1711
1712 static void
1713 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1714 {
1715 unsigned offset = 0, reg;
1716
1717 switch (instr->intrinsic) {
1718 case nir_intrinsic_discard_if:
1719 case nir_intrinsic_discard: {
1720 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1721 struct midgard_instruction discard = v_branch(conditional, false);
1722 discard.branch.target_type = TARGET_DISCARD;
1723
1724 if (conditional) {
1725 discard.src[0] = mir_get_branch_cond(&instr->src[0],
1726 &discard.branch.invert_conditional);
1727 discard.src_types[0] = nir_type_uint32;
1728 }
1729
1730 emit_mir_instruction(ctx, discard);
1731 schedule_barrier(ctx);
1732
1733 break;
1734 }
1735
1736 case nir_intrinsic_load_uniform:
1737 case nir_intrinsic_load_ubo:
1738 case nir_intrinsic_load_global:
1739 case nir_intrinsic_load_shared:
1740 case nir_intrinsic_load_input:
1741 case nir_intrinsic_load_interpolated_input: {
1742 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1743 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1744 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1745 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1746 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1747 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1748
1749 /* Get the base type of the intrinsic */
1750 /* TODO: Infer type? Does it matter? */
1751 nir_alu_type t =
1752 (is_ubo || is_global || is_shared) ? nir_type_uint :
1753 (is_interp) ? nir_type_float :
1754 nir_intrinsic_type(instr);
1755
1756 t = nir_alu_type_get_base_type(t);
1757
1758 if (!(is_ubo || is_global)) {
1759 offset = nir_intrinsic_base(instr);
1760 }
1761
1762 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1763
1764 nir_src *src_offset = nir_get_io_offset_src(instr);
1765
1766 bool direct = nir_src_is_const(*src_offset);
1767 nir_src *indirect_offset = direct ? NULL : src_offset;
1768
1769 if (direct)
1770 offset += nir_src_as_uint(*src_offset);
1771
1772 /* We may need to apply a fractional offset */
1773 int component = (is_flat || is_interp) ?
1774 nir_intrinsic_component(instr) : 0;
1775 reg = nir_dest_index(&instr->dest);
1776
1777 if (is_uniform && !ctx->is_blend) {
1778 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1779 } else if (is_ubo) {
1780 nir_src index = instr->src[0];
1781
1782 /* TODO: Is indirect block number possible? */
1783 assert(nir_src_is_const(index));
1784
1785 uint32_t uindex = nir_src_as_uint(index) + 1;
1786 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1787 } else if (is_global || is_shared) {
1788 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1789 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1790 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t | nir_dest_bit_size(instr->dest), is_flat);
1791 } else if (ctx->is_blend) {
1792 /* ctx->blend_input will be precoloured to r0/r2, where
1793 * the input is preloaded */
1794
1795 unsigned *input = offset ? &ctx->blend_src1 : &ctx->blend_input;
1796
1797 if (*input == ~0)
1798 *input = reg;
1799 else
1800 emit_mir_instruction(ctx, v_mov(*input, reg));
1801 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1802 emit_attr_read(ctx, reg, offset, nr_comp, t);
1803 } else {
1804 DBG("Unknown load\n");
1805 assert(0);
1806 }
1807
1808 break;
1809 }
1810
1811 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1812 case nir_intrinsic_load_barycentric_pixel:
1813 case nir_intrinsic_load_barycentric_centroid:
1814 break;
1815
1816 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1817
1818 case nir_intrinsic_load_raw_output_pan: {
1819 reg = nir_dest_index(&instr->dest);
1820
1821 /* T720 and below use different blend opcodes with slightly
1822 * different semantics than T760 and up */
1823
1824 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1825
1826 ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
1827
1828 if (nir_src_is_const(instr->src[0])) {
1829 ld.load_store.arg_1 = nir_src_as_uint(instr->src[0]);
1830 } else {
1831 ld.load_store.varying_parameters = 2;
1832 ld.src[1] = nir_src_index(ctx, &instr->src[0]);
1833 ld.src_types[1] = nir_type_int32;
1834 }
1835
1836 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1837 ld.op = midgard_op_ld_color_buffer_32u_old;
1838 ld.load_store.address = 16;
1839 ld.load_store.arg_2 = 0x1E;
1840 }
1841
1842 emit_mir_instruction(ctx, ld);
1843 break;
1844 }
1845
1846 case nir_intrinsic_load_output: {
1847 reg = nir_dest_index(&instr->dest);
1848
1849 unsigned bits = nir_dest_bit_size(instr->dest);
1850
1851 midgard_instruction ld;
1852 if (bits == 16)
1853 ld = m_ld_color_buffer_as_fp16(reg, 0);
1854 else
1855 ld = m_ld_color_buffer_as_fp32(reg, 0);
1856
1857 ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
1858
1859 for (unsigned c = 4; c < 16; ++c)
1860 ld.swizzle[0][c] = 0;
1861
1862 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1863 if (bits == 16)
1864 ld.op = midgard_op_ld_color_buffer_as_fp16_old;
1865 else
1866 ld.op = midgard_op_ld_color_buffer_as_fp32_old;
1867 ld.load_store.address = 1;
1868 ld.load_store.arg_2 = 0x1E;
1869 }
1870
1871 emit_mir_instruction(ctx, ld);
1872 break;
1873 }
1874
1875 case nir_intrinsic_load_blend_const_color_rgba: {
1876 assert(ctx->is_blend);
1877 reg = nir_dest_index(&instr->dest);
1878
1879 /* Blend constants are embedded directly in the shader and
1880 * patched in, so we use some magic routing */
1881
1882 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1883 ins.has_constants = true;
1884 ins.has_blend_constant = true;
1885 emit_mir_instruction(ctx, ins);
1886 break;
1887 }
1888
1889 case nir_intrinsic_store_output:
1890 case nir_intrinsic_store_combined_output_pan:
1891 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1892
1893 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1894
1895 reg = nir_src_index(ctx, &instr->src[0]);
1896
1897 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1898 bool combined = instr->intrinsic ==
1899 nir_intrinsic_store_combined_output_pan;
1900
1901 const nir_variable *var;
1902 var = search_var(ctx->nir, nir_var_shader_out,
1903 nir_intrinsic_base(instr));
1904 assert(var);
1905
1906 /* Dual-source blend writeout is done by leaving the
1907 * value in r2 for the blend shader to use. */
1908 if (var->data.index) {
1909 if (instr->src[0].is_ssa) {
1910 emit_explicit_constant(ctx, reg, reg);
1911
1912 unsigned out = make_compiler_temp(ctx);
1913
1914 midgard_instruction ins = v_mov(reg, out);
1915 emit_mir_instruction(ctx, ins);
1916
1917 ctx->blend_src1 = out;
1918 } else {
1919 ctx->blend_src1 = reg;
1920 }
1921
1922 break;
1923 }
1924
1925 enum midgard_rt_id rt;
1926 if (var->data.location == FRAG_RESULT_COLOR)
1927 rt = MIDGARD_COLOR_RT0;
1928 else if (var->data.location >= FRAG_RESULT_DATA0)
1929 rt = MIDGARD_COLOR_RT0 + var->data.location -
1930 FRAG_RESULT_DATA0;
1931 else if (combined)
1932 rt = MIDGARD_ZS_RT;
1933 else
1934 unreachable("bad rt");
1935
1936 unsigned reg_z = ~0, reg_s = ~0;
1937 if (combined) {
1938 unsigned writeout = nir_intrinsic_component(instr);
1939 if (writeout & PAN_WRITEOUT_Z)
1940 reg_z = nir_src_index(ctx, &instr->src[2]);
1941 if (writeout & PAN_WRITEOUT_S)
1942 reg_s = nir_src_index(ctx, &instr->src[3]);
1943 }
1944
1945 emit_fragment_store(ctx, reg, reg_z, reg_s, rt);
1946 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1947 assert(instr->intrinsic == nir_intrinsic_store_output);
1948
1949 /* We should have been vectorized, though we don't
1950 * currently check that st_vary is emitted only once
1951 * per slot (this is relevant, since there's not a mask
1952 * parameter available on the store [set to 0 by the
1953 * blob]). We do respect the component by adjusting the
1954 * swizzle. If this is a constant source, we'll need to
1955 * emit that explicitly. */
1956
1957 emit_explicit_constant(ctx, reg, reg);
1958
1959 unsigned dst_component = nir_intrinsic_component(instr);
1960 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1961
1962 midgard_instruction st = m_st_vary_32(reg, offset);
1963 st.load_store.arg_1 = 0x9E;
1964 st.load_store.arg_2 = 0x1E;
1965
1966 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1967 case nir_type_uint:
1968 case nir_type_bool:
1969 st.op = midgard_op_st_vary_32u;
1970 break;
1971 case nir_type_int:
1972 st.op = midgard_op_st_vary_32i;
1973 break;
1974 case nir_type_float:
1975 st.op = midgard_op_st_vary_32;
1976 break;
1977 default:
1978 unreachable("Attempted to store unknown type");
1979 break;
1980 }
1981
1982 /* nir_intrinsic_component(store_intr) encodes the
1983 * destination component start. Source component offset
1984 * adjustment is taken care of in
1985 * install_registers_instr(), when offset_swizzle() is
1986 * called.
1987 */
1988 unsigned src_component = COMPONENT_X;
1989
1990 assert(nr_comp > 0);
1991 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1992 st.swizzle[0][i] = src_component;
1993 if (i >= dst_component && i < dst_component + nr_comp - 1)
1994 src_component++;
1995 }
1996
1997 emit_mir_instruction(ctx, st);
1998 } else {
1999 DBG("Unknown store\n");
2000 assert(0);
2001 }
2002
2003 break;
2004
2005 /* Special case of store_output for lowered blend shaders */
2006 case nir_intrinsic_store_raw_output_pan:
2007 assert (ctx->stage == MESA_SHADER_FRAGMENT);
2008 reg = nir_src_index(ctx, &instr->src[0]);
2009 emit_fragment_store(ctx, reg, ~0, ~0, ctx->blend_rt);
2010 break;
2011
2012 case nir_intrinsic_store_global:
2013 case nir_intrinsic_store_shared:
2014 reg = nir_src_index(ctx, &instr->src[0]);
2015 emit_explicit_constant(ctx, reg, reg);
2016
2017 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
2018 break;
2019
2020 case nir_intrinsic_load_ssbo_address:
2021 emit_sysval_read(ctx, &instr->instr, 1, 0);
2022 break;
2023
2024 case nir_intrinsic_get_buffer_size:
2025 emit_sysval_read(ctx, &instr->instr, 1, 8);
2026 break;
2027
2028 case nir_intrinsic_load_viewport_scale:
2029 case nir_intrinsic_load_viewport_offset:
2030 case nir_intrinsic_load_num_work_groups:
2031 case nir_intrinsic_load_sampler_lod_parameters_pan:
2032 emit_sysval_read(ctx, &instr->instr, 3, 0);
2033 break;
2034
2035 case nir_intrinsic_load_work_group_id:
2036 case nir_intrinsic_load_local_invocation_id:
2037 emit_compute_builtin(ctx, instr);
2038 break;
2039
2040 case nir_intrinsic_load_vertex_id:
2041 case nir_intrinsic_load_instance_id:
2042 emit_vertex_builtin(ctx, instr);
2043 break;
2044
2045 case nir_intrinsic_load_sample_mask_in:
2046 emit_special(ctx, instr, 96);
2047 break;
2048
2049 case nir_intrinsic_load_sample_id:
2050 emit_special(ctx, instr, 97);
2051 break;
2052
2053 case nir_intrinsic_memory_barrier_buffer:
2054 case nir_intrinsic_memory_barrier_shared:
2055 break;
2056
2057 case nir_intrinsic_control_barrier:
2058 schedule_barrier(ctx);
2059 emit_control_barrier(ctx);
2060 schedule_barrier(ctx);
2061 break;
2062
2063 ATOMIC_CASE(ctx, instr, add, add);
2064 ATOMIC_CASE(ctx, instr, and, and);
2065 ATOMIC_CASE(ctx, instr, comp_swap, cmpxchg);
2066 ATOMIC_CASE(ctx, instr, exchange, xchg);
2067 ATOMIC_CASE(ctx, instr, imax, imax);
2068 ATOMIC_CASE(ctx, instr, imin, imin);
2069 ATOMIC_CASE(ctx, instr, or, or);
2070 ATOMIC_CASE(ctx, instr, umax, umax);
2071 ATOMIC_CASE(ctx, instr, umin, umin);
2072 ATOMIC_CASE(ctx, instr, xor, xor);
2073
2074 default:
2075 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
2076 assert(0);
2077 break;
2078 }
2079 }
2080
2081 /* Returns dimension with 0 special casing cubemaps */
2082 static unsigned
2083 midgard_tex_format(enum glsl_sampler_dim dim)
2084 {
2085 switch (dim) {
2086 case GLSL_SAMPLER_DIM_1D:
2087 case GLSL_SAMPLER_DIM_BUF:
2088 return 1;
2089
2090 case GLSL_SAMPLER_DIM_2D:
2091 case GLSL_SAMPLER_DIM_MS:
2092 case GLSL_SAMPLER_DIM_EXTERNAL:
2093 case GLSL_SAMPLER_DIM_RECT:
2094 return 2;
2095
2096 case GLSL_SAMPLER_DIM_3D:
2097 return 3;
2098
2099 case GLSL_SAMPLER_DIM_CUBE:
2100 return 0;
2101
2102 default:
2103 DBG("Unknown sampler dim type\n");
2104 assert(0);
2105 return 0;
2106 }
2107 }
2108
2109 /* Tries to attach an explicit LOD or bias as a constant. Returns whether this
2110 * was successful */
2111
2112 static bool
2113 pan_attach_constant_bias(
2114 compiler_context *ctx,
2115 nir_src lod,
2116 midgard_texture_word *word)
2117 {
2118 /* To attach as constant, it has to *be* constant */
2119
2120 if (!nir_src_is_const(lod))
2121 return false;
2122
2123 float f = nir_src_as_float(lod);
2124
2125 /* Break into fixed-point */
2126 signed lod_int = f;
2127 float lod_frac = f - lod_int;
2128
2129 /* Carry over negative fractions */
2130 if (lod_frac < 0.0) {
2131 lod_int--;
2132 lod_frac += 1.0;
2133 }
2134
2135 /* Encode */
2136 word->bias = float_to_ubyte(lod_frac);
2137 word->bias_int = lod_int;
2138
2139 return true;
2140 }
2141
2142 static enum mali_texture_mode
2143 mdg_texture_mode(nir_tex_instr *instr)
2144 {
2145 if (instr->op == nir_texop_tg4 && instr->is_shadow)
2146 return TEXTURE_GATHER_SHADOW;
2147 else if (instr->op == nir_texop_tg4)
2148 return TEXTURE_GATHER_X + instr->component;
2149 else if (instr->is_shadow)
2150 return TEXTURE_SHADOW;
2151 else
2152 return TEXTURE_NORMAL;
2153 }
2154
2155 static void
2156 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
2157 unsigned midgard_texop)
2158 {
2159 /* TODO */
2160 //assert (!instr->sampler);
2161
2162 nir_dest *dest = &instr->dest;
2163
2164 int texture_index = instr->texture_index;
2165 int sampler_index = texture_index;
2166
2167 nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
2168 nir_alu_type dest_type = dest_base | nir_dest_bit_size(*dest);
2169
2170 /* texture instructions support float outmods */
2171 unsigned outmod = midgard_outmod_none;
2172 if (dest_base == nir_type_float) {
2173 outmod = mir_determine_float_outmod(ctx, &dest, 0);
2174 }
2175
2176 midgard_instruction ins = {
2177 .type = TAG_TEXTURE_4,
2178 .mask = 0xF,
2179 .dest = nir_dest_index(dest),
2180 .src = { ~0, ~0, ~0, ~0 },
2181 .dest_type = dest_type,
2182 .swizzle = SWIZZLE_IDENTITY_4,
2183 .outmod = outmod,
2184 .op = midgard_texop,
2185 .texture = {
2186 .format = midgard_tex_format(instr->sampler_dim),
2187 .texture_handle = texture_index,
2188 .sampler_handle = sampler_index,
2189 .mode = mdg_texture_mode(instr)
2190 }
2191 };
2192
2193 if (instr->is_shadow && !instr->is_new_style_shadow && instr->op != nir_texop_tg4)
2194 for (int i = 0; i < 4; ++i)
2195 ins.swizzle[0][i] = COMPONENT_X;
2196
2197 /* We may need a temporary for the coordinate */
2198
2199 bool needs_temp_coord =
2200 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
2201 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
2202 (instr->is_shadow);
2203
2204 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
2205
2206 for (unsigned i = 0; i < instr->num_srcs; ++i) {
2207 int index = nir_src_index(ctx, &instr->src[i].src);
2208 unsigned nr_components = nir_src_num_components(instr->src[i].src);
2209 unsigned sz = nir_src_bit_size(instr->src[i].src);
2210 nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
2211
2212 switch (instr->src[i].src_type) {
2213 case nir_tex_src_coord: {
2214 emit_explicit_constant(ctx, index, index);
2215
2216 unsigned coord_mask = mask_of(instr->coord_components);
2217
2218 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
2219
2220 if (flip_zw)
2221 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
2222
2223 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
2224 /* texelFetch is undefined on samplerCube */
2225 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
2226
2227 /* For cubemaps, we use a special ld/st op to
2228 * select the face and copy the xy into the
2229 * texture register */
2230
2231 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
2232 ld.src[1] = index;
2233 ld.src_types[1] = T;
2234 ld.mask = 0x3; /* xy */
2235 ld.load_store.arg_1 = 0x20;
2236 ld.swizzle[1][3] = COMPONENT_X;
2237 emit_mir_instruction(ctx, ld);
2238
2239 /* xyzw -> xyxx */
2240 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
2241 ins.swizzle[1][3] = COMPONENT_X;
2242 } else if (needs_temp_coord) {
2243 /* mov coord_temp, coords */
2244 midgard_instruction mov = v_mov(index, coords);
2245 mov.mask = coord_mask;
2246
2247 if (flip_zw)
2248 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
2249
2250 emit_mir_instruction(ctx, mov);
2251 } else {
2252 coords = index;
2253 }
2254
2255 ins.src[1] = coords;
2256 ins.src_types[1] = T;
2257
2258 /* Texelfetch coordinates uses all four elements
2259 * (xyz/index) regardless of texture dimensionality,
2260 * which means it's necessary to zero the unused
2261 * components to keep everything happy */
2262
2263 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
2264 /* mov index.zw, #0, or generalized */
2265 midgard_instruction mov =
2266 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
2267 mov.has_constants = true;
2268 mov.mask = coord_mask ^ 0xF;
2269 emit_mir_instruction(ctx, mov);
2270 }
2271
2272 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
2273 /* Array component in w but NIR wants it in z,
2274 * but if we have a temp coord we already fixed
2275 * that up */
2276
2277 if (nr_components == 3) {
2278 ins.swizzle[1][2] = COMPONENT_Z;
2279 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
2280 } else if (nr_components == 2) {
2281 ins.swizzle[1][2] =
2282 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
2283 ins.swizzle[1][3] = COMPONENT_X;
2284 } else
2285 unreachable("Invalid texture 2D components");
2286 }
2287
2288 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
2289 /* We zeroed */
2290 ins.swizzle[1][2] = COMPONENT_Z;
2291 ins.swizzle[1][3] = COMPONENT_W;
2292 }
2293
2294 break;
2295 }
2296
2297 case nir_tex_src_bias:
2298 case nir_tex_src_lod: {
2299 /* Try as a constant if we can */
2300
2301 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
2302 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
2303 break;
2304
2305 ins.texture.lod_register = true;
2306 ins.src[2] = index;
2307 ins.src_types[2] = T;
2308
2309 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
2310 ins.swizzle[2][c] = COMPONENT_X;
2311
2312 emit_explicit_constant(ctx, index, index);
2313
2314 break;
2315 };
2316
2317 case nir_tex_src_offset: {
2318 ins.texture.offset_register = true;
2319 ins.src[3] = index;
2320 ins.src_types[3] = T;
2321
2322 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
2323 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
2324
2325 emit_explicit_constant(ctx, index, index);
2326 break;
2327 };
2328
2329 case nir_tex_src_comparator:
2330 case nir_tex_src_ms_index: {
2331 unsigned comp = COMPONENT_Z;
2332
2333 /* mov coord_temp.foo, coords */
2334 midgard_instruction mov = v_mov(index, coords);
2335 mov.mask = 1 << comp;
2336
2337 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
2338 mov.swizzle[1][i] = COMPONENT_X;
2339
2340 emit_mir_instruction(ctx, mov);
2341 break;
2342 }
2343
2344 default: {
2345 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
2346 assert(0);
2347 }
2348 }
2349 }
2350
2351 emit_mir_instruction(ctx, ins);
2352 }
2353
2354 static void
2355 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
2356 {
2357 switch (instr->op) {
2358 case nir_texop_tex:
2359 case nir_texop_txb:
2360 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
2361 break;
2362 case nir_texop_txl:
2363 case nir_texop_tg4:
2364 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
2365 break;
2366 case nir_texop_txf:
2367 case nir_texop_txf_ms:
2368 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
2369 break;
2370 case nir_texop_txs:
2371 emit_sysval_read(ctx, &instr->instr, 4, 0);
2372 break;
2373 default: {
2374 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
2375 assert(0);
2376 }
2377 }
2378 }
2379
2380 static void
2381 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
2382 {
2383 switch (instr->type) {
2384 case nir_jump_break: {
2385 /* Emit a branch out of the loop */
2386 struct midgard_instruction br = v_branch(false, false);
2387 br.branch.target_type = TARGET_BREAK;
2388 br.branch.target_break = ctx->current_loop_depth;
2389 emit_mir_instruction(ctx, br);
2390 break;
2391 }
2392
2393 default:
2394 DBG("Unknown jump type %d\n", instr->type);
2395 break;
2396 }
2397 }
2398
2399 static void
2400 emit_instr(compiler_context *ctx, struct nir_instr *instr)
2401 {
2402 switch (instr->type) {
2403 case nir_instr_type_load_const:
2404 emit_load_const(ctx, nir_instr_as_load_const(instr));
2405 break;
2406
2407 case nir_instr_type_intrinsic:
2408 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2409 break;
2410
2411 case nir_instr_type_alu:
2412 emit_alu(ctx, nir_instr_as_alu(instr));
2413 break;
2414
2415 case nir_instr_type_tex:
2416 emit_tex(ctx, nir_instr_as_tex(instr));
2417 break;
2418
2419 case nir_instr_type_jump:
2420 emit_jump(ctx, nir_instr_as_jump(instr));
2421 break;
2422
2423 case nir_instr_type_ssa_undef:
2424 /* Spurious */
2425 break;
2426
2427 default:
2428 DBG("Unhandled instruction type\n");
2429 break;
2430 }
2431 }
2432
2433
2434 /* ALU instructions can inline or embed constants, which decreases register
2435 * pressure and saves space. */
2436
2437 #define CONDITIONAL_ATTACH(idx) { \
2438 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2439 \
2440 if (entry) { \
2441 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2442 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2443 } \
2444 }
2445
2446 static void
2447 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2448 {
2449 mir_foreach_instr_in_block(block, alu) {
2450 /* Other instructions cannot inline constants */
2451 if (alu->type != TAG_ALU_4) continue;
2452 if (alu->compact_branch) continue;
2453
2454 /* If there is already a constant here, we can do nothing */
2455 if (alu->has_constants) continue;
2456
2457 CONDITIONAL_ATTACH(0);
2458
2459 if (!alu->has_constants) {
2460 CONDITIONAL_ATTACH(1)
2461 } else if (!alu->inline_constant) {
2462 /* Corner case: _two_ vec4 constants, for instance with a
2463 * csel. For this case, we can only use a constant
2464 * register for one, we'll have to emit a move for the
2465 * other. */
2466
2467 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2468 unsigned scratch = make_compiler_temp(ctx);
2469
2470 if (entry) {
2471 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2472 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2473
2474 /* Set the source */
2475 alu->src[1] = scratch;
2476
2477 /* Inject us -before- the last instruction which set r31 */
2478 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2479 }
2480 }
2481 }
2482 }
2483
2484 unsigned
2485 max_bitsize_for_alu(midgard_instruction *ins)
2486 {
2487 unsigned max_bitsize = 0;
2488 for (int i = 0; i < MIR_SRC_COUNT; i++) {
2489 if (ins->src[i] == ~0) continue;
2490 unsigned src_bitsize = nir_alu_type_get_type_size(ins->src_types[i]);
2491 max_bitsize = MAX2(src_bitsize, max_bitsize);
2492 }
2493 unsigned dst_bitsize = nir_alu_type_get_type_size(ins->dest_type);
2494 max_bitsize = MAX2(dst_bitsize, max_bitsize);
2495
2496 /* We don't have fp16 LUTs, so we'll want to emit code like:
2497 *
2498 * vlut.fsinr hr0, hr0
2499 *
2500 * where both input and output are 16-bit but the operation is carried
2501 * out in 32-bit
2502 */
2503
2504 switch (ins->op) {
2505 case midgard_alu_op_fsqrt:
2506 case midgard_alu_op_frcp:
2507 case midgard_alu_op_frsqrt:
2508 case midgard_alu_op_fsin:
2509 case midgard_alu_op_fcos:
2510 case midgard_alu_op_fexp2:
2511 case midgard_alu_op_flog2:
2512 max_bitsize = MAX2(max_bitsize, 32);
2513 break;
2514
2515 default:
2516 break;
2517 }
2518
2519 /* High implies computing at a higher bitsize, e.g umul_high of 32-bit
2520 * requires computing at 64-bit */
2521 if (midgard_is_integer_out_op(ins->op) && ins->outmod == midgard_outmod_int_high) {
2522 max_bitsize *= 2;
2523 assert(max_bitsize <= 64);
2524 }
2525
2526 return max_bitsize;
2527 }
2528
2529 midgard_reg_mode
2530 reg_mode_for_bitsize(unsigned bitsize)
2531 {
2532 switch (bitsize) {
2533 /* use 16 pipe for 8 since we don't support vec16 yet */
2534 case 8:
2535 case 16:
2536 return midgard_reg_mode_16;
2537 case 32:
2538 return midgard_reg_mode_32;
2539 case 64:
2540 return midgard_reg_mode_64;
2541 default:
2542 unreachable("invalid bit size");
2543 }
2544 }
2545
2546 /* Midgard supports two types of constants, embedded constants (128-bit) and
2547 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2548 * constants can be demoted to inline constants, for space savings and
2549 * sometimes a performance boost */
2550
2551 static void
2552 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2553 {
2554 mir_foreach_instr_in_block(block, ins) {
2555 if (!ins->has_constants) continue;
2556 if (ins->has_inline_constant) continue;
2557
2558 /* Blend constants must not be inlined by definition */
2559 if (ins->has_blend_constant) continue;
2560
2561 unsigned max_bitsize = max_bitsize_for_alu(ins);
2562
2563 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2564 bool is_16 = max_bitsize == 16;
2565 bool is_32 = max_bitsize == 32;
2566
2567 if (!(is_16 || is_32))
2568 continue;
2569
2570 /* src1 cannot be an inline constant due to encoding
2571 * restrictions. So, if possible we try to flip the arguments
2572 * in that case */
2573
2574 int op = ins->op;
2575
2576 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
2577 alu_opcode_props[op].props & OP_COMMUTES) {
2578 mir_flip(ins);
2579 }
2580
2581 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2582 /* Component is from the swizzle. Take a nonzero component */
2583 assert(ins->mask);
2584 unsigned first_comp = ffs(ins->mask) - 1;
2585 unsigned component = ins->swizzle[1][first_comp];
2586
2587 /* Scale constant appropriately, if we can legally */
2588 int16_t scaled_constant = 0;
2589
2590 if (is_16) {
2591 scaled_constant = ins->constants.u16[component];
2592 } else if (midgard_is_integer_op(op)) {
2593 scaled_constant = ins->constants.u32[component];
2594
2595 /* Constant overflow after resize */
2596 if (scaled_constant != ins->constants.u32[component])
2597 continue;
2598 } else {
2599 float original = ins->constants.f32[component];
2600 scaled_constant = _mesa_float_to_half(original);
2601
2602 /* Check for loss of precision. If this is
2603 * mediump, we don't care, but for a highp
2604 * shader, we need to pay attention. NIR
2605 * doesn't yet tell us which mode we're in!
2606 * Practically this prevents most constants
2607 * from being inlined, sadly. */
2608
2609 float fp32 = _mesa_half_to_float(scaled_constant);
2610
2611 if (fp32 != original)
2612 continue;
2613 }
2614
2615 /* Should've been const folded */
2616 if (ins->src_abs[1] || ins->src_neg[1])
2617 continue;
2618
2619 /* Make sure that the constant is not itself a vector
2620 * by checking if all accessed values are the same. */
2621
2622 const midgard_constants *cons = &ins->constants;
2623 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2624
2625 bool is_vector = false;
2626 unsigned mask = effective_writemask(ins->op, ins->mask);
2627
2628 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2629 /* We only care if this component is actually used */
2630 if (!(mask & (1 << c)))
2631 continue;
2632
2633 uint32_t test = is_16 ?
2634 cons->u16[ins->swizzle[1][c]] :
2635 cons->u32[ins->swizzle[1][c]];
2636
2637 if (test != value) {
2638 is_vector = true;
2639 break;
2640 }
2641 }
2642
2643 if (is_vector)
2644 continue;
2645
2646 /* Get rid of the embedded constant */
2647 ins->has_constants = false;
2648 ins->src[1] = ~0;
2649 ins->has_inline_constant = true;
2650 ins->inline_constant = scaled_constant;
2651 }
2652 }
2653 }
2654
2655 /* Dead code elimination for branches at the end of a block - only one branch
2656 * per block is legal semantically */
2657
2658 static void
2659 midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2660 {
2661 bool branched = false;
2662
2663 mir_foreach_instr_in_block_safe(block, ins) {
2664 if (!midgard_is_branch_unit(ins->unit)) continue;
2665
2666 if (branched)
2667 mir_remove_instruction(ins);
2668
2669 branched = true;
2670 }
2671 }
2672
2673 /* We want to force the invert on AND/OR to the second slot to legalize into
2674 * iandnot/iornot. The relevant patterns are for AND (and OR respectively)
2675 *
2676 * ~a & #b = ~a & ~(#~b)
2677 * ~a & b = b & ~a
2678 */
2679
2680 static void
2681 midgard_legalize_invert(compiler_context *ctx, midgard_block *block)
2682 {
2683 mir_foreach_instr_in_block(block, ins) {
2684 if (ins->type != TAG_ALU_4) continue;
2685
2686 if (ins->op != midgard_alu_op_iand &&
2687 ins->op != midgard_alu_op_ior) continue;
2688
2689 if (ins->src_invert[1] || !ins->src_invert[0]) continue;
2690
2691 if (ins->has_inline_constant) {
2692 /* ~(#~a) = ~(~#a) = a, so valid, and forces both
2693 * inverts on */
2694 ins->inline_constant = ~ins->inline_constant;
2695 ins->src_invert[1] = true;
2696 } else {
2697 /* Flip to the right invert order. Note
2698 * has_inline_constant false by assumption on the
2699 * branch, so flipping makes sense. */
2700 mir_flip(ins);
2701 }
2702 }
2703 }
2704
2705 static unsigned
2706 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2707 {
2708 /* Loop to ourselves */
2709 midgard_instruction *br = ctx->writeout_branch[rt];
2710 struct midgard_instruction ins = v_branch(false, false);
2711 ins.writeout = br->writeout;
2712 ins.branch.target_block = ctx->block_count - 1;
2713 ins.constants.u32[0] = br->constants.u32[0];
2714 memcpy(&ins.src_types, &br->src_types, sizeof(ins.src_types));
2715 emit_mir_instruction(ctx, ins);
2716
2717 ctx->current_block->epilogue = true;
2718 schedule_barrier(ctx);
2719 return ins.branch.target_block;
2720 }
2721
2722 static midgard_block *
2723 emit_block_init(compiler_context *ctx)
2724 {
2725 midgard_block *this_block = ctx->after_block;
2726 ctx->after_block = NULL;
2727
2728 if (!this_block)
2729 this_block = create_empty_block(ctx);
2730
2731 list_addtail(&this_block->base.link, &ctx->blocks);
2732
2733 this_block->scheduled = false;
2734 ++ctx->block_count;
2735
2736 /* Set up current block */
2737 list_inithead(&this_block->base.instructions);
2738 ctx->current_block = this_block;
2739
2740 return this_block;
2741 }
2742
2743 static midgard_block *
2744 emit_block(compiler_context *ctx, nir_block *block)
2745 {
2746 midgard_block *this_block = emit_block_init(ctx);
2747
2748 nir_foreach_instr(instr, block) {
2749 emit_instr(ctx, instr);
2750 ++ctx->instruction_count;
2751 }
2752
2753 return this_block;
2754 }
2755
2756 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2757
2758 static void
2759 emit_if(struct compiler_context *ctx, nir_if *nif)
2760 {
2761 midgard_block *before_block = ctx->current_block;
2762
2763 /* Speculatively emit the branch, but we can't fill it in until later */
2764 bool inv = false;
2765 EMIT(branch, true, true);
2766 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2767 then_branch->src[0] = mir_get_branch_cond(&nif->condition, &inv);
2768 then_branch->src_types[0] = nir_type_uint32;
2769 then_branch->branch.invert_conditional = !inv;
2770
2771 /* Emit the two subblocks. */
2772 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2773 midgard_block *end_then_block = ctx->current_block;
2774
2775 /* Emit a jump from the end of the then block to the end of the else */
2776 EMIT(branch, false, false);
2777 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2778
2779 /* Emit second block, and check if it's empty */
2780
2781 int else_idx = ctx->block_count;
2782 int count_in = ctx->instruction_count;
2783 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2784 midgard_block *end_else_block = ctx->current_block;
2785 int after_else_idx = ctx->block_count;
2786
2787 /* Now that we have the subblocks emitted, fix up the branches */
2788
2789 assert(then_block);
2790 assert(else_block);
2791
2792 if (ctx->instruction_count == count_in) {
2793 /* The else block is empty, so don't emit an exit jump */
2794 mir_remove_instruction(then_exit);
2795 then_branch->branch.target_block = after_else_idx;
2796 } else {
2797 then_branch->branch.target_block = else_idx;
2798 then_exit->branch.target_block = after_else_idx;
2799 }
2800
2801 /* Wire up the successors */
2802
2803 ctx->after_block = create_empty_block(ctx);
2804
2805 pan_block_add_successor(&before_block->base, &then_block->base);
2806 pan_block_add_successor(&before_block->base, &else_block->base);
2807
2808 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2809 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2810 }
2811
2812 static void
2813 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2814 {
2815 /* Remember where we are */
2816 midgard_block *start_block = ctx->current_block;
2817
2818 /* Allocate a loop number, growing the current inner loop depth */
2819 int loop_idx = ++ctx->current_loop_depth;
2820
2821 /* Get index from before the body so we can loop back later */
2822 int start_idx = ctx->block_count;
2823
2824 /* Emit the body itself */
2825 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2826
2827 /* Branch back to loop back */
2828 struct midgard_instruction br_back = v_branch(false, false);
2829 br_back.branch.target_block = start_idx;
2830 emit_mir_instruction(ctx, br_back);
2831
2832 /* Mark down that branch in the graph. */
2833 pan_block_add_successor(&start_block->base, &loop_block->base);
2834 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2835
2836 /* Find the index of the block about to follow us (note: we don't add
2837 * one; blocks are 0-indexed so we get a fencepost problem) */
2838 int break_block_idx = ctx->block_count;
2839
2840 /* Fix up the break statements we emitted to point to the right place,
2841 * now that we can allocate a block number for them */
2842 ctx->after_block = create_empty_block(ctx);
2843
2844 mir_foreach_block_from(ctx, start_block, _block) {
2845 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2846 if (ins->type != TAG_ALU_4) continue;
2847 if (!ins->compact_branch) continue;
2848
2849 /* We found a branch -- check the type to see if we need to do anything */
2850 if (ins->branch.target_type != TARGET_BREAK) continue;
2851
2852 /* It's a break! Check if it's our break */
2853 if (ins->branch.target_break != loop_idx) continue;
2854
2855 /* Okay, cool, we're breaking out of this loop.
2856 * Rewrite from a break to a goto */
2857
2858 ins->branch.target_type = TARGET_GOTO;
2859 ins->branch.target_block = break_block_idx;
2860
2861 pan_block_add_successor(_block, &ctx->after_block->base);
2862 }
2863 }
2864
2865 /* Now that we've finished emitting the loop, free up the depth again
2866 * so we play nice with recursion amid nested loops */
2867 --ctx->current_loop_depth;
2868
2869 /* Dump loop stats */
2870 ++ctx->loop_count;
2871 }
2872
2873 static midgard_block *
2874 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2875 {
2876 midgard_block *start_block = NULL;
2877
2878 foreach_list_typed(nir_cf_node, node, node, list) {
2879 switch (node->type) {
2880 case nir_cf_node_block: {
2881 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2882
2883 if (!start_block)
2884 start_block = block;
2885
2886 break;
2887 }
2888
2889 case nir_cf_node_if:
2890 emit_if(ctx, nir_cf_node_as_if(node));
2891 break;
2892
2893 case nir_cf_node_loop:
2894 emit_loop(ctx, nir_cf_node_as_loop(node));
2895 break;
2896
2897 case nir_cf_node_function:
2898 assert(0);
2899 break;
2900 }
2901 }
2902
2903 return start_block;
2904 }
2905
2906 /* Due to lookahead, we need to report the first tag executed in the command
2907 * stream and in branch targets. An initial block might be empty, so iterate
2908 * until we find one that 'works' */
2909
2910 unsigned
2911 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2912 {
2913 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2914
2915 mir_foreach_block_from(ctx, initial_block, _v) {
2916 midgard_block *v = (midgard_block *) _v;
2917 if (v->quadword_count) {
2918 midgard_bundle *initial_bundle =
2919 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2920
2921 return initial_bundle->tag;
2922 }
2923 }
2924
2925 /* Default to a tag 1 which will break from the shader, in case we jump
2926 * to the exit block (i.e. `return` in a compute shader) */
2927
2928 return 1;
2929 }
2930
2931 /* For each fragment writeout instruction, generate a writeout loop to
2932 * associate with it */
2933
2934 static void
2935 mir_add_writeout_loops(compiler_context *ctx)
2936 {
2937 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2938 midgard_instruction *br = ctx->writeout_branch[rt];
2939 if (!br) continue;
2940
2941 unsigned popped = br->branch.target_block;
2942 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2943 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2944 br->branch.target_type = TARGET_GOTO;
2945
2946 /* If we have more RTs, we'll need to restore back after our
2947 * loop terminates */
2948
2949 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2950 midgard_instruction uncond = v_branch(false, false);
2951 uncond.branch.target_block = popped;
2952 uncond.branch.target_type = TARGET_GOTO;
2953 emit_mir_instruction(ctx, uncond);
2954 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2955 schedule_barrier(ctx);
2956 } else {
2957 /* We're last, so we can terminate here */
2958 br->last_writeout = true;
2959 }
2960 }
2961 }
2962
2963 int
2964 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb, bool silent)
2965 {
2966 struct util_dynarray *compiled = &program->compiled;
2967
2968 midgard_debug = debug_get_option_midgard_debug();
2969
2970 /* TODO: Bound against what? */
2971 compiler_context *ctx = rzalloc(NULL, compiler_context);
2972
2973 ctx->nir = nir;
2974 ctx->stage = nir->info.stage;
2975 ctx->is_blend = is_blend;
2976 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2977 ctx->blend_input = ~0;
2978 ctx->blend_src1 = ~0;
2979 ctx->quirks = midgard_get_quirks(gpu_id);
2980
2981 /* Start off with a safe cutoff, allowing usage of all 16 work
2982 * registers. Later, we'll promote uniform reads to uniform registers
2983 * if we determine it is beneficial to do so */
2984 ctx->uniform_cutoff = 8;
2985
2986 /* Initialize at a global (not block) level hash tables */
2987
2988 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2989
2990 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2991 * (so we don't accidentally duplicate the epilogue since mesa/st has
2992 * messed with our I/O quite a bit already) */
2993
2994 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2995
2996 if (ctx->stage == MESA_SHADER_VERTEX) {
2997 NIR_PASS_V(nir, nir_lower_viewport_transform);
2998 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2999 }
3000
3001 NIR_PASS_V(nir, nir_lower_var_copies);
3002 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3003 NIR_PASS_V(nir, nir_split_var_copies);
3004 NIR_PASS_V(nir, nir_lower_var_copies);
3005 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3006 NIR_PASS_V(nir, nir_lower_var_copies);
3007 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3008
3009 unsigned pan_quirks = panfrost_get_quirks(gpu_id);
3010 NIR_PASS_V(nir, pan_lower_framebuffer,
3011 program->rt_formats, is_blend, pan_quirks);
3012
3013 NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
3014 glsl_type_size, 0);
3015 NIR_PASS_V(nir, nir_lower_ssbo);
3016 NIR_PASS_V(nir, midgard_nir_lower_zs_store);
3017
3018 /* Optimisation passes */
3019
3020 optimise_nir(nir, ctx->quirks, is_blend);
3021
3022 NIR_PASS_V(nir, midgard_nir_reorder_writeout);
3023
3024 if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent) {
3025 nir_print_shader(nir, stdout);
3026 }
3027
3028 /* Assign sysvals and counts, now that we're sure
3029 * (post-optimisation) */
3030
3031 panfrost_nir_assign_sysvals(&ctx->sysvals, ctx, nir);
3032 program->sysval_count = ctx->sysvals.sysval_count;
3033 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
3034
3035 nir_foreach_function(func, nir) {
3036 if (!func->impl)
3037 continue;
3038
3039 list_inithead(&ctx->blocks);
3040 ctx->block_count = 0;
3041 ctx->func = func;
3042 ctx->already_emitted = calloc(BITSET_WORDS(func->impl->ssa_alloc), sizeof(BITSET_WORD));
3043
3044 if (nir->info.outputs_read && !is_blend) {
3045 emit_block_init(ctx);
3046
3047 struct midgard_instruction wait = v_branch(false, false);
3048 wait.branch.target_type = TARGET_TILEBUF_WAIT;
3049
3050 emit_mir_instruction(ctx, wait);
3051
3052 ++ctx->instruction_count;
3053 }
3054
3055 emit_cf_list(ctx, &func->impl->body);
3056 free(ctx->already_emitted);
3057 break; /* TODO: Multi-function shaders */
3058 }
3059
3060 util_dynarray_init(compiled, NULL);
3061
3062 /* Per-block lowering before opts */
3063
3064 mir_foreach_block(ctx, _block) {
3065 midgard_block *block = (midgard_block *) _block;
3066 inline_alu_constants(ctx, block);
3067 embedded_to_inline_constant(ctx, block);
3068 }
3069 /* MIR-level optimizations */
3070
3071 bool progress = false;
3072
3073 do {
3074 progress = false;
3075 progress |= midgard_opt_dead_code_eliminate(ctx);
3076
3077 mir_foreach_block(ctx, _block) {
3078 midgard_block *block = (midgard_block *) _block;
3079 progress |= midgard_opt_copy_prop(ctx, block);
3080 progress |= midgard_opt_combine_projection(ctx, block);
3081 progress |= midgard_opt_varying_projection(ctx, block);
3082 }
3083 } while (progress);
3084
3085 mir_foreach_block(ctx, _block) {
3086 midgard_block *block = (midgard_block *) _block;
3087 midgard_lower_derivatives(ctx, block);
3088 midgard_legalize_invert(ctx, block);
3089 midgard_cull_dead_branch(ctx, block);
3090 }
3091
3092 if (ctx->stage == MESA_SHADER_FRAGMENT)
3093 mir_add_writeout_loops(ctx);
3094
3095 /* Analyze now that the code is known but before scheduling creates
3096 * pipeline registers which are harder to track */
3097 mir_analyze_helper_terminate(ctx);
3098 mir_analyze_helper_requirements(ctx);
3099
3100 /* Schedule! */
3101 midgard_schedule_program(ctx);
3102 mir_ra(ctx);
3103
3104 /* Emit flat binary from the instruction arrays. Iterate each block in
3105 * sequence. Save instruction boundaries such that lookahead tags can
3106 * be assigned easily */
3107
3108 /* Cache _all_ bundles in source order for lookahead across failed branches */
3109
3110 int bundle_count = 0;
3111 mir_foreach_block(ctx, _block) {
3112 midgard_block *block = (midgard_block *) _block;
3113 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3114 }
3115 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3116 int bundle_idx = 0;
3117 mir_foreach_block(ctx, _block) {
3118 midgard_block *block = (midgard_block *) _block;
3119 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3120 source_order_bundles[bundle_idx++] = bundle;
3121 }
3122 }
3123
3124 int current_bundle = 0;
3125
3126 /* Midgard prefetches instruction types, so during emission we
3127 * need to lookahead. Unless this is the last instruction, in
3128 * which we return 1. */
3129
3130 mir_foreach_block(ctx, _block) {
3131 midgard_block *block = (midgard_block *) _block;
3132 mir_foreach_bundle_in_block(block, bundle) {
3133 int lookahead = 1;
3134
3135 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
3136 lookahead = source_order_bundles[current_bundle + 1]->tag;
3137
3138 emit_binary_bundle(ctx, block, bundle, compiled, lookahead);
3139 ++current_bundle;
3140 }
3141
3142 /* TODO: Free deeper */
3143 //util_dynarray_fini(&block->instructions);
3144 }
3145
3146 free(source_order_bundles);
3147
3148 /* Report the very first tag executed */
3149 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3150
3151 /* Deal with off-by-one related to the fencepost problem */
3152 program->work_register_count = ctx->work_registers + 1;
3153 program->uniform_cutoff = ctx->uniform_cutoff;
3154
3155 program->blend_patch_offset = ctx->blend_constant_offset;
3156 program->tls_size = ctx->tls_size;
3157
3158 if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent)
3159 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
3160
3161 if ((midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) && !silent) {
3162 unsigned nr_bundles = 0, nr_ins = 0;
3163
3164 /* Count instructions and bundles */
3165
3166 mir_foreach_block(ctx, _block) {
3167 midgard_block *block = (midgard_block *) _block;
3168 nr_bundles += util_dynarray_num_elements(
3169 &block->bundles, midgard_bundle);
3170
3171 mir_foreach_bundle_in_block(block, bun)
3172 nr_ins += bun->instruction_count;
3173 }
3174
3175 /* Calculate thread count. There are certain cutoffs by
3176 * register count for thread count */
3177
3178 unsigned nr_registers = program->work_register_count;
3179
3180 unsigned nr_threads =
3181 (nr_registers <= 4) ? 4 :
3182 (nr_registers <= 8) ? 2 :
3183 1;
3184
3185 /* Dump stats */
3186
3187 fprintf(stderr, "shader%d - %s shader: "
3188 "%u inst, %u bundles, %u quadwords, "
3189 "%u registers, %u threads, %u loops, "
3190 "%u:%u spills:fills\n",
3191 SHADER_DB_COUNT++,
3192 ctx->is_blend ? "PAN_SHADER_BLEND" :
3193 gl_shader_stage_name(ctx->stage),
3194 nr_ins, nr_bundles, ctx->quadword_count,
3195 nr_registers, nr_threads,
3196 ctx->loop_count,
3197 ctx->spills, ctx->fills);
3198 }
3199
3200 ralloc_free(ctx);
3201
3202 return 0;
3203 }