pan/mdg: Implement nir_intrinsic_load_sample_mask_in
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/u_math.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50 #include "midgard_quirks.h"
51 #include "panfrost-quirks.h"
52 #include "panfrost/util/pan_lower_framebuffer.h"
53
54 #include "disassemble.h"
55
56 static const struct debug_named_value debug_options[] = {
57 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
58 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
59 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
60 DEBUG_NAMED_VALUE_END
61 };
62
63 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
64
65 unsigned SHADER_DB_COUNT = 0;
66
67 int midgard_debug = 0;
68
69 #define DBG(fmt, ...) \
70 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
71 fprintf(stderr, "%s:%d: "fmt, \
72 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
73 static midgard_block *
74 create_empty_block(compiler_context *ctx)
75 {
76 midgard_block *blk = rzalloc(ctx, midgard_block);
77
78 blk->base.predecessors = _mesa_set_create(blk,
79 _mesa_hash_pointer,
80 _mesa_key_pointer_equal);
81
82 blk->base.name = ctx->block_source_count++;
83
84 return blk;
85 }
86
87 static void
88 schedule_barrier(compiler_context *ctx)
89 {
90 midgard_block *temp = ctx->after_block;
91 ctx->after_block = create_empty_block(ctx);
92 ctx->block_count++;
93 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
94 list_inithead(&ctx->after_block->base.instructions);
95 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
96 ctx->current_block = ctx->after_block;
97 ctx->after_block = temp;
98 }
99
100 /* Helpers to generate midgard_instruction's using macro magic, since every
101 * driver seems to do it that way */
102
103 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
104
105 #define M_LOAD_STORE(name, store, T) \
106 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
107 midgard_instruction i = { \
108 .type = TAG_LOAD_STORE_4, \
109 .mask = 0xF, \
110 .dest = ~0, \
111 .src = { ~0, ~0, ~0, ~0 }, \
112 .swizzle = SWIZZLE_IDENTITY_4, \
113 .op = midgard_op_##name, \
114 .load_store = { \
115 .address = address \
116 } \
117 }; \
118 \
119 if (store) { \
120 i.src[0] = ssa; \
121 i.src_types[0] = T; \
122 i.dest_type = T; \
123 } else { \
124 i.dest = ssa; \
125 i.dest_type = T; \
126 } \
127 return i; \
128 }
129
130 #define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
131 #define M_STORE(name, T) M_LOAD_STORE(name, true, T)
132
133 M_LOAD(ld_attr_32, nir_type_uint32);
134 M_LOAD(ld_vary_32, nir_type_uint32);
135 M_LOAD(ld_ubo_int4, nir_type_uint32);
136 M_LOAD(ld_int4, nir_type_uint32);
137 M_STORE(st_int4, nir_type_uint32);
138 M_LOAD(ld_color_buffer_32u, nir_type_uint32);
139 M_LOAD(ld_color_buffer_as_fp16, nir_type_float16);
140 M_LOAD(ld_color_buffer_as_fp32, nir_type_float32);
141 M_STORE(st_vary_32, nir_type_uint32);
142 M_LOAD(ld_cubemap_coords, nir_type_uint32);
143 M_LOAD(ld_compute_id, nir_type_uint32);
144
145 static midgard_instruction
146 v_branch(bool conditional, bool invert)
147 {
148 midgard_instruction ins = {
149 .type = TAG_ALU_4,
150 .unit = ALU_ENAB_BRANCH,
151 .compact_branch = true,
152 .branch = {
153 .conditional = conditional,
154 .invert_conditional = invert
155 },
156 .dest = ~0,
157 .src = { ~0, ~0, ~0, ~0 },
158 };
159
160 return ins;
161 }
162
163 static void
164 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
165 {
166 ins->has_constants = true;
167 memcpy(&ins->constants, constants, 16);
168 }
169
170 static int
171 glsl_type_size(const struct glsl_type *type, bool bindless)
172 {
173 return glsl_count_attribute_slots(type, false);
174 }
175
176 /* Lower fdot2 to a vector multiplication followed by channel addition */
177 static void
178 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
179 {
180 if (alu->op != nir_op_fdot2)
181 return;
182
183 b->cursor = nir_before_instr(&alu->instr);
184
185 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
186 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
187
188 nir_ssa_def *product = nir_fmul(b, src0, src1);
189
190 nir_ssa_def *sum = nir_fadd(b,
191 nir_channel(b, product, 0),
192 nir_channel(b, product, 1));
193
194 /* Replace the fdot2 with this sum */
195 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
196 }
197
198 static bool
199 midgard_nir_lower_fdot2(nir_shader *shader)
200 {
201 bool progress = false;
202
203 nir_foreach_function(function, shader) {
204 if (!function->impl) continue;
205
206 nir_builder _b;
207 nir_builder *b = &_b;
208 nir_builder_init(b, function->impl);
209
210 nir_foreach_block(block, function->impl) {
211 nir_foreach_instr_safe(instr, block) {
212 if (instr->type != nir_instr_type_alu) continue;
213
214 nir_alu_instr *alu = nir_instr_as_alu(instr);
215 midgard_nir_lower_fdot2_body(b, alu);
216
217 progress |= true;
218 }
219 }
220
221 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
222
223 }
224
225 return progress;
226 }
227
228 static const nir_variable *
229 search_var(nir_shader *nir, nir_variable_mode mode, unsigned driver_loc)
230 {
231 nir_foreach_variable_with_modes(var, nir, mode) {
232 if (var->data.driver_location == driver_loc)
233 return var;
234 }
235
236 return NULL;
237 }
238
239 /* Midgard can write all of color, depth and stencil in a single writeout
240 * operation, so we merge depth/stencil stores with color stores.
241 * If there are no color stores, we add a write to the "depth RT".
242 */
243 static bool
244 midgard_nir_lower_zs_store(nir_shader *nir)
245 {
246 if (nir->info.stage != MESA_SHADER_FRAGMENT)
247 return false;
248
249 nir_variable *z_var = NULL, *s_var = NULL;
250
251 nir_foreach_shader_out_variable(var, nir) {
252 if (var->data.location == FRAG_RESULT_DEPTH)
253 z_var = var;
254 else if (var->data.location == FRAG_RESULT_STENCIL)
255 s_var = var;
256 }
257
258 if (!z_var && !s_var)
259 return false;
260
261 bool progress = false;
262
263 nir_foreach_function(function, nir) {
264 if (!function->impl) continue;
265
266 nir_intrinsic_instr *z_store = NULL, *s_store = NULL;
267
268 nir_foreach_block(block, function->impl) {
269 nir_foreach_instr_safe(instr, block) {
270 if (instr->type != nir_instr_type_intrinsic)
271 continue;
272
273 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
274 if (intr->intrinsic != nir_intrinsic_store_output)
275 continue;
276
277 if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
278 assert(!z_store);
279 z_store = intr;
280 }
281
282 if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
283 assert(!s_store);
284 s_store = intr;
285 }
286 }
287 }
288
289 if (!z_store && !s_store) continue;
290
291 bool replaced = false;
292
293 nir_foreach_block(block, function->impl) {
294 nir_foreach_instr_safe(instr, block) {
295 if (instr->type != nir_instr_type_intrinsic)
296 continue;
297
298 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
299 if (intr->intrinsic != nir_intrinsic_store_output)
300 continue;
301
302 const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
303 assert(var);
304
305 if (var->data.location != FRAG_RESULT_COLOR &&
306 var->data.location < FRAG_RESULT_DATA0)
307 continue;
308
309 if (var->data.index)
310 continue;
311
312 assert(nir_src_is_const(intr->src[1]) && "no indirect outputs");
313
314 nir_builder b;
315 nir_builder_init(&b, function->impl);
316
317 assert(!z_store || z_store->instr.block == instr->block);
318 assert(!s_store || s_store->instr.block == instr->block);
319 b.cursor = nir_after_block_before_jump(instr->block);
320
321 nir_intrinsic_instr *combined_store;
322 combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
323
324 combined_store->num_components = intr->src[0].ssa->num_components;
325
326 nir_intrinsic_set_base(combined_store, nir_intrinsic_base(intr));
327
328 unsigned writeout = PAN_WRITEOUT_C;
329 if (z_store)
330 writeout |= PAN_WRITEOUT_Z;
331 if (s_store)
332 writeout |= PAN_WRITEOUT_S;
333
334 nir_intrinsic_set_component(combined_store, writeout);
335
336 struct nir_ssa_def *zero = nir_imm_int(&b, 0);
337
338 struct nir_ssa_def *src[4] = {
339 intr->src[0].ssa,
340 intr->src[1].ssa,
341 z_store ? z_store->src[0].ssa : zero,
342 s_store ? s_store->src[0].ssa : zero,
343 };
344
345 for (int i = 0; i < 4; ++i)
346 combined_store->src[i] = nir_src_for_ssa(src[i]);
347
348 nir_builder_instr_insert(&b, &combined_store->instr);
349
350 nir_instr_remove(instr);
351
352 replaced = true;
353 }
354 }
355
356 /* Insert a store to the depth RT (0xff) if needed */
357 if (!replaced) {
358 nir_builder b;
359 nir_builder_init(&b, function->impl);
360
361 nir_block *block = NULL;
362 if (z_store && s_store)
363 assert(z_store->instr.block == s_store->instr.block);
364
365 if (z_store)
366 block = z_store->instr.block;
367 else
368 block = s_store->instr.block;
369
370 b.cursor = nir_after_block_before_jump(block);
371
372 nir_intrinsic_instr *combined_store;
373 combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
374
375 combined_store->num_components = 4;
376
377 unsigned base;
378 if (z_store)
379 base = nir_intrinsic_base(z_store);
380 else
381 base = nir_intrinsic_base(s_store);
382 nir_intrinsic_set_base(combined_store, base);
383
384 unsigned writeout = 0;
385 if (z_store)
386 writeout |= PAN_WRITEOUT_Z;
387 if (s_store)
388 writeout |= PAN_WRITEOUT_S;
389
390 nir_intrinsic_set_component(combined_store, writeout);
391
392 struct nir_ssa_def *zero = nir_imm_int(&b, 0);
393
394 struct nir_ssa_def *src[4] = {
395 nir_imm_vec4(&b, 0, 0, 0, 0),
396 zero,
397 z_store ? z_store->src[0].ssa : zero,
398 s_store ? s_store->src[0].ssa : zero,
399 };
400
401 for (int i = 0; i < 4; ++i)
402 combined_store->src[i] = nir_src_for_ssa(src[i]);
403
404 nir_builder_instr_insert(&b, &combined_store->instr);
405 }
406
407 if (z_store)
408 nir_instr_remove(&z_store->instr);
409
410 if (s_store)
411 nir_instr_remove(&s_store->instr);
412
413 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
414 progress = true;
415 }
416
417 return progress;
418 }
419
420 /* Real writeout stores, which break execution, need to be moved to after
421 * dual-source stores, which are just standard register writes. */
422 static bool
423 midgard_nir_reorder_writeout(nir_shader *nir)
424 {
425 bool progress = false;
426
427 nir_foreach_function(function, nir) {
428 if (!function->impl) continue;
429
430 nir_foreach_block(block, function->impl) {
431 nir_instr *last_writeout = NULL;
432
433 nir_foreach_instr_reverse_safe(instr, block) {
434 if (instr->type != nir_instr_type_intrinsic)
435 continue;
436
437 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
438 if (intr->intrinsic != nir_intrinsic_store_output)
439 continue;
440
441 const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
442
443 if (var->data.index) {
444 if (!last_writeout)
445 last_writeout = instr;
446 continue;
447 }
448
449 if (!last_writeout)
450 continue;
451
452 /* This is a real store, so move it to after dual-source stores */
453 exec_node_remove(&instr->node);
454 exec_node_insert_after(&last_writeout->node, &instr->node);
455
456 progress = true;
457 }
458 }
459 }
460
461 return progress;
462 }
463
464 static bool
465 mdg_is_64(const nir_instr *instr, const void *_unused)
466 {
467 const nir_alu_instr *alu = nir_instr_as_alu(instr);
468
469 if (nir_dest_bit_size(alu->dest.dest) == 64)
470 return true;
471
472 switch (alu->op) {
473 case nir_op_umul_high:
474 case nir_op_imul_high:
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 /* Flushes undefined values to zero */
482
483 static void
484 optimise_nir(nir_shader *nir, unsigned quirks, bool is_blend)
485 {
486 bool progress;
487 unsigned lower_flrp =
488 (nir->options->lower_flrp16 ? 16 : 0) |
489 (nir->options->lower_flrp32 ? 32 : 0) |
490 (nir->options->lower_flrp64 ? 64 : 0);
491
492 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
493 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
494
495 nir_lower_tex_options lower_tex_options = {
496 .lower_txs_lod = true,
497 .lower_txp = ~0,
498 .lower_tex_without_implicit_lod =
499 (quirks & MIDGARD_EXPLICIT_LOD),
500
501 /* TODO: we have native gradient.. */
502 .lower_txd = true,
503 };
504
505 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
506
507 /* Must lower fdot2 after tex is lowered */
508 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
509
510 /* T720 is broken. */
511
512 if (quirks & MIDGARD_BROKEN_LOD)
513 NIR_PASS_V(nir, midgard_nir_lod_errata);
514
515 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_early);
516
517 do {
518 progress = false;
519
520 NIR_PASS(progress, nir, nir_lower_var_copies);
521 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
522
523 NIR_PASS(progress, nir, nir_copy_prop);
524 NIR_PASS(progress, nir, nir_opt_remove_phis);
525 NIR_PASS(progress, nir, nir_opt_dce);
526 NIR_PASS(progress, nir, nir_opt_dead_cf);
527 NIR_PASS(progress, nir, nir_opt_cse);
528 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
529 NIR_PASS(progress, nir, nir_opt_algebraic);
530 NIR_PASS(progress, nir, nir_opt_constant_folding);
531
532 if (lower_flrp != 0) {
533 bool lower_flrp_progress = false;
534 NIR_PASS(lower_flrp_progress,
535 nir,
536 nir_lower_flrp,
537 lower_flrp,
538 false /* always_precise */,
539 nir->options->lower_ffma);
540 if (lower_flrp_progress) {
541 NIR_PASS(progress, nir,
542 nir_opt_constant_folding);
543 progress = true;
544 }
545
546 /* Nothing should rematerialize any flrps, so we only
547 * need to do this lowering once.
548 */
549 lower_flrp = 0;
550 }
551
552 NIR_PASS(progress, nir, nir_opt_undef);
553 NIR_PASS(progress, nir, nir_undef_to_zero);
554
555 NIR_PASS(progress, nir, nir_opt_loop_unroll,
556 nir_var_shader_in |
557 nir_var_shader_out |
558 nir_var_function_temp);
559
560 NIR_PASS(progress, nir, nir_opt_vectorize);
561 } while (progress);
562
563 NIR_PASS_V(nir, nir_lower_alu_to_scalar, mdg_is_64, NULL);
564
565 /* Run after opts so it can hit more */
566 if (!is_blend)
567 NIR_PASS(progress, nir, nir_fuse_io_16);
568
569 /* Must be run at the end to prevent creation of fsin/fcos ops */
570 NIR_PASS(progress, nir, midgard_nir_scale_trig);
571
572 do {
573 progress = false;
574
575 NIR_PASS(progress, nir, nir_opt_dce);
576 NIR_PASS(progress, nir, nir_opt_algebraic);
577 NIR_PASS(progress, nir, nir_opt_constant_folding);
578 NIR_PASS(progress, nir, nir_copy_prop);
579 } while (progress);
580
581 NIR_PASS(progress, nir, nir_opt_algebraic_late);
582 NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
583
584 /* We implement booleans as 32-bit 0/~0 */
585 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
586
587 /* Now that booleans are lowered, we can run out late opts */
588 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
589 NIR_PASS(progress, nir, midgard_nir_cancel_inot);
590
591 NIR_PASS(progress, nir, nir_copy_prop);
592 NIR_PASS(progress, nir, nir_opt_dce);
593
594 /* Take us out of SSA */
595 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
596 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
597
598 /* We are a vector architecture; write combine where possible */
599 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
600 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
601
602 NIR_PASS(progress, nir, nir_opt_dce);
603 }
604
605 /* Do not actually emit a load; instead, cache the constant for inlining */
606
607 static void
608 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
609 {
610 nir_ssa_def def = instr->def;
611
612 midgard_constants *consts = rzalloc(NULL, midgard_constants);
613
614 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
615
616 #define RAW_CONST_COPY(bits) \
617 nir_const_value_to_array(consts->u##bits, instr->value, \
618 instr->def.num_components, u##bits)
619
620 switch (instr->def.bit_size) {
621 case 64:
622 RAW_CONST_COPY(64);
623 break;
624 case 32:
625 RAW_CONST_COPY(32);
626 break;
627 case 16:
628 RAW_CONST_COPY(16);
629 break;
630 case 8:
631 RAW_CONST_COPY(8);
632 break;
633 default:
634 unreachable("Invalid bit_size for load_const instruction\n");
635 }
636
637 /* Shifted for SSA, +1 for off-by-one */
638 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
639 }
640
641 /* Normally constants are embedded implicitly, but for I/O and such we have to
642 * explicitly emit a move with the constant source */
643
644 static void
645 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
646 {
647 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
648
649 if (constant_value) {
650 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
651 attach_constants(ctx, &ins, constant_value, node + 1);
652 emit_mir_instruction(ctx, ins);
653 }
654 }
655
656 static bool
657 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
658 {
659 unsigned comp = src->swizzle[0];
660
661 for (unsigned c = 1; c < nr_components; ++c) {
662 if (src->swizzle[c] != comp)
663 return true;
664 }
665
666 return false;
667 }
668
669 #define ALU_CASE(nir, _op) \
670 case nir_op_##nir: \
671 op = midgard_alu_op_##_op; \
672 assert(src_bitsize == dst_bitsize); \
673 break;
674
675 #define ALU_CASE_RTZ(nir, _op) \
676 case nir_op_##nir: \
677 op = midgard_alu_op_##_op; \
678 roundmode = MIDGARD_RTZ; \
679 break;
680
681 #define ALU_CHECK_CMP(sext) \
682 assert(src_bitsize == 16 || src_bitsize == 32); \
683 assert(dst_bitsize == 16 || dst_bitsize == 32); \
684
685 #define ALU_CASE_BCAST(nir, _op, count) \
686 case nir_op_##nir: \
687 op = midgard_alu_op_##_op; \
688 broadcast_swizzle = count; \
689 ALU_CHECK_CMP(true); \
690 break;
691
692 #define ALU_CASE_CMP(nir, _op, sext) \
693 case nir_op_##nir: \
694 op = midgard_alu_op_##_op; \
695 ALU_CHECK_CMP(sext); \
696 break;
697
698 /* Compare mir_lower_invert */
699 static bool
700 nir_accepts_inot(nir_op op, unsigned src)
701 {
702 switch (op) {
703 case nir_op_ior:
704 case nir_op_iand: /* TODO: b2f16 */
705 case nir_op_ixor:
706 return true;
707 case nir_op_b32csel:
708 /* Only the condition */
709 return (src == 0);
710 default:
711 return false;
712 }
713 }
714
715 static bool
716 mir_accept_dest_mod(compiler_context *ctx, nir_dest **dest, nir_op op)
717 {
718 if (pan_has_dest_mod(dest, op)) {
719 assert((*dest)->is_ssa);
720 BITSET_SET(ctx->already_emitted, (*dest)->ssa.index);
721 return true;
722 }
723
724 return false;
725 }
726
727 /* Look for floating point mods. We have the mods fsat, fsat_signed,
728 * and fpos. We also have the relations (note 3 * 2 = 6 cases):
729 *
730 * fsat_signed(fpos(x)) = fsat(x)
731 * fsat_signed(fsat(x)) = fsat(x)
732 * fpos(fsat_signed(x)) = fsat(x)
733 * fpos(fsat(x)) = fsat(x)
734 * fsat(fsat_signed(x)) = fsat(x)
735 * fsat(fpos(x)) = fsat(x)
736 *
737 * So by cases any composition of output modifiers is equivalent to
738 * fsat alone.
739 */
740 static unsigned
741 mir_determine_float_outmod(compiler_context *ctx, nir_dest **dest, unsigned prior_outmod)
742 {
743 bool fpos = mir_accept_dest_mod(ctx, dest, nir_op_fclamp_pos);
744 bool fsat = mir_accept_dest_mod(ctx, dest, nir_op_fsat);
745 bool ssat = mir_accept_dest_mod(ctx, dest, nir_op_fsat_signed);
746 bool prior = (prior_outmod != midgard_outmod_none);
747 int count = (int) prior + (int) fpos + (int) ssat + (int) fsat;
748
749 return ((count > 1) || fsat) ? midgard_outmod_sat :
750 fpos ? midgard_outmod_pos :
751 ssat ? midgard_outmod_sat_signed :
752 prior_outmod;
753 }
754
755 static void
756 mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to, bool *abs, bool *neg, bool *not, enum midgard_roundmode *roundmode, bool is_int, unsigned bcast_count)
757 {
758 nir_alu_src src = instr->src[i];
759
760 if (!is_int) {
761 if (pan_has_source_mod(&src, nir_op_fneg))
762 *neg = !(*neg);
763
764 if (pan_has_source_mod(&src, nir_op_fabs))
765 *abs = true;
766 }
767
768 if (nir_accepts_inot(instr->op, i) && pan_has_source_mod(&src, nir_op_inot))
769 *not = true;
770
771 if (roundmode) {
772 if (pan_has_source_mod(&src, nir_op_fround_even))
773 *roundmode = MIDGARD_RTE;
774
775 if (pan_has_source_mod(&src, nir_op_ftrunc))
776 *roundmode = MIDGARD_RTZ;
777
778 if (pan_has_source_mod(&src, nir_op_ffloor))
779 *roundmode = MIDGARD_RTN;
780
781 if (pan_has_source_mod(&src, nir_op_fceil))
782 *roundmode = MIDGARD_RTP;
783 }
784
785 unsigned bits = nir_src_bit_size(src.src);
786
787 ins->src[to] = nir_src_index(NULL, &src.src);
788 ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
789
790 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) {
791 ins->swizzle[to][c] = src.swizzle[
792 (!bcast_count || c < bcast_count) ? c :
793 (bcast_count - 1)];
794 }
795 }
796
797 /* Midgard features both fcsel and icsel, depending on whether you want int or
798 * float modifiers. NIR's csel is typeless, so we want a heuristic to guess if
799 * we should emit an int or float csel depending on what modifiers could be
800 * placed. In the absense of modifiers, this is probably arbitrary. */
801
802 static bool
803 mir_is_bcsel_float(nir_alu_instr *instr)
804 {
805 nir_op intmods[] = {
806 nir_op_i2i8, nir_op_i2i16,
807 nir_op_i2i32, nir_op_i2i64
808 };
809
810 nir_op floatmods[] = {
811 nir_op_fabs, nir_op_fneg,
812 nir_op_f2f16, nir_op_f2f32,
813 nir_op_f2f64
814 };
815
816 nir_op floatdestmods[] = {
817 nir_op_fsat, nir_op_fsat_signed, nir_op_fclamp_pos,
818 nir_op_f2f16, nir_op_f2f32
819 };
820
821 signed score = 0;
822
823 for (unsigned i = 1; i < 3; ++i) {
824 nir_alu_src s = instr->src[i];
825 for (unsigned q = 0; q < ARRAY_SIZE(intmods); ++q) {
826 if (pan_has_source_mod(&s, intmods[q]))
827 score--;
828 }
829 }
830
831 for (unsigned i = 1; i < 3; ++i) {
832 nir_alu_src s = instr->src[i];
833 for (unsigned q = 0; q < ARRAY_SIZE(floatmods); ++q) {
834 if (pan_has_source_mod(&s, floatmods[q]))
835 score++;
836 }
837 }
838
839 for (unsigned q = 0; q < ARRAY_SIZE(floatdestmods); ++q) {
840 nir_dest *dest = &instr->dest.dest;
841 if (pan_has_dest_mod(&dest, floatdestmods[q]))
842 score++;
843 }
844
845 return (score > 0);
846 }
847
848 static void
849 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
850 {
851 nir_dest *dest = &instr->dest.dest;
852
853 if (dest->is_ssa && BITSET_TEST(ctx->already_emitted, dest->ssa.index))
854 return;
855
856 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
857 * is handled elsewhere */
858
859 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
860 midgard_emit_derivatives(ctx, instr);
861 return;
862 }
863
864 bool is_ssa = dest->is_ssa;
865
866 unsigned nr_components = nir_dest_num_components(*dest);
867 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
868 unsigned op = 0;
869
870 /* Number of components valid to check for the instruction (the rest
871 * will be forced to the last), or 0 to use as-is. Relevant as
872 * ball-type instructions have a channel count in NIR but are all vec4
873 * in Midgard */
874
875 unsigned broadcast_swizzle = 0;
876
877 /* Should we swap arguments? */
878 bool flip_src12 = false;
879
880 ASSERTED unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
881 ASSERTED unsigned dst_bitsize = nir_dest_bit_size(*dest);
882
883 enum midgard_roundmode roundmode = MIDGARD_RTE;
884
885 switch (instr->op) {
886 ALU_CASE(fadd, fadd);
887 ALU_CASE(fmul, fmul);
888 ALU_CASE(fmin, fmin);
889 ALU_CASE(fmax, fmax);
890 ALU_CASE(imin, imin);
891 ALU_CASE(imax, imax);
892 ALU_CASE(umin, umin);
893 ALU_CASE(umax, umax);
894 ALU_CASE(ffloor, ffloor);
895 ALU_CASE(fround_even, froundeven);
896 ALU_CASE(ftrunc, ftrunc);
897 ALU_CASE(fceil, fceil);
898 ALU_CASE(fdot3, fdot3);
899 ALU_CASE(fdot4, fdot4);
900 ALU_CASE(iadd, iadd);
901 ALU_CASE(isub, isub);
902 ALU_CASE(imul, imul);
903 ALU_CASE(imul_high, imul);
904 ALU_CASE(umul_high, imul);
905
906 /* Zero shoved as second-arg */
907 ALU_CASE(iabs, iabsdiff);
908
909 ALU_CASE(mov, imov);
910
911 ALU_CASE_CMP(feq32, feq, false);
912 ALU_CASE_CMP(fneu32, fne, false);
913 ALU_CASE_CMP(flt32, flt, false);
914 ALU_CASE_CMP(ieq32, ieq, true);
915 ALU_CASE_CMP(ine32, ine, true);
916 ALU_CASE_CMP(ilt32, ilt, true);
917 ALU_CASE_CMP(ult32, ult, false);
918
919 /* We don't have a native b2f32 instruction. Instead, like many
920 * GPUs, we exploit booleans as 0/~0 for false/true, and
921 * correspondingly AND
922 * by 1.0 to do the type conversion. For the moment, prime us
923 * to emit:
924 *
925 * iand [whatever], #0
926 *
927 * At the end of emit_alu (as MIR), we'll fix-up the constant
928 */
929
930 ALU_CASE_CMP(b2f32, iand, true);
931 ALU_CASE_CMP(b2f16, iand, true);
932 ALU_CASE_CMP(b2i32, iand, true);
933
934 /* Likewise, we don't have a dedicated f2b32 instruction, but
935 * we can do a "not equal to 0.0" test. */
936
937 ALU_CASE_CMP(f2b32, fne, false);
938 ALU_CASE_CMP(i2b32, ine, true);
939
940 ALU_CASE(frcp, frcp);
941 ALU_CASE(frsq, frsqrt);
942 ALU_CASE(fsqrt, fsqrt);
943 ALU_CASE(fexp2, fexp2);
944 ALU_CASE(flog2, flog2);
945
946 ALU_CASE_RTZ(f2i64, f2i_rte);
947 ALU_CASE_RTZ(f2u64, f2u_rte);
948 ALU_CASE_RTZ(i2f64, i2f_rte);
949 ALU_CASE_RTZ(u2f64, u2f_rte);
950
951 ALU_CASE_RTZ(f2i32, f2i_rte);
952 ALU_CASE_RTZ(f2u32, f2u_rte);
953 ALU_CASE_RTZ(i2f32, i2f_rte);
954 ALU_CASE_RTZ(u2f32, u2f_rte);
955
956 ALU_CASE_RTZ(f2i8, f2i_rte);
957 ALU_CASE_RTZ(f2u8, f2u_rte);
958
959 ALU_CASE_RTZ(f2i16, f2i_rte);
960 ALU_CASE_RTZ(f2u16, f2u_rte);
961 ALU_CASE_RTZ(i2f16, i2f_rte);
962 ALU_CASE_RTZ(u2f16, u2f_rte);
963
964 ALU_CASE(fsin, fsin);
965 ALU_CASE(fcos, fcos);
966
967 /* We'll get 0 in the second arg, so:
968 * ~a = ~(a | 0) = nor(a, 0) */
969 ALU_CASE(inot, inor);
970 ALU_CASE(iand, iand);
971 ALU_CASE(ior, ior);
972 ALU_CASE(ixor, ixor);
973 ALU_CASE(ishl, ishl);
974 ALU_CASE(ishr, iasr);
975 ALU_CASE(ushr, ilsr);
976
977 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
978 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
979 ALU_CASE_CMP(b32all_fequal4, fball_eq, true);
980
981 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
982 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
983 ALU_CASE_CMP(b32any_fnequal4, fbany_neq, true);
984
985 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
986 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
987 ALU_CASE_CMP(b32all_iequal4, iball_eq, true);
988
989 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
990 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
991 ALU_CASE_CMP(b32any_inequal4, ibany_neq, true);
992
993 /* Source mods will be shoved in later */
994 ALU_CASE(fabs, fmov);
995 ALU_CASE(fneg, fmov);
996 ALU_CASE(fsat, fmov);
997 ALU_CASE(fsat_signed, fmov);
998 ALU_CASE(fclamp_pos, fmov);
999
1000 /* For size conversion, we use a move. Ideally though we would squash
1001 * these ops together; maybe that has to happen after in NIR as part of
1002 * propagation...? An earlier algebraic pass ensured we step down by
1003 * only / exactly one size. If stepping down, we use a dest override to
1004 * reduce the size; if stepping up, we use a larger-sized move with a
1005 * half source and a sign/zero-extension modifier */
1006
1007 case nir_op_i2i8:
1008 case nir_op_i2i16:
1009 case nir_op_i2i32:
1010 case nir_op_i2i64:
1011 case nir_op_u2u8:
1012 case nir_op_u2u16:
1013 case nir_op_u2u32:
1014 case nir_op_u2u64:
1015 case nir_op_f2f16:
1016 case nir_op_f2f32:
1017 case nir_op_f2f64: {
1018 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
1019 instr->op == nir_op_f2f64)
1020 op = midgard_alu_op_fmov;
1021 else
1022 op = midgard_alu_op_imov;
1023
1024 break;
1025 }
1026
1027 /* For greater-or-equal, we lower to less-or-equal and flip the
1028 * arguments */
1029
1030 case nir_op_fge:
1031 case nir_op_fge32:
1032 case nir_op_ige32:
1033 case nir_op_uge32: {
1034 op =
1035 instr->op == nir_op_fge ? midgard_alu_op_fle :
1036 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1037 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1038 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1039 0;
1040
1041 flip_src12 = true;
1042 ALU_CHECK_CMP(false);
1043 break;
1044 }
1045
1046 case nir_op_b32csel: {
1047 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
1048 bool is_float = mir_is_bcsel_float(instr);
1049 op = is_float ?
1050 (mixed ? midgard_alu_op_fcsel_v : midgard_alu_op_fcsel) :
1051 (mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel);
1052
1053 break;
1054 }
1055
1056 case nir_op_unpack_32_2x16:
1057 case nir_op_unpack_32_4x8:
1058 case nir_op_pack_32_2x16:
1059 case nir_op_pack_32_4x8: {
1060 op = midgard_alu_op_imov;
1061 break;
1062 }
1063
1064 default:
1065 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1066 assert(0);
1067 return;
1068 }
1069
1070 /* Promote imov to fmov if it might help inline a constant */
1071 if (op == midgard_alu_op_imov && nir_src_is_const(instr->src[0].src)
1072 && nir_src_bit_size(instr->src[0].src) == 32
1073 && nir_is_same_comp_swizzle(instr->src[0].swizzle,
1074 nir_src_num_components(instr->src[0].src))) {
1075 op = midgard_alu_op_fmov;
1076 }
1077
1078 /* Midgard can perform certain modifiers on output of an ALU op */
1079
1080 unsigned outmod = 0;
1081 bool is_int = midgard_is_integer_op(op);
1082
1083 if (instr->op == nir_op_umul_high || instr->op == nir_op_imul_high) {
1084 outmod = midgard_outmod_int_high;
1085 } else if (midgard_is_integer_out_op(op)) {
1086 outmod = midgard_outmod_int_wrap;
1087 } else if (instr->op == nir_op_fsat) {
1088 outmod = midgard_outmod_sat;
1089 } else if (instr->op == nir_op_fsat_signed) {
1090 outmod = midgard_outmod_sat_signed;
1091 } else if (instr->op == nir_op_fclamp_pos) {
1092 outmod = midgard_outmod_pos;
1093 }
1094
1095 /* Fetch unit, quirks, etc information */
1096 unsigned opcode_props = alu_opcode_props[op].props;
1097 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1098
1099 if (!midgard_is_integer_out_op(op)) {
1100 outmod = mir_determine_float_outmod(ctx, &dest, outmod);
1101 }
1102
1103 midgard_instruction ins = {
1104 .type = TAG_ALU_4,
1105 .dest = nir_dest_index(dest),
1106 .dest_type = nir_op_infos[instr->op].output_type
1107 | nir_dest_bit_size(*dest),
1108 .roundmode = roundmode,
1109 };
1110
1111 enum midgard_roundmode *roundptr = (opcode_props & MIDGARD_ROUNDS) ?
1112 &ins.roundmode : NULL;
1113
1114 for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
1115 ins.src[i] = ~0;
1116
1117 if (quirk_flipped_r24) {
1118 ins.src[0] = ~0;
1119 mir_copy_src(&ins, instr, 0, 1, &ins.src_abs[1], &ins.src_neg[1], &ins.src_invert[1], roundptr, is_int, broadcast_swizzle);
1120 } else {
1121 for (unsigned i = 0; i < nr_inputs; ++i) {
1122 unsigned to = i;
1123
1124 if (instr->op == nir_op_b32csel) {
1125 /* The condition is the first argument; move
1126 * the other arguments up one to be a binary
1127 * instruction for Midgard with the condition
1128 * last */
1129
1130 if (i == 0)
1131 to = 2;
1132 else if (flip_src12)
1133 to = 2 - i;
1134 else
1135 to = i - 1;
1136 } else if (flip_src12) {
1137 to = 1 - to;
1138 }
1139
1140 mir_copy_src(&ins, instr, i, to, &ins.src_abs[to], &ins.src_neg[to], &ins.src_invert[to], roundptr, is_int, broadcast_swizzle);
1141
1142 /* (!c) ? a : b = c ? b : a */
1143 if (instr->op == nir_op_b32csel && ins.src_invert[2]) {
1144 ins.src_invert[2] = false;
1145 flip_src12 ^= true;
1146 }
1147 }
1148 }
1149
1150 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1151 /* Lowered to move */
1152 if (instr->op == nir_op_fneg)
1153 ins.src_neg[1] ^= true;
1154
1155 if (instr->op == nir_op_fabs)
1156 ins.src_abs[1] = true;
1157 }
1158
1159 ins.mask = mask_of(nr_components);
1160
1161 /* Apply writemask if non-SSA, keeping in mind that we can't write to
1162 * components that don't exist. Note modifier => SSA => !reg => no
1163 * writemask, so we don't have to worry about writemasks here.*/
1164
1165 if (!is_ssa)
1166 ins.mask &= instr->dest.write_mask;
1167
1168 ins.op = op;
1169 ins.outmod = outmod;
1170
1171 /* Late fixup for emulated instructions */
1172
1173 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1174 /* Presently, our second argument is an inline #0 constant.
1175 * Switch over to an embedded 1.0 constant (that can't fit
1176 * inline, since we're 32-bit, not 16-bit like the inline
1177 * constants) */
1178
1179 ins.has_inline_constant = false;
1180 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1181 ins.src_types[1] = nir_type_float32;
1182 ins.has_constants = true;
1183
1184 if (instr->op == nir_op_b2f32)
1185 ins.constants.f32[0] = 1.0f;
1186 else
1187 ins.constants.i32[0] = 1;
1188
1189 for (unsigned c = 0; c < 16; ++c)
1190 ins.swizzle[1][c] = 0;
1191 } else if (instr->op == nir_op_b2f16) {
1192 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1193 ins.src_types[1] = nir_type_float16;
1194 ins.has_constants = true;
1195 ins.constants.i16[0] = _mesa_float_to_half(1.0);
1196
1197 for (unsigned c = 0; c < 16; ++c)
1198 ins.swizzle[1][c] = 0;
1199 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1200 /* Lots of instructions need a 0 plonked in */
1201 ins.has_inline_constant = false;
1202 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1203 ins.src_types[1] = ins.src_types[0];
1204 ins.has_constants = true;
1205 ins.constants.u32[0] = 0;
1206
1207 for (unsigned c = 0; c < 16; ++c)
1208 ins.swizzle[1][c] = 0;
1209 } else if (instr->op == nir_op_pack_32_2x16) {
1210 ins.dest_type = nir_type_uint16;
1211 ins.mask = mask_of(nr_components * 2);
1212 ins.is_pack = true;
1213 } else if (instr->op == nir_op_pack_32_4x8) {
1214 ins.dest_type = nir_type_uint8;
1215 ins.mask = mask_of(nr_components * 4);
1216 ins.is_pack = true;
1217 } else if (instr->op == nir_op_unpack_32_2x16) {
1218 ins.dest_type = nir_type_uint32;
1219 ins.mask = mask_of(nr_components >> 1);
1220 ins.is_pack = true;
1221 } else if (instr->op == nir_op_unpack_32_4x8) {
1222 ins.dest_type = nir_type_uint32;
1223 ins.mask = mask_of(nr_components >> 2);
1224 ins.is_pack = true;
1225 }
1226
1227 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1228 /* To avoid duplicating the lookup tables (probably), true LUT
1229 * instructions can only operate as if they were scalars. Lower
1230 * them here by changing the component. */
1231
1232 unsigned orig_mask = ins.mask;
1233
1234 unsigned swizzle_back[MIR_VEC_COMPONENTS];
1235 memcpy(&swizzle_back, ins.swizzle[0], sizeof(swizzle_back));
1236
1237 midgard_instruction ins_split[MIR_VEC_COMPONENTS];
1238 unsigned ins_count = 0;
1239
1240 for (int i = 0; i < nr_components; ++i) {
1241 /* Mask the associated component, dropping the
1242 * instruction if needed */
1243
1244 ins.mask = 1 << i;
1245 ins.mask &= orig_mask;
1246
1247 for (unsigned j = 0; j < ins_count; ++j) {
1248 if (swizzle_back[i] == ins_split[j].swizzle[0][0]) {
1249 ins_split[j].mask |= ins.mask;
1250 ins.mask = 0;
1251 break;
1252 }
1253 }
1254
1255 if (!ins.mask)
1256 continue;
1257
1258 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1259 ins.swizzle[0][j] = swizzle_back[i]; /* Pull from the correct component */
1260
1261 ins_split[ins_count] = ins;
1262
1263 ++ins_count;
1264 }
1265
1266 for (unsigned i = 0; i < ins_count; ++i) {
1267 emit_mir_instruction(ctx, ins_split[i]);
1268 }
1269 } else {
1270 emit_mir_instruction(ctx, ins);
1271 }
1272 }
1273
1274 #undef ALU_CASE
1275
1276 static void
1277 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1278 {
1279 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1280 unsigned nir_mask = 0;
1281 unsigned dsize = 0;
1282
1283 if (is_read) {
1284 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1285 dsize = nir_dest_bit_size(intr->dest);
1286 } else {
1287 nir_mask = nir_intrinsic_write_mask(intr);
1288 dsize = 32;
1289 }
1290
1291 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1292 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1293 mir_set_bytemask(ins, bytemask);
1294 ins->dest_type = nir_type_uint | dsize;
1295 }
1296
1297 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1298 * optimized) versions of UBO #0 */
1299
1300 static midgard_instruction *
1301 emit_ubo_read(
1302 compiler_context *ctx,
1303 nir_instr *instr,
1304 unsigned dest,
1305 unsigned offset,
1306 nir_src *indirect_offset,
1307 unsigned indirect_shift,
1308 unsigned index)
1309 {
1310 /* TODO: half-floats */
1311
1312 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1313 ins.constants.u32[0] = offset;
1314
1315 if (instr->type == nir_instr_type_intrinsic)
1316 mir_set_intr_mask(instr, &ins, true);
1317
1318 if (indirect_offset) {
1319 ins.src[2] = nir_src_index(ctx, indirect_offset);
1320 ins.src_types[2] = nir_type_uint32;
1321 ins.load_store.arg_2 = (indirect_shift << 5);
1322
1323 /* X component for the whole swizzle to prevent register
1324 * pressure from ballooning from the extra components */
1325 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[2]); ++i)
1326 ins.swizzle[2][i] = 0;
1327 } else {
1328 ins.load_store.arg_2 = 0x1E;
1329 }
1330
1331 ins.load_store.arg_1 = index;
1332
1333 return emit_mir_instruction(ctx, ins);
1334 }
1335
1336 /* Globals are like UBOs if you squint. And shared memory is like globals if
1337 * you squint even harder */
1338
1339 static void
1340 emit_global(
1341 compiler_context *ctx,
1342 nir_instr *instr,
1343 bool is_read,
1344 unsigned srcdest,
1345 nir_src *offset,
1346 bool is_shared)
1347 {
1348 /* TODO: types */
1349
1350 midgard_instruction ins;
1351
1352 if (is_read)
1353 ins = m_ld_int4(srcdest, 0);
1354 else
1355 ins = m_st_int4(srcdest, 0);
1356
1357 mir_set_offset(ctx, &ins, offset, is_shared);
1358 mir_set_intr_mask(instr, &ins, is_read);
1359
1360 /* Set a valid swizzle for masked out components */
1361 assert(ins.mask);
1362 unsigned first_component = __builtin_ffs(ins.mask) - 1;
1363
1364 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i) {
1365 if (!(ins.mask & (1 << i)))
1366 ins.swizzle[0][i] = first_component;
1367 }
1368
1369 emit_mir_instruction(ctx, ins);
1370 }
1371
1372 static void
1373 emit_varying_read(
1374 compiler_context *ctx,
1375 unsigned dest, unsigned offset,
1376 unsigned nr_comp, unsigned component,
1377 nir_src *indirect_offset, nir_alu_type type, bool flat)
1378 {
1379 /* XXX: Half-floats? */
1380 /* TODO: swizzle, mask */
1381
1382 midgard_instruction ins = m_ld_vary_32(dest, offset);
1383 ins.mask = mask_of(nr_comp);
1384 ins.dest_type = type;
1385
1386 if (type == nir_type_float16) {
1387 /* Ensure we are aligned so we can pack it later */
1388 ins.mask = mask_of(ALIGN_POT(nr_comp, 2));
1389 }
1390
1391 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1392 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1393
1394 midgard_varying_parameter p = {
1395 .is_varying = 1,
1396 .interpolation = midgard_interp_default,
1397 .flat = flat,
1398 };
1399
1400 unsigned u;
1401 memcpy(&u, &p, sizeof(p));
1402 ins.load_store.varying_parameters = u;
1403
1404 if (indirect_offset) {
1405 ins.src[2] = nir_src_index(ctx, indirect_offset);
1406 ins.src_types[2] = nir_type_uint32;
1407 } else
1408 ins.load_store.arg_2 = 0x1E;
1409
1410 ins.load_store.arg_1 = 0x9E;
1411
1412 /* Use the type appropriate load */
1413 switch (type) {
1414 case nir_type_uint32:
1415 case nir_type_bool32:
1416 ins.op = midgard_op_ld_vary_32u;
1417 break;
1418 case nir_type_int32:
1419 ins.op = midgard_op_ld_vary_32i;
1420 break;
1421 case nir_type_float32:
1422 ins.op = midgard_op_ld_vary_32;
1423 break;
1424 case nir_type_float16:
1425 ins.op = midgard_op_ld_vary_16;
1426 break;
1427 default:
1428 unreachable("Attempted to load unknown type");
1429 break;
1430 }
1431
1432 emit_mir_instruction(ctx, ins);
1433 }
1434
1435 static void
1436 emit_attr_read(
1437 compiler_context *ctx,
1438 unsigned dest, unsigned offset,
1439 unsigned nr_comp, nir_alu_type t)
1440 {
1441 midgard_instruction ins = m_ld_attr_32(dest, offset);
1442 ins.load_store.arg_1 = 0x1E;
1443 ins.load_store.arg_2 = 0x1E;
1444 ins.mask = mask_of(nr_comp);
1445
1446 /* Use the type appropriate load */
1447 switch (t) {
1448 case nir_type_uint:
1449 case nir_type_bool:
1450 ins.op = midgard_op_ld_attr_32u;
1451 break;
1452 case nir_type_int:
1453 ins.op = midgard_op_ld_attr_32i;
1454 break;
1455 case nir_type_float:
1456 ins.op = midgard_op_ld_attr_32;
1457 break;
1458 default:
1459 unreachable("Attempted to load unknown type");
1460 break;
1461 }
1462
1463 emit_mir_instruction(ctx, ins);
1464 }
1465
1466 static void
1467 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1468 unsigned nr_components, unsigned offset)
1469 {
1470 nir_dest nir_dest;
1471
1472 /* Figure out which uniform this is */
1473 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1474 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1475
1476 unsigned dest = nir_dest_index(&nir_dest);
1477
1478 /* Sysvals are prefix uniforms */
1479 unsigned uniform = ((uintptr_t) val) - 1;
1480
1481 /* Emit the read itself -- this is never indirect */
1482 midgard_instruction *ins =
1483 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1484
1485 ins->mask = mask_of(nr_components);
1486 }
1487
1488 static unsigned
1489 compute_builtin_arg(nir_op op)
1490 {
1491 switch (op) {
1492 case nir_intrinsic_load_work_group_id:
1493 return 0x14;
1494 case nir_intrinsic_load_local_invocation_id:
1495 return 0x10;
1496 default:
1497 unreachable("Invalid compute paramater loaded");
1498 }
1499 }
1500
1501 static void
1502 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned src_z, unsigned src_s, enum midgard_rt_id rt)
1503 {
1504 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1505
1506 midgard_instruction *br = ctx->writeout_branch[rt];
1507
1508 assert(!br);
1509
1510 emit_explicit_constant(ctx, src, src);
1511
1512 struct midgard_instruction ins =
1513 v_branch(false, false);
1514
1515 bool depth_only = (rt == MIDGARD_ZS_RT);
1516
1517 ins.writeout = depth_only ? 0 : PAN_WRITEOUT_C;
1518
1519 /* Add dependencies */
1520 ins.src[0] = src;
1521 ins.src_types[0] = nir_type_uint32;
1522 ins.constants.u32[0] = depth_only ? 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1523 for (int i = 0; i < 4; ++i)
1524 ins.swizzle[0][i] = i;
1525
1526 if (~src_z) {
1527 emit_explicit_constant(ctx, src_z, src_z);
1528 ins.src[2] = src_z;
1529 ins.src_types[2] = nir_type_uint32;
1530 ins.writeout |= PAN_WRITEOUT_Z;
1531 }
1532 if (~src_s) {
1533 emit_explicit_constant(ctx, src_s, src_s);
1534 ins.src[3] = src_s;
1535 ins.src_types[3] = nir_type_uint32;
1536 ins.writeout |= PAN_WRITEOUT_S;
1537 }
1538
1539 /* Emit the branch */
1540 br = emit_mir_instruction(ctx, ins);
1541 schedule_barrier(ctx);
1542 ctx->writeout_branch[rt] = br;
1543
1544 /* Push our current location = current block count - 1 = where we'll
1545 * jump to. Maybe a bit too clever for my own good */
1546
1547 br->branch.target_block = ctx->block_count - 1;
1548 }
1549
1550 static void
1551 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1552 {
1553 unsigned reg = nir_dest_index(&instr->dest);
1554 midgard_instruction ins = m_ld_compute_id(reg, 0);
1555 ins.mask = mask_of(3);
1556 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1557 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1558 emit_mir_instruction(ctx, ins);
1559 }
1560
1561 static unsigned
1562 vertex_builtin_arg(nir_op op)
1563 {
1564 switch (op) {
1565 case nir_intrinsic_load_vertex_id:
1566 return PAN_VERTEX_ID;
1567 case nir_intrinsic_load_instance_id:
1568 return PAN_INSTANCE_ID;
1569 default:
1570 unreachable("Invalid vertex builtin");
1571 }
1572 }
1573
1574 static void
1575 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1576 {
1577 unsigned reg = nir_dest_index(&instr->dest);
1578 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1579 }
1580
1581 static void
1582 emit_special(compiler_context *ctx, nir_intrinsic_instr *instr, unsigned idx)
1583 {
1584 unsigned reg = nir_dest_index(&instr->dest);
1585
1586 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1587 ld.op = midgard_op_ld_color_buffer_32u_old;
1588 ld.load_store.address = idx;
1589 ld.load_store.arg_2 = 0x1E;
1590
1591 for (int i = 0; i < 4; ++i)
1592 ld.swizzle[0][i] = COMPONENT_X;
1593
1594 emit_mir_instruction(ctx, ld);
1595 }
1596
1597 static void
1598 emit_control_barrier(compiler_context *ctx)
1599 {
1600 midgard_instruction ins = {
1601 .type = TAG_TEXTURE_4,
1602 .dest = ~0,
1603 .src = { ~0, ~0, ~0, ~0 },
1604 .op = TEXTURE_OP_BARRIER,
1605 };
1606
1607 emit_mir_instruction(ctx, ins);
1608 }
1609
1610 static unsigned
1611 mir_get_branch_cond(nir_src *src, bool *invert)
1612 {
1613 /* Wrap it. No swizzle since it's a scalar */
1614
1615 nir_alu_src alu = {
1616 .src = *src
1617 };
1618
1619 *invert = pan_has_source_mod(&alu, nir_op_inot);
1620 return nir_src_index(NULL, &alu.src);
1621 }
1622
1623 static uint8_t
1624 output_load_rt_addr(compiler_context *ctx, nir_intrinsic_instr *instr)
1625 {
1626 if (ctx->is_blend)
1627 return ctx->blend_rt;
1628
1629 const nir_variable *var;
1630 var = search_var(ctx->nir, nir_var_shader_out, nir_intrinsic_base(instr));
1631 assert(var);
1632
1633 unsigned loc = var->data.location;
1634
1635 if (loc == FRAG_RESULT_COLOR)
1636 loc = FRAG_RESULT_DATA0;
1637
1638 if (loc >= FRAG_RESULT_DATA0)
1639 return loc - FRAG_RESULT_DATA0;
1640
1641 if (loc == FRAG_RESULT_DEPTH)
1642 return 0x1F;
1643 if (loc == FRAG_RESULT_STENCIL)
1644 return 0x1E;
1645
1646 unreachable("Invalid RT to load from");
1647 }
1648
1649 static void
1650 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1651 {
1652 unsigned offset = 0, reg;
1653
1654 switch (instr->intrinsic) {
1655 case nir_intrinsic_discard_if:
1656 case nir_intrinsic_discard: {
1657 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1658 struct midgard_instruction discard = v_branch(conditional, false);
1659 discard.branch.target_type = TARGET_DISCARD;
1660
1661 if (conditional) {
1662 discard.src[0] = mir_get_branch_cond(&instr->src[0],
1663 &discard.branch.invert_conditional);
1664 discard.src_types[0] = nir_type_uint32;
1665 }
1666
1667 emit_mir_instruction(ctx, discard);
1668 schedule_barrier(ctx);
1669
1670 break;
1671 }
1672
1673 case nir_intrinsic_load_uniform:
1674 case nir_intrinsic_load_ubo:
1675 case nir_intrinsic_load_global:
1676 case nir_intrinsic_load_shared:
1677 case nir_intrinsic_load_input:
1678 case nir_intrinsic_load_interpolated_input: {
1679 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1680 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1681 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1682 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1683 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1684 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1685
1686 /* Get the base type of the intrinsic */
1687 /* TODO: Infer type? Does it matter? */
1688 nir_alu_type t =
1689 (is_ubo || is_global || is_shared) ? nir_type_uint :
1690 (is_interp) ? nir_type_float :
1691 nir_intrinsic_type(instr);
1692
1693 t = nir_alu_type_get_base_type(t);
1694
1695 if (!(is_ubo || is_global)) {
1696 offset = nir_intrinsic_base(instr);
1697 }
1698
1699 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1700
1701 nir_src *src_offset = nir_get_io_offset_src(instr);
1702
1703 bool direct = nir_src_is_const(*src_offset);
1704 nir_src *indirect_offset = direct ? NULL : src_offset;
1705
1706 if (direct)
1707 offset += nir_src_as_uint(*src_offset);
1708
1709 /* We may need to apply a fractional offset */
1710 int component = (is_flat || is_interp) ?
1711 nir_intrinsic_component(instr) : 0;
1712 reg = nir_dest_index(&instr->dest);
1713
1714 if (is_uniform && !ctx->is_blend) {
1715 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1716 } else if (is_ubo) {
1717 nir_src index = instr->src[0];
1718
1719 /* TODO: Is indirect block number possible? */
1720 assert(nir_src_is_const(index));
1721
1722 uint32_t uindex = nir_src_as_uint(index) + 1;
1723 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1724 } else if (is_global || is_shared) {
1725 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1726 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1727 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t | nir_dest_bit_size(instr->dest), is_flat);
1728 } else if (ctx->is_blend) {
1729 /* ctx->blend_input will be precoloured to r0/r2, where
1730 * the input is preloaded */
1731
1732 unsigned *input = offset ? &ctx->blend_src1 : &ctx->blend_input;
1733
1734 if (*input == ~0)
1735 *input = reg;
1736 else
1737 emit_mir_instruction(ctx, v_mov(*input, reg));
1738 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1739 emit_attr_read(ctx, reg, offset, nr_comp, t);
1740 } else {
1741 DBG("Unknown load\n");
1742 assert(0);
1743 }
1744
1745 break;
1746 }
1747
1748 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1749 case nir_intrinsic_load_barycentric_pixel:
1750 case nir_intrinsic_load_barycentric_centroid:
1751 break;
1752
1753 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1754
1755 case nir_intrinsic_load_raw_output_pan: {
1756 reg = nir_dest_index(&instr->dest);
1757
1758 /* T720 and below use different blend opcodes with slightly
1759 * different semantics than T760 and up */
1760
1761 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1762
1763 ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
1764
1765 if (nir_src_is_const(instr->src[0])) {
1766 ld.load_store.arg_1 = nir_src_as_uint(instr->src[0]);
1767 } else {
1768 ld.load_store.varying_parameters = 2;
1769 ld.src[1] = nir_src_index(ctx, &instr->src[0]);
1770 ld.src_types[1] = nir_type_int32;
1771 }
1772
1773 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1774 ld.op = midgard_op_ld_color_buffer_32u_old;
1775 ld.load_store.address = 16;
1776 ld.load_store.arg_2 = 0x1E;
1777 }
1778
1779 emit_mir_instruction(ctx, ld);
1780 break;
1781 }
1782
1783 case nir_intrinsic_load_output: {
1784 reg = nir_dest_index(&instr->dest);
1785
1786 unsigned bits = nir_dest_bit_size(instr->dest);
1787
1788 midgard_instruction ld;
1789 if (bits == 16)
1790 ld = m_ld_color_buffer_as_fp16(reg, 0);
1791 else
1792 ld = m_ld_color_buffer_as_fp32(reg, 0);
1793
1794 ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
1795
1796 for (unsigned c = 4; c < 16; ++c)
1797 ld.swizzle[0][c] = 0;
1798
1799 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1800 if (bits == 16)
1801 ld.op = midgard_op_ld_color_buffer_as_fp16_old;
1802 else
1803 ld.op = midgard_op_ld_color_buffer_as_fp32_old;
1804 ld.load_store.address = 1;
1805 ld.load_store.arg_2 = 0x1E;
1806 }
1807
1808 emit_mir_instruction(ctx, ld);
1809 break;
1810 }
1811
1812 case nir_intrinsic_load_blend_const_color_rgba: {
1813 assert(ctx->is_blend);
1814 reg = nir_dest_index(&instr->dest);
1815
1816 /* Blend constants are embedded directly in the shader and
1817 * patched in, so we use some magic routing */
1818
1819 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1820 ins.has_constants = true;
1821 ins.has_blend_constant = true;
1822 emit_mir_instruction(ctx, ins);
1823 break;
1824 }
1825
1826 case nir_intrinsic_store_output:
1827 case nir_intrinsic_store_combined_output_pan:
1828 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1829
1830 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1831
1832 reg = nir_src_index(ctx, &instr->src[0]);
1833
1834 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1835 bool combined = instr->intrinsic ==
1836 nir_intrinsic_store_combined_output_pan;
1837
1838 const nir_variable *var;
1839 var = search_var(ctx->nir, nir_var_shader_out,
1840 nir_intrinsic_base(instr));
1841 assert(var);
1842
1843 /* Dual-source blend writeout is done by leaving the
1844 * value in r2 for the blend shader to use. */
1845 if (var->data.index) {
1846 if (instr->src[0].is_ssa) {
1847 emit_explicit_constant(ctx, reg, reg);
1848
1849 unsigned out = make_compiler_temp(ctx);
1850
1851 midgard_instruction ins = v_mov(reg, out);
1852 emit_mir_instruction(ctx, ins);
1853
1854 ctx->blend_src1 = out;
1855 } else {
1856 ctx->blend_src1 = reg;
1857 }
1858
1859 break;
1860 }
1861
1862 enum midgard_rt_id rt;
1863 if (var->data.location == FRAG_RESULT_COLOR)
1864 rt = MIDGARD_COLOR_RT0;
1865 else if (var->data.location >= FRAG_RESULT_DATA0)
1866 rt = MIDGARD_COLOR_RT0 + var->data.location -
1867 FRAG_RESULT_DATA0;
1868 else if (combined)
1869 rt = MIDGARD_ZS_RT;
1870 else
1871 unreachable("bad rt");
1872
1873 unsigned reg_z = ~0, reg_s = ~0;
1874 if (combined) {
1875 unsigned writeout = nir_intrinsic_component(instr);
1876 if (writeout & PAN_WRITEOUT_Z)
1877 reg_z = nir_src_index(ctx, &instr->src[2]);
1878 if (writeout & PAN_WRITEOUT_S)
1879 reg_s = nir_src_index(ctx, &instr->src[3]);
1880 }
1881
1882 emit_fragment_store(ctx, reg, reg_z, reg_s, rt);
1883 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1884 assert(instr->intrinsic == nir_intrinsic_store_output);
1885
1886 /* We should have been vectorized, though we don't
1887 * currently check that st_vary is emitted only once
1888 * per slot (this is relevant, since there's not a mask
1889 * parameter available on the store [set to 0 by the
1890 * blob]). We do respect the component by adjusting the
1891 * swizzle. If this is a constant source, we'll need to
1892 * emit that explicitly. */
1893
1894 emit_explicit_constant(ctx, reg, reg);
1895
1896 unsigned dst_component = nir_intrinsic_component(instr);
1897 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1898
1899 midgard_instruction st = m_st_vary_32(reg, offset);
1900 st.load_store.arg_1 = 0x9E;
1901 st.load_store.arg_2 = 0x1E;
1902
1903 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1904 case nir_type_uint:
1905 case nir_type_bool:
1906 st.op = midgard_op_st_vary_32u;
1907 break;
1908 case nir_type_int:
1909 st.op = midgard_op_st_vary_32i;
1910 break;
1911 case nir_type_float:
1912 st.op = midgard_op_st_vary_32;
1913 break;
1914 default:
1915 unreachable("Attempted to store unknown type");
1916 break;
1917 }
1918
1919 /* nir_intrinsic_component(store_intr) encodes the
1920 * destination component start. Source component offset
1921 * adjustment is taken care of in
1922 * install_registers_instr(), when offset_swizzle() is
1923 * called.
1924 */
1925 unsigned src_component = COMPONENT_X;
1926
1927 assert(nr_comp > 0);
1928 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1929 st.swizzle[0][i] = src_component;
1930 if (i >= dst_component && i < dst_component + nr_comp - 1)
1931 src_component++;
1932 }
1933
1934 emit_mir_instruction(ctx, st);
1935 } else {
1936 DBG("Unknown store\n");
1937 assert(0);
1938 }
1939
1940 break;
1941
1942 /* Special case of store_output for lowered blend shaders */
1943 case nir_intrinsic_store_raw_output_pan:
1944 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1945 reg = nir_src_index(ctx, &instr->src[0]);
1946 emit_fragment_store(ctx, reg, ~0, ~0, ctx->blend_rt);
1947 break;
1948
1949 case nir_intrinsic_store_global:
1950 case nir_intrinsic_store_shared:
1951 reg = nir_src_index(ctx, &instr->src[0]);
1952 emit_explicit_constant(ctx, reg, reg);
1953
1954 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
1955 break;
1956
1957 case nir_intrinsic_load_ssbo_address:
1958 emit_sysval_read(ctx, &instr->instr, 1, 0);
1959 break;
1960
1961 case nir_intrinsic_get_buffer_size:
1962 emit_sysval_read(ctx, &instr->instr, 1, 8);
1963 break;
1964
1965 case nir_intrinsic_load_viewport_scale:
1966 case nir_intrinsic_load_viewport_offset:
1967 case nir_intrinsic_load_num_work_groups:
1968 case nir_intrinsic_load_sampler_lod_parameters_pan:
1969 emit_sysval_read(ctx, &instr->instr, 3, 0);
1970 break;
1971
1972 case nir_intrinsic_load_work_group_id:
1973 case nir_intrinsic_load_local_invocation_id:
1974 emit_compute_builtin(ctx, instr);
1975 break;
1976
1977 case nir_intrinsic_load_vertex_id:
1978 case nir_intrinsic_load_instance_id:
1979 emit_vertex_builtin(ctx, instr);
1980 break;
1981
1982 case nir_intrinsic_load_sample_mask_in:
1983 emit_special(ctx, instr, 96);
1984 break;
1985
1986 case nir_intrinsic_load_sample_id:
1987 emit_special(ctx, instr, 97);
1988 break;
1989
1990 case nir_intrinsic_memory_barrier_buffer:
1991 case nir_intrinsic_memory_barrier_shared:
1992 break;
1993
1994 case nir_intrinsic_control_barrier:
1995 schedule_barrier(ctx);
1996 emit_control_barrier(ctx);
1997 schedule_barrier(ctx);
1998 break;
1999
2000 default:
2001 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
2002 assert(0);
2003 break;
2004 }
2005 }
2006
2007 /* Returns dimension with 0 special casing cubemaps */
2008 static unsigned
2009 midgard_tex_format(enum glsl_sampler_dim dim)
2010 {
2011 switch (dim) {
2012 case GLSL_SAMPLER_DIM_1D:
2013 case GLSL_SAMPLER_DIM_BUF:
2014 return 1;
2015
2016 case GLSL_SAMPLER_DIM_2D:
2017 case GLSL_SAMPLER_DIM_MS:
2018 case GLSL_SAMPLER_DIM_EXTERNAL:
2019 case GLSL_SAMPLER_DIM_RECT:
2020 return 2;
2021
2022 case GLSL_SAMPLER_DIM_3D:
2023 return 3;
2024
2025 case GLSL_SAMPLER_DIM_CUBE:
2026 return 0;
2027
2028 default:
2029 DBG("Unknown sampler dim type\n");
2030 assert(0);
2031 return 0;
2032 }
2033 }
2034
2035 /* Tries to attach an explicit LOD or bias as a constant. Returns whether this
2036 * was successful */
2037
2038 static bool
2039 pan_attach_constant_bias(
2040 compiler_context *ctx,
2041 nir_src lod,
2042 midgard_texture_word *word)
2043 {
2044 /* To attach as constant, it has to *be* constant */
2045
2046 if (!nir_src_is_const(lod))
2047 return false;
2048
2049 float f = nir_src_as_float(lod);
2050
2051 /* Break into fixed-point */
2052 signed lod_int = f;
2053 float lod_frac = f - lod_int;
2054
2055 /* Carry over negative fractions */
2056 if (lod_frac < 0.0) {
2057 lod_int--;
2058 lod_frac += 1.0;
2059 }
2060
2061 /* Encode */
2062 word->bias = float_to_ubyte(lod_frac);
2063 word->bias_int = lod_int;
2064
2065 return true;
2066 }
2067
2068 static void
2069 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
2070 unsigned midgard_texop)
2071 {
2072 /* TODO */
2073 //assert (!instr->sampler);
2074
2075 nir_dest *dest = &instr->dest;
2076
2077 int texture_index = instr->texture_index;
2078 int sampler_index = texture_index;
2079
2080 nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
2081 nir_alu_type dest_type = dest_base | nir_dest_bit_size(*dest);
2082
2083 /* texture instructions support float outmods */
2084 unsigned outmod = midgard_outmod_none;
2085 if (dest_base == nir_type_float) {
2086 outmod = mir_determine_float_outmod(ctx, &dest, 0);
2087 }
2088
2089 midgard_instruction ins = {
2090 .type = TAG_TEXTURE_4,
2091 .mask = 0xF,
2092 .dest = nir_dest_index(dest),
2093 .src = { ~0, ~0, ~0, ~0 },
2094 .dest_type = dest_type,
2095 .swizzle = SWIZZLE_IDENTITY_4,
2096 .outmod = outmod,
2097 .op = midgard_texop,
2098 .texture = {
2099 .format = midgard_tex_format(instr->sampler_dim),
2100 .texture_handle = texture_index,
2101 .sampler_handle = sampler_index,
2102 .shadow = instr->is_shadow,
2103 }
2104 };
2105
2106 if (instr->is_shadow && !instr->is_new_style_shadow)
2107 for (int i = 0; i < 4; ++i)
2108 ins.swizzle[0][i] = COMPONENT_X;
2109
2110 /* We may need a temporary for the coordinate */
2111
2112 bool needs_temp_coord =
2113 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
2114 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
2115 (instr->is_shadow);
2116
2117 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
2118
2119 for (unsigned i = 0; i < instr->num_srcs; ++i) {
2120 int index = nir_src_index(ctx, &instr->src[i].src);
2121 unsigned nr_components = nir_src_num_components(instr->src[i].src);
2122 unsigned sz = nir_src_bit_size(instr->src[i].src);
2123 nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
2124
2125 switch (instr->src[i].src_type) {
2126 case nir_tex_src_coord: {
2127 emit_explicit_constant(ctx, index, index);
2128
2129 unsigned coord_mask = mask_of(instr->coord_components);
2130
2131 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
2132
2133 if (flip_zw)
2134 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
2135
2136 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
2137 /* texelFetch is undefined on samplerCube */
2138 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
2139
2140 /* For cubemaps, we use a special ld/st op to
2141 * select the face and copy the xy into the
2142 * texture register */
2143
2144 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
2145 ld.src[1] = index;
2146 ld.src_types[1] = T;
2147 ld.mask = 0x3; /* xy */
2148 ld.load_store.arg_1 = 0x20;
2149 ld.swizzle[1][3] = COMPONENT_X;
2150 emit_mir_instruction(ctx, ld);
2151
2152 /* xyzw -> xyxx */
2153 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
2154 ins.swizzle[1][3] = COMPONENT_X;
2155 } else if (needs_temp_coord) {
2156 /* mov coord_temp, coords */
2157 midgard_instruction mov = v_mov(index, coords);
2158 mov.mask = coord_mask;
2159
2160 if (flip_zw)
2161 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
2162
2163 emit_mir_instruction(ctx, mov);
2164 } else {
2165 coords = index;
2166 }
2167
2168 ins.src[1] = coords;
2169 ins.src_types[1] = T;
2170
2171 /* Texelfetch coordinates uses all four elements
2172 * (xyz/index) regardless of texture dimensionality,
2173 * which means it's necessary to zero the unused
2174 * components to keep everything happy */
2175
2176 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
2177 /* mov index.zw, #0, or generalized */
2178 midgard_instruction mov =
2179 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
2180 mov.has_constants = true;
2181 mov.mask = coord_mask ^ 0xF;
2182 emit_mir_instruction(ctx, mov);
2183 }
2184
2185 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
2186 /* Array component in w but NIR wants it in z,
2187 * but if we have a temp coord we already fixed
2188 * that up */
2189
2190 if (nr_components == 3) {
2191 ins.swizzle[1][2] = COMPONENT_Z;
2192 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
2193 } else if (nr_components == 2) {
2194 ins.swizzle[1][2] =
2195 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
2196 ins.swizzle[1][3] = COMPONENT_X;
2197 } else
2198 unreachable("Invalid texture 2D components");
2199 }
2200
2201 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
2202 /* We zeroed */
2203 ins.swizzle[1][2] = COMPONENT_Z;
2204 ins.swizzle[1][3] = COMPONENT_W;
2205 }
2206
2207 break;
2208 }
2209
2210 case nir_tex_src_bias:
2211 case nir_tex_src_lod: {
2212 /* Try as a constant if we can */
2213
2214 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
2215 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
2216 break;
2217
2218 ins.texture.lod_register = true;
2219 ins.src[2] = index;
2220 ins.src_types[2] = T;
2221
2222 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
2223 ins.swizzle[2][c] = COMPONENT_X;
2224
2225 emit_explicit_constant(ctx, index, index);
2226
2227 break;
2228 };
2229
2230 case nir_tex_src_offset: {
2231 ins.texture.offset_register = true;
2232 ins.src[3] = index;
2233 ins.src_types[3] = T;
2234
2235 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
2236 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
2237
2238 emit_explicit_constant(ctx, index, index);
2239 break;
2240 };
2241
2242 case nir_tex_src_comparator:
2243 case nir_tex_src_ms_index: {
2244 unsigned comp = COMPONENT_Z;
2245
2246 /* mov coord_temp.foo, coords */
2247 midgard_instruction mov = v_mov(index, coords);
2248 mov.mask = 1 << comp;
2249
2250 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
2251 mov.swizzle[1][i] = COMPONENT_X;
2252
2253 emit_mir_instruction(ctx, mov);
2254 break;
2255 }
2256
2257 default: {
2258 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
2259 assert(0);
2260 }
2261 }
2262 }
2263
2264 emit_mir_instruction(ctx, ins);
2265 }
2266
2267 static void
2268 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
2269 {
2270 switch (instr->op) {
2271 case nir_texop_tex:
2272 case nir_texop_txb:
2273 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
2274 break;
2275 case nir_texop_txl:
2276 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
2277 break;
2278 case nir_texop_txf:
2279 case nir_texop_txf_ms:
2280 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
2281 break;
2282 case nir_texop_txs:
2283 emit_sysval_read(ctx, &instr->instr, 4, 0);
2284 break;
2285 default: {
2286 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
2287 assert(0);
2288 }
2289 }
2290 }
2291
2292 static void
2293 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
2294 {
2295 switch (instr->type) {
2296 case nir_jump_break: {
2297 /* Emit a branch out of the loop */
2298 struct midgard_instruction br = v_branch(false, false);
2299 br.branch.target_type = TARGET_BREAK;
2300 br.branch.target_break = ctx->current_loop_depth;
2301 emit_mir_instruction(ctx, br);
2302 break;
2303 }
2304
2305 default:
2306 DBG("Unknown jump type %d\n", instr->type);
2307 break;
2308 }
2309 }
2310
2311 static void
2312 emit_instr(compiler_context *ctx, struct nir_instr *instr)
2313 {
2314 switch (instr->type) {
2315 case nir_instr_type_load_const:
2316 emit_load_const(ctx, nir_instr_as_load_const(instr));
2317 break;
2318
2319 case nir_instr_type_intrinsic:
2320 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2321 break;
2322
2323 case nir_instr_type_alu:
2324 emit_alu(ctx, nir_instr_as_alu(instr));
2325 break;
2326
2327 case nir_instr_type_tex:
2328 emit_tex(ctx, nir_instr_as_tex(instr));
2329 break;
2330
2331 case nir_instr_type_jump:
2332 emit_jump(ctx, nir_instr_as_jump(instr));
2333 break;
2334
2335 case nir_instr_type_ssa_undef:
2336 /* Spurious */
2337 break;
2338
2339 default:
2340 DBG("Unhandled instruction type\n");
2341 break;
2342 }
2343 }
2344
2345
2346 /* ALU instructions can inline or embed constants, which decreases register
2347 * pressure and saves space. */
2348
2349 #define CONDITIONAL_ATTACH(idx) { \
2350 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2351 \
2352 if (entry) { \
2353 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2354 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2355 } \
2356 }
2357
2358 static void
2359 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2360 {
2361 mir_foreach_instr_in_block(block, alu) {
2362 /* Other instructions cannot inline constants */
2363 if (alu->type != TAG_ALU_4) continue;
2364 if (alu->compact_branch) continue;
2365
2366 /* If there is already a constant here, we can do nothing */
2367 if (alu->has_constants) continue;
2368
2369 CONDITIONAL_ATTACH(0);
2370
2371 if (!alu->has_constants) {
2372 CONDITIONAL_ATTACH(1)
2373 } else if (!alu->inline_constant) {
2374 /* Corner case: _two_ vec4 constants, for instance with a
2375 * csel. For this case, we can only use a constant
2376 * register for one, we'll have to emit a move for the
2377 * other. */
2378
2379 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2380 unsigned scratch = make_compiler_temp(ctx);
2381
2382 if (entry) {
2383 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2384 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2385
2386 /* Set the source */
2387 alu->src[1] = scratch;
2388
2389 /* Inject us -before- the last instruction which set r31 */
2390 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2391 }
2392 }
2393 }
2394 }
2395
2396 unsigned
2397 max_bitsize_for_alu(midgard_instruction *ins)
2398 {
2399 unsigned max_bitsize = 0;
2400 for (int i = 0; i < MIR_SRC_COUNT; i++) {
2401 if (ins->src[i] == ~0) continue;
2402 unsigned src_bitsize = nir_alu_type_get_type_size(ins->src_types[i]);
2403 max_bitsize = MAX2(src_bitsize, max_bitsize);
2404 }
2405 unsigned dst_bitsize = nir_alu_type_get_type_size(ins->dest_type);
2406 max_bitsize = MAX2(dst_bitsize, max_bitsize);
2407
2408 /* We don't have fp16 LUTs, so we'll want to emit code like:
2409 *
2410 * vlut.fsinr hr0, hr0
2411 *
2412 * where both input and output are 16-bit but the operation is carried
2413 * out in 32-bit
2414 */
2415
2416 switch (ins->op) {
2417 case midgard_alu_op_fsqrt:
2418 case midgard_alu_op_frcp:
2419 case midgard_alu_op_frsqrt:
2420 case midgard_alu_op_fsin:
2421 case midgard_alu_op_fcos:
2422 case midgard_alu_op_fexp2:
2423 case midgard_alu_op_flog2:
2424 max_bitsize = MAX2(max_bitsize, 32);
2425 break;
2426
2427 default:
2428 break;
2429 }
2430
2431 /* High implies computing at a higher bitsize, e.g umul_high of 32-bit
2432 * requires computing at 64-bit */
2433 if (midgard_is_integer_out_op(ins->op) && ins->outmod == midgard_outmod_int_high) {
2434 max_bitsize *= 2;
2435 assert(max_bitsize <= 64);
2436 }
2437
2438 return max_bitsize;
2439 }
2440
2441 midgard_reg_mode
2442 reg_mode_for_bitsize(unsigned bitsize)
2443 {
2444 switch (bitsize) {
2445 /* use 16 pipe for 8 since we don't support vec16 yet */
2446 case 8:
2447 case 16:
2448 return midgard_reg_mode_16;
2449 case 32:
2450 return midgard_reg_mode_32;
2451 case 64:
2452 return midgard_reg_mode_64;
2453 default:
2454 unreachable("invalid bit size");
2455 }
2456 }
2457
2458 /* Midgard supports two types of constants, embedded constants (128-bit) and
2459 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2460 * constants can be demoted to inline constants, for space savings and
2461 * sometimes a performance boost */
2462
2463 static void
2464 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2465 {
2466 mir_foreach_instr_in_block(block, ins) {
2467 if (!ins->has_constants) continue;
2468 if (ins->has_inline_constant) continue;
2469
2470 /* Blend constants must not be inlined by definition */
2471 if (ins->has_blend_constant) continue;
2472
2473 unsigned max_bitsize = max_bitsize_for_alu(ins);
2474
2475 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2476 bool is_16 = max_bitsize == 16;
2477 bool is_32 = max_bitsize == 32;
2478
2479 if (!(is_16 || is_32))
2480 continue;
2481
2482 /* src1 cannot be an inline constant due to encoding
2483 * restrictions. So, if possible we try to flip the arguments
2484 * in that case */
2485
2486 int op = ins->op;
2487
2488 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
2489 alu_opcode_props[op].props & OP_COMMUTES) {
2490 mir_flip(ins);
2491 }
2492
2493 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2494 /* Component is from the swizzle. Take a nonzero component */
2495 assert(ins->mask);
2496 unsigned first_comp = ffs(ins->mask) - 1;
2497 unsigned component = ins->swizzle[1][first_comp];
2498
2499 /* Scale constant appropriately, if we can legally */
2500 int16_t scaled_constant = 0;
2501
2502 if (is_16) {
2503 scaled_constant = ins->constants.u16[component];
2504 } else if (midgard_is_integer_op(op)) {
2505 scaled_constant = ins->constants.u32[component];
2506
2507 /* Constant overflow after resize */
2508 if (scaled_constant != ins->constants.u32[component])
2509 continue;
2510 } else {
2511 float original = ins->constants.f32[component];
2512 scaled_constant = _mesa_float_to_half(original);
2513
2514 /* Check for loss of precision. If this is
2515 * mediump, we don't care, but for a highp
2516 * shader, we need to pay attention. NIR
2517 * doesn't yet tell us which mode we're in!
2518 * Practically this prevents most constants
2519 * from being inlined, sadly. */
2520
2521 float fp32 = _mesa_half_to_float(scaled_constant);
2522
2523 if (fp32 != original)
2524 continue;
2525 }
2526
2527 /* Should've been const folded */
2528 if (ins->src_abs[1] || ins->src_neg[1])
2529 continue;
2530
2531 /* Make sure that the constant is not itself a vector
2532 * by checking if all accessed values are the same. */
2533
2534 const midgard_constants *cons = &ins->constants;
2535 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2536
2537 bool is_vector = false;
2538 unsigned mask = effective_writemask(ins->op, ins->mask);
2539
2540 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2541 /* We only care if this component is actually used */
2542 if (!(mask & (1 << c)))
2543 continue;
2544
2545 uint32_t test = is_16 ?
2546 cons->u16[ins->swizzle[1][c]] :
2547 cons->u32[ins->swizzle[1][c]];
2548
2549 if (test != value) {
2550 is_vector = true;
2551 break;
2552 }
2553 }
2554
2555 if (is_vector)
2556 continue;
2557
2558 /* Get rid of the embedded constant */
2559 ins->has_constants = false;
2560 ins->src[1] = ~0;
2561 ins->has_inline_constant = true;
2562 ins->inline_constant = scaled_constant;
2563 }
2564 }
2565 }
2566
2567 /* Dead code elimination for branches at the end of a block - only one branch
2568 * per block is legal semantically */
2569
2570 static void
2571 midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2572 {
2573 bool branched = false;
2574
2575 mir_foreach_instr_in_block_safe(block, ins) {
2576 if (!midgard_is_branch_unit(ins->unit)) continue;
2577
2578 if (branched)
2579 mir_remove_instruction(ins);
2580
2581 branched = true;
2582 }
2583 }
2584
2585 /* We want to force the invert on AND/OR to the second slot to legalize into
2586 * iandnot/iornot. The relevant patterns are for AND (and OR respectively)
2587 *
2588 * ~a & #b = ~a & ~(#~b)
2589 * ~a & b = b & ~a
2590 */
2591
2592 static void
2593 midgard_legalize_invert(compiler_context *ctx, midgard_block *block)
2594 {
2595 mir_foreach_instr_in_block(block, ins) {
2596 if (ins->type != TAG_ALU_4) continue;
2597
2598 if (ins->op != midgard_alu_op_iand &&
2599 ins->op != midgard_alu_op_ior) continue;
2600
2601 if (ins->src_invert[1] || !ins->src_invert[0]) continue;
2602
2603 if (ins->has_inline_constant) {
2604 /* ~(#~a) = ~(~#a) = a, so valid, and forces both
2605 * inverts on */
2606 ins->inline_constant = ~ins->inline_constant;
2607 ins->src_invert[1] = true;
2608 } else {
2609 /* Flip to the right invert order. Note
2610 * has_inline_constant false by assumption on the
2611 * branch, so flipping makes sense. */
2612 mir_flip(ins);
2613 }
2614 }
2615 }
2616
2617 static unsigned
2618 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2619 {
2620 /* Loop to ourselves */
2621 midgard_instruction *br = ctx->writeout_branch[rt];
2622 struct midgard_instruction ins = v_branch(false, false);
2623 ins.writeout = br->writeout;
2624 ins.branch.target_block = ctx->block_count - 1;
2625 ins.constants.u32[0] = br->constants.u32[0];
2626 memcpy(&ins.src_types, &br->src_types, sizeof(ins.src_types));
2627 emit_mir_instruction(ctx, ins);
2628
2629 ctx->current_block->epilogue = true;
2630 schedule_barrier(ctx);
2631 return ins.branch.target_block;
2632 }
2633
2634 static midgard_block *
2635 emit_block_init(compiler_context *ctx)
2636 {
2637 midgard_block *this_block = ctx->after_block;
2638 ctx->after_block = NULL;
2639
2640 if (!this_block)
2641 this_block = create_empty_block(ctx);
2642
2643 list_addtail(&this_block->base.link, &ctx->blocks);
2644
2645 this_block->scheduled = false;
2646 ++ctx->block_count;
2647
2648 /* Set up current block */
2649 list_inithead(&this_block->base.instructions);
2650 ctx->current_block = this_block;
2651
2652 return this_block;
2653 }
2654
2655 static midgard_block *
2656 emit_block(compiler_context *ctx, nir_block *block)
2657 {
2658 midgard_block *this_block = emit_block_init(ctx);
2659
2660 nir_foreach_instr(instr, block) {
2661 emit_instr(ctx, instr);
2662 ++ctx->instruction_count;
2663 }
2664
2665 return this_block;
2666 }
2667
2668 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2669
2670 static void
2671 emit_if(struct compiler_context *ctx, nir_if *nif)
2672 {
2673 midgard_block *before_block = ctx->current_block;
2674
2675 /* Speculatively emit the branch, but we can't fill it in until later */
2676 bool inv = false;
2677 EMIT(branch, true, true);
2678 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2679 then_branch->src[0] = mir_get_branch_cond(&nif->condition, &inv);
2680 then_branch->src_types[0] = nir_type_uint32;
2681 then_branch->branch.invert_conditional = !inv;
2682
2683 /* Emit the two subblocks. */
2684 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2685 midgard_block *end_then_block = ctx->current_block;
2686
2687 /* Emit a jump from the end of the then block to the end of the else */
2688 EMIT(branch, false, false);
2689 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2690
2691 /* Emit second block, and check if it's empty */
2692
2693 int else_idx = ctx->block_count;
2694 int count_in = ctx->instruction_count;
2695 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2696 midgard_block *end_else_block = ctx->current_block;
2697 int after_else_idx = ctx->block_count;
2698
2699 /* Now that we have the subblocks emitted, fix up the branches */
2700
2701 assert(then_block);
2702 assert(else_block);
2703
2704 if (ctx->instruction_count == count_in) {
2705 /* The else block is empty, so don't emit an exit jump */
2706 mir_remove_instruction(then_exit);
2707 then_branch->branch.target_block = after_else_idx;
2708 } else {
2709 then_branch->branch.target_block = else_idx;
2710 then_exit->branch.target_block = after_else_idx;
2711 }
2712
2713 /* Wire up the successors */
2714
2715 ctx->after_block = create_empty_block(ctx);
2716
2717 pan_block_add_successor(&before_block->base, &then_block->base);
2718 pan_block_add_successor(&before_block->base, &else_block->base);
2719
2720 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2721 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2722 }
2723
2724 static void
2725 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2726 {
2727 /* Remember where we are */
2728 midgard_block *start_block = ctx->current_block;
2729
2730 /* Allocate a loop number, growing the current inner loop depth */
2731 int loop_idx = ++ctx->current_loop_depth;
2732
2733 /* Get index from before the body so we can loop back later */
2734 int start_idx = ctx->block_count;
2735
2736 /* Emit the body itself */
2737 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2738
2739 /* Branch back to loop back */
2740 struct midgard_instruction br_back = v_branch(false, false);
2741 br_back.branch.target_block = start_idx;
2742 emit_mir_instruction(ctx, br_back);
2743
2744 /* Mark down that branch in the graph. */
2745 pan_block_add_successor(&start_block->base, &loop_block->base);
2746 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2747
2748 /* Find the index of the block about to follow us (note: we don't add
2749 * one; blocks are 0-indexed so we get a fencepost problem) */
2750 int break_block_idx = ctx->block_count;
2751
2752 /* Fix up the break statements we emitted to point to the right place,
2753 * now that we can allocate a block number for them */
2754 ctx->after_block = create_empty_block(ctx);
2755
2756 mir_foreach_block_from(ctx, start_block, _block) {
2757 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2758 if (ins->type != TAG_ALU_4) continue;
2759 if (!ins->compact_branch) continue;
2760
2761 /* We found a branch -- check the type to see if we need to do anything */
2762 if (ins->branch.target_type != TARGET_BREAK) continue;
2763
2764 /* It's a break! Check if it's our break */
2765 if (ins->branch.target_break != loop_idx) continue;
2766
2767 /* Okay, cool, we're breaking out of this loop.
2768 * Rewrite from a break to a goto */
2769
2770 ins->branch.target_type = TARGET_GOTO;
2771 ins->branch.target_block = break_block_idx;
2772
2773 pan_block_add_successor(_block, &ctx->after_block->base);
2774 }
2775 }
2776
2777 /* Now that we've finished emitting the loop, free up the depth again
2778 * so we play nice with recursion amid nested loops */
2779 --ctx->current_loop_depth;
2780
2781 /* Dump loop stats */
2782 ++ctx->loop_count;
2783 }
2784
2785 static midgard_block *
2786 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2787 {
2788 midgard_block *start_block = NULL;
2789
2790 foreach_list_typed(nir_cf_node, node, node, list) {
2791 switch (node->type) {
2792 case nir_cf_node_block: {
2793 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2794
2795 if (!start_block)
2796 start_block = block;
2797
2798 break;
2799 }
2800
2801 case nir_cf_node_if:
2802 emit_if(ctx, nir_cf_node_as_if(node));
2803 break;
2804
2805 case nir_cf_node_loop:
2806 emit_loop(ctx, nir_cf_node_as_loop(node));
2807 break;
2808
2809 case nir_cf_node_function:
2810 assert(0);
2811 break;
2812 }
2813 }
2814
2815 return start_block;
2816 }
2817
2818 /* Due to lookahead, we need to report the first tag executed in the command
2819 * stream and in branch targets. An initial block might be empty, so iterate
2820 * until we find one that 'works' */
2821
2822 unsigned
2823 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2824 {
2825 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2826
2827 mir_foreach_block_from(ctx, initial_block, _v) {
2828 midgard_block *v = (midgard_block *) _v;
2829 if (v->quadword_count) {
2830 midgard_bundle *initial_bundle =
2831 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2832
2833 return initial_bundle->tag;
2834 }
2835 }
2836
2837 /* Default to a tag 1 which will break from the shader, in case we jump
2838 * to the exit block (i.e. `return` in a compute shader) */
2839
2840 return 1;
2841 }
2842
2843 /* For each fragment writeout instruction, generate a writeout loop to
2844 * associate with it */
2845
2846 static void
2847 mir_add_writeout_loops(compiler_context *ctx)
2848 {
2849 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2850 midgard_instruction *br = ctx->writeout_branch[rt];
2851 if (!br) continue;
2852
2853 unsigned popped = br->branch.target_block;
2854 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2855 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2856 br->branch.target_type = TARGET_GOTO;
2857
2858 /* If we have more RTs, we'll need to restore back after our
2859 * loop terminates */
2860
2861 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2862 midgard_instruction uncond = v_branch(false, false);
2863 uncond.branch.target_block = popped;
2864 uncond.branch.target_type = TARGET_GOTO;
2865 emit_mir_instruction(ctx, uncond);
2866 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2867 schedule_barrier(ctx);
2868 } else {
2869 /* We're last, so we can terminate here */
2870 br->last_writeout = true;
2871 }
2872 }
2873 }
2874
2875 int
2876 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb, bool silent)
2877 {
2878 struct util_dynarray *compiled = &program->compiled;
2879
2880 midgard_debug = debug_get_option_midgard_debug();
2881
2882 /* TODO: Bound against what? */
2883 compiler_context *ctx = rzalloc(NULL, compiler_context);
2884
2885 ctx->nir = nir;
2886 ctx->stage = nir->info.stage;
2887 ctx->is_blend = is_blend;
2888 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2889 ctx->blend_input = ~0;
2890 ctx->blend_src1 = ~0;
2891 ctx->quirks = midgard_get_quirks(gpu_id);
2892
2893 /* Start off with a safe cutoff, allowing usage of all 16 work
2894 * registers. Later, we'll promote uniform reads to uniform registers
2895 * if we determine it is beneficial to do so */
2896 ctx->uniform_cutoff = 8;
2897
2898 /* Initialize at a global (not block) level hash tables */
2899
2900 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2901
2902 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2903 * (so we don't accidentally duplicate the epilogue since mesa/st has
2904 * messed with our I/O quite a bit already) */
2905
2906 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2907
2908 if (ctx->stage == MESA_SHADER_VERTEX) {
2909 NIR_PASS_V(nir, nir_lower_viewport_transform);
2910 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2911 }
2912
2913 NIR_PASS_V(nir, nir_lower_var_copies);
2914 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2915 NIR_PASS_V(nir, nir_split_var_copies);
2916 NIR_PASS_V(nir, nir_lower_var_copies);
2917 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2918 NIR_PASS_V(nir, nir_lower_var_copies);
2919 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2920
2921 unsigned pan_quirks = panfrost_get_quirks(gpu_id);
2922 NIR_PASS_V(nir, pan_lower_framebuffer,
2923 program->rt_formats, is_blend, pan_quirks);
2924
2925 NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
2926 glsl_type_size, 0);
2927 NIR_PASS_V(nir, nir_lower_ssbo);
2928 NIR_PASS_V(nir, midgard_nir_lower_zs_store);
2929
2930 /* Optimisation passes */
2931
2932 optimise_nir(nir, ctx->quirks, is_blend);
2933
2934 NIR_PASS_V(nir, midgard_nir_reorder_writeout);
2935
2936 if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent) {
2937 nir_print_shader(nir, stdout);
2938 }
2939
2940 /* Assign sysvals and counts, now that we're sure
2941 * (post-optimisation) */
2942
2943 panfrost_nir_assign_sysvals(&ctx->sysvals, ctx, nir);
2944 program->sysval_count = ctx->sysvals.sysval_count;
2945 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2946
2947 nir_foreach_function(func, nir) {
2948 if (!func->impl)
2949 continue;
2950
2951 list_inithead(&ctx->blocks);
2952 ctx->block_count = 0;
2953 ctx->func = func;
2954 ctx->already_emitted = calloc(BITSET_WORDS(func->impl->ssa_alloc), sizeof(BITSET_WORD));
2955
2956 if (nir->info.outputs_read && !is_blend) {
2957 emit_block_init(ctx);
2958
2959 struct midgard_instruction wait = v_branch(false, false);
2960 wait.branch.target_type = TARGET_TILEBUF_WAIT;
2961
2962 emit_mir_instruction(ctx, wait);
2963
2964 ++ctx->instruction_count;
2965 }
2966
2967 emit_cf_list(ctx, &func->impl->body);
2968 free(ctx->already_emitted);
2969 break; /* TODO: Multi-function shaders */
2970 }
2971
2972 util_dynarray_init(compiled, NULL);
2973
2974 /* Per-block lowering before opts */
2975
2976 mir_foreach_block(ctx, _block) {
2977 midgard_block *block = (midgard_block *) _block;
2978 inline_alu_constants(ctx, block);
2979 embedded_to_inline_constant(ctx, block);
2980 }
2981 /* MIR-level optimizations */
2982
2983 bool progress = false;
2984
2985 do {
2986 progress = false;
2987 progress |= midgard_opt_dead_code_eliminate(ctx);
2988
2989 mir_foreach_block(ctx, _block) {
2990 midgard_block *block = (midgard_block *) _block;
2991 progress |= midgard_opt_copy_prop(ctx, block);
2992 progress |= midgard_opt_combine_projection(ctx, block);
2993 progress |= midgard_opt_varying_projection(ctx, block);
2994 }
2995 } while (progress);
2996
2997 mir_foreach_block(ctx, _block) {
2998 midgard_block *block = (midgard_block *) _block;
2999 midgard_lower_derivatives(ctx, block);
3000 midgard_legalize_invert(ctx, block);
3001 midgard_cull_dead_branch(ctx, block);
3002 }
3003
3004 if (ctx->stage == MESA_SHADER_FRAGMENT)
3005 mir_add_writeout_loops(ctx);
3006
3007 /* Analyze now that the code is known but before scheduling creates
3008 * pipeline registers which are harder to track */
3009 mir_analyze_helper_terminate(ctx);
3010 mir_analyze_helper_requirements(ctx);
3011
3012 /* Schedule! */
3013 midgard_schedule_program(ctx);
3014 mir_ra(ctx);
3015
3016 /* Emit flat binary from the instruction arrays. Iterate each block in
3017 * sequence. Save instruction boundaries such that lookahead tags can
3018 * be assigned easily */
3019
3020 /* Cache _all_ bundles in source order for lookahead across failed branches */
3021
3022 int bundle_count = 0;
3023 mir_foreach_block(ctx, _block) {
3024 midgard_block *block = (midgard_block *) _block;
3025 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3026 }
3027 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3028 int bundle_idx = 0;
3029 mir_foreach_block(ctx, _block) {
3030 midgard_block *block = (midgard_block *) _block;
3031 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3032 source_order_bundles[bundle_idx++] = bundle;
3033 }
3034 }
3035
3036 int current_bundle = 0;
3037
3038 /* Midgard prefetches instruction types, so during emission we
3039 * need to lookahead. Unless this is the last instruction, in
3040 * which we return 1. */
3041
3042 mir_foreach_block(ctx, _block) {
3043 midgard_block *block = (midgard_block *) _block;
3044 mir_foreach_bundle_in_block(block, bundle) {
3045 int lookahead = 1;
3046
3047 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
3048 lookahead = source_order_bundles[current_bundle + 1]->tag;
3049
3050 emit_binary_bundle(ctx, block, bundle, compiled, lookahead);
3051 ++current_bundle;
3052 }
3053
3054 /* TODO: Free deeper */
3055 //util_dynarray_fini(&block->instructions);
3056 }
3057
3058 free(source_order_bundles);
3059
3060 /* Report the very first tag executed */
3061 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3062
3063 /* Deal with off-by-one related to the fencepost problem */
3064 program->work_register_count = ctx->work_registers + 1;
3065 program->uniform_cutoff = ctx->uniform_cutoff;
3066
3067 program->blend_patch_offset = ctx->blend_constant_offset;
3068 program->tls_size = ctx->tls_size;
3069
3070 if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent)
3071 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
3072
3073 if ((midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) && !silent) {
3074 unsigned nr_bundles = 0, nr_ins = 0;
3075
3076 /* Count instructions and bundles */
3077
3078 mir_foreach_block(ctx, _block) {
3079 midgard_block *block = (midgard_block *) _block;
3080 nr_bundles += util_dynarray_num_elements(
3081 &block->bundles, midgard_bundle);
3082
3083 mir_foreach_bundle_in_block(block, bun)
3084 nr_ins += bun->instruction_count;
3085 }
3086
3087 /* Calculate thread count. There are certain cutoffs by
3088 * register count for thread count */
3089
3090 unsigned nr_registers = program->work_register_count;
3091
3092 unsigned nr_threads =
3093 (nr_registers <= 4) ? 4 :
3094 (nr_registers <= 8) ? 2 :
3095 1;
3096
3097 /* Dump stats */
3098
3099 fprintf(stderr, "shader%d - %s shader: "
3100 "%u inst, %u bundles, %u quadwords, "
3101 "%u registers, %u threads, %u loops, "
3102 "%u:%u spills:fills\n",