pan/mdg: eliminate references to ins->alu.reg_mode
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/u_math.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50 #include "midgard_quirks.h"
51 #include "panfrost-quirks.h"
52 #include "panfrost/util/pan_lower_framebuffer.h"
53
54 #include "disassemble.h"
55
56 static const struct debug_named_value debug_options[] = {
57 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
58 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
59 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
60 DEBUG_NAMED_VALUE_END
61 };
62
63 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
64
65 unsigned SHADER_DB_COUNT = 0;
66
67 int midgard_debug = 0;
68
69 #define DBG(fmt, ...) \
70 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
71 fprintf(stderr, "%s:%d: "fmt, \
72 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
73 static midgard_block *
74 create_empty_block(compiler_context *ctx)
75 {
76 midgard_block *blk = rzalloc(ctx, midgard_block);
77
78 blk->base.predecessors = _mesa_set_create(blk,
79 _mesa_hash_pointer,
80 _mesa_key_pointer_equal);
81
82 blk->base.name = ctx->block_source_count++;
83
84 return blk;
85 }
86
87 static void
88 schedule_barrier(compiler_context *ctx)
89 {
90 midgard_block *temp = ctx->after_block;
91 ctx->after_block = create_empty_block(ctx);
92 ctx->block_count++;
93 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
94 list_inithead(&ctx->after_block->base.instructions);
95 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
96 ctx->current_block = ctx->after_block;
97 ctx->after_block = temp;
98 }
99
100 /* Helpers to generate midgard_instruction's using macro magic, since every
101 * driver seems to do it that way */
102
103 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
104
105 #define M_LOAD_STORE(name, store, T) \
106 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
107 midgard_instruction i = { \
108 .type = TAG_LOAD_STORE_4, \
109 .mask = 0xF, \
110 .dest = ~0, \
111 .src = { ~0, ~0, ~0, ~0 }, \
112 .swizzle = SWIZZLE_IDENTITY_4, \
113 .load_store = { \
114 .op = midgard_op_##name, \
115 .address = address \
116 } \
117 }; \
118 \
119 if (store) { \
120 i.src[0] = ssa; \
121 i.src_types[0] = T; \
122 i.dest_type = T; \
123 } else { \
124 i.dest = ssa; \
125 i.dest_type = T; \
126 } \
127 return i; \
128 }
129
130 #define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
131 #define M_STORE(name, T) M_LOAD_STORE(name, true, T)
132
133 M_LOAD(ld_attr_32, nir_type_uint32);
134 M_LOAD(ld_vary_32, nir_type_uint32);
135 M_LOAD(ld_ubo_int4, nir_type_uint32);
136 M_LOAD(ld_int4, nir_type_uint32);
137 M_STORE(st_int4, nir_type_uint32);
138 M_LOAD(ld_color_buffer_32u, nir_type_uint32);
139 M_LOAD(ld_color_buffer_as_fp16, nir_type_float16);
140 M_LOAD(ld_color_buffer_as_fp32, nir_type_float32);
141 M_STORE(st_vary_32, nir_type_uint32);
142 M_LOAD(ld_cubemap_coords, nir_type_uint32);
143 M_LOAD(ld_compute_id, nir_type_uint32);
144
145 static midgard_instruction
146 v_branch(bool conditional, bool invert)
147 {
148 midgard_instruction ins = {
149 .type = TAG_ALU_4,
150 .unit = ALU_ENAB_BRANCH,
151 .compact_branch = true,
152 .branch = {
153 .conditional = conditional,
154 .invert_conditional = invert
155 },
156 .dest = ~0,
157 .src = { ~0, ~0, ~0, ~0 },
158 };
159
160 return ins;
161 }
162
163 static midgard_branch_extended
164 midgard_create_branch_extended( midgard_condition cond,
165 midgard_jmp_writeout_op op,
166 unsigned dest_tag,
167 signed quadword_offset)
168 {
169 /* The condition code is actually a LUT describing a function to
170 * combine multiple condition codes. However, we only support a single
171 * condition code at the moment, so we just duplicate over a bunch of
172 * times. */
173
174 uint16_t duplicated_cond =
175 (cond << 14) |
176 (cond << 12) |
177 (cond << 10) |
178 (cond << 8) |
179 (cond << 6) |
180 (cond << 4) |
181 (cond << 2) |
182 (cond << 0);
183
184 midgard_branch_extended branch = {
185 .op = op,
186 .dest_tag = dest_tag,
187 .offset = quadword_offset,
188 .cond = duplicated_cond
189 };
190
191 return branch;
192 }
193
194 static void
195 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
196 {
197 ins->has_constants = true;
198 memcpy(&ins->constants, constants, 16);
199 }
200
201 static int
202 glsl_type_size(const struct glsl_type *type, bool bindless)
203 {
204 return glsl_count_attribute_slots(type, false);
205 }
206
207 /* Lower fdot2 to a vector multiplication followed by channel addition */
208 static void
209 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
210 {
211 if (alu->op != nir_op_fdot2)
212 return;
213
214 b->cursor = nir_before_instr(&alu->instr);
215
216 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
217 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
218
219 nir_ssa_def *product = nir_fmul(b, src0, src1);
220
221 nir_ssa_def *sum = nir_fadd(b,
222 nir_channel(b, product, 0),
223 nir_channel(b, product, 1));
224
225 /* Replace the fdot2 with this sum */
226 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
227 }
228
229 static bool
230 midgard_nir_lower_fdot2(nir_shader *shader)
231 {
232 bool progress = false;
233
234 nir_foreach_function(function, shader) {
235 if (!function->impl) continue;
236
237 nir_builder _b;
238 nir_builder *b = &_b;
239 nir_builder_init(b, function->impl);
240
241 nir_foreach_block(block, function->impl) {
242 nir_foreach_instr_safe(instr, block) {
243 if (instr->type != nir_instr_type_alu) continue;
244
245 nir_alu_instr *alu = nir_instr_as_alu(instr);
246 midgard_nir_lower_fdot2_body(b, alu);
247
248 progress |= true;
249 }
250 }
251
252 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
253
254 }
255
256 return progress;
257 }
258
259 static const nir_variable *
260 search_var(nir_shader *nir, nir_variable_mode mode, unsigned driver_loc)
261 {
262 nir_foreach_variable_with_modes(var, nir, mode) {
263 if (var->data.driver_location == driver_loc)
264 return var;
265 }
266
267 return NULL;
268 }
269
270 /* Midgard can write all of color, depth and stencil in a single writeout
271 * operation, so we merge depth/stencil stores with color stores.
272 * If there are no color stores, we add a write to the "depth RT".
273 */
274 static bool
275 midgard_nir_lower_zs_store(nir_shader *nir)
276 {
277 if (nir->info.stage != MESA_SHADER_FRAGMENT)
278 return false;
279
280 nir_variable *z_var = NULL, *s_var = NULL;
281
282 nir_foreach_shader_out_variable(var, nir) {
283 if (var->data.location == FRAG_RESULT_DEPTH)
284 z_var = var;
285 else if (var->data.location == FRAG_RESULT_STENCIL)
286 s_var = var;
287 }
288
289 if (!z_var && !s_var)
290 return false;
291
292 bool progress = false;
293
294 nir_foreach_function(function, nir) {
295 if (!function->impl) continue;
296
297 nir_intrinsic_instr *z_store = NULL, *s_store = NULL;
298
299 nir_foreach_block(block, function->impl) {
300 nir_foreach_instr_safe(instr, block) {
301 if (instr->type != nir_instr_type_intrinsic)
302 continue;
303
304 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
305 if (intr->intrinsic != nir_intrinsic_store_output)
306 continue;
307
308 if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
309 assert(!z_store);
310 z_store = intr;
311 }
312
313 if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
314 assert(!s_store);
315 s_store = intr;
316 }
317 }
318 }
319
320 if (!z_store && !s_store) continue;
321
322 bool replaced = false;
323
324 nir_foreach_block(block, function->impl) {
325 nir_foreach_instr_safe(instr, block) {
326 if (instr->type != nir_instr_type_intrinsic)
327 continue;
328
329 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
330 if (intr->intrinsic != nir_intrinsic_store_output)
331 continue;
332
333 const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
334 assert(var);
335
336 if (var->data.location != FRAG_RESULT_COLOR &&
337 var->data.location < FRAG_RESULT_DATA0)
338 continue;
339
340 if (var->data.index)
341 continue;
342
343 assert(nir_src_is_const(intr->src[1]) && "no indirect outputs");
344
345 nir_builder b;
346 nir_builder_init(&b, function->impl);
347
348 assert(!z_store || z_store->instr.block == instr->block);
349 assert(!s_store || s_store->instr.block == instr->block);
350 b.cursor = nir_after_block_before_jump(instr->block);
351
352 nir_intrinsic_instr *combined_store;
353 combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
354
355 combined_store->num_components = intr->src[0].ssa->num_components;
356
357 nir_intrinsic_set_base(combined_store, nir_intrinsic_base(intr));
358
359 unsigned writeout = PAN_WRITEOUT_C;
360 if (z_store)
361 writeout |= PAN_WRITEOUT_Z;
362 if (s_store)
363 writeout |= PAN_WRITEOUT_S;
364
365 nir_intrinsic_set_component(combined_store, writeout);
366
367 struct nir_ssa_def *zero = nir_imm_int(&b, 0);
368
369 struct nir_ssa_def *src[4] = {
370 intr->src[0].ssa,
371 intr->src[1].ssa,
372 z_store ? z_store->src[0].ssa : zero,
373 s_store ? s_store->src[0].ssa : zero,
374 };
375
376 for (int i = 0; i < 4; ++i)
377 combined_store->src[i] = nir_src_for_ssa(src[i]);
378
379 nir_builder_instr_insert(&b, &combined_store->instr);
380
381 nir_instr_remove(instr);
382
383 replaced = true;
384 }
385 }
386
387 /* Insert a store to the depth RT (0xff) if needed */
388 if (!replaced) {
389 nir_builder b;
390 nir_builder_init(&b, function->impl);
391
392 nir_block *block = NULL;
393 if (z_store && s_store)
394 assert(z_store->instr.block == s_store->instr.block);
395
396 if (z_store)
397 block = z_store->instr.block;
398 else
399 block = s_store->instr.block;
400
401 b.cursor = nir_after_block_before_jump(block);
402
403 nir_intrinsic_instr *combined_store;
404 combined_store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_store_combined_output_pan);
405
406 combined_store->num_components = 4;
407
408 unsigned base;
409 if (z_store)
410 base = nir_intrinsic_base(z_store);
411 else
412 base = nir_intrinsic_base(s_store);
413 nir_intrinsic_set_base(combined_store, base);
414
415 unsigned writeout = 0;
416 if (z_store)
417 writeout |= PAN_WRITEOUT_Z;
418 if (s_store)
419 writeout |= PAN_WRITEOUT_S;
420
421 nir_intrinsic_set_component(combined_store, writeout);
422
423 struct nir_ssa_def *zero = nir_imm_int(&b, 0);
424
425 struct nir_ssa_def *src[4] = {
426 nir_imm_vec4(&b, 0, 0, 0, 0),
427 zero,
428 z_store ? z_store->src[0].ssa : zero,
429 s_store ? s_store->src[0].ssa : zero,
430 };
431
432 for (int i = 0; i < 4; ++i)
433 combined_store->src[i] = nir_src_for_ssa(src[i]);
434
435 nir_builder_instr_insert(&b, &combined_store->instr);
436 }
437
438 if (z_store)
439 nir_instr_remove(&z_store->instr);
440
441 if (s_store)
442 nir_instr_remove(&s_store->instr);
443
444 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
445 progress = true;
446 }
447
448 return progress;
449 }
450
451 /* Real writeout stores, which break execution, need to be moved to after
452 * dual-source stores, which are just standard register writes. */
453 static bool
454 midgard_nir_reorder_writeout(nir_shader *nir)
455 {
456 bool progress = false;
457
458 nir_foreach_function(function, nir) {
459 if (!function->impl) continue;
460
461 nir_foreach_block(block, function->impl) {
462 nir_instr *last_writeout = NULL;
463
464 nir_foreach_instr_reverse_safe(instr, block) {
465 if (instr->type != nir_instr_type_intrinsic)
466 continue;
467
468 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
469 if (intr->intrinsic != nir_intrinsic_store_output)
470 continue;
471
472 const nir_variable *var = search_var(nir, nir_var_shader_out, nir_intrinsic_base(intr));
473
474 if (var->data.index) {
475 if (!last_writeout)
476 last_writeout = instr;
477 continue;
478 }
479
480 if (!last_writeout)
481 continue;
482
483 /* This is a real store, so move it to after dual-source stores */
484 exec_node_remove(&instr->node);
485 exec_node_insert_after(&last_writeout->node, &instr->node);
486
487 progress = true;
488 }
489 }
490 }
491
492 return progress;
493 }
494
495 /* Flushes undefined values to zero */
496
497 static void
498 optimise_nir(nir_shader *nir, unsigned quirks, bool is_blend)
499 {
500 bool progress;
501 unsigned lower_flrp =
502 (nir->options->lower_flrp16 ? 16 : 0) |
503 (nir->options->lower_flrp32 ? 32 : 0) |
504 (nir->options->lower_flrp64 ? 64 : 0);
505
506 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
507 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
508
509 nir_lower_tex_options lower_tex_options = {
510 .lower_txs_lod = true,
511 .lower_txp = ~0,
512 .lower_tex_without_implicit_lod =
513 (quirks & MIDGARD_EXPLICIT_LOD),
514
515 /* TODO: we have native gradient.. */
516 .lower_txd = true,
517 };
518
519 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
520
521 /* Must lower fdot2 after tex is lowered */
522 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
523
524 /* T720 is broken. */
525
526 if (quirks & MIDGARD_BROKEN_LOD)
527 NIR_PASS_V(nir, midgard_nir_lod_errata);
528
529 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_early);
530
531 do {
532 progress = false;
533
534 NIR_PASS(progress, nir, nir_lower_var_copies);
535 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
536
537 NIR_PASS(progress, nir, nir_copy_prop);
538 NIR_PASS(progress, nir, nir_opt_remove_phis);
539 NIR_PASS(progress, nir, nir_opt_dce);
540 NIR_PASS(progress, nir, nir_opt_dead_cf);
541 NIR_PASS(progress, nir, nir_opt_cse);
542 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
543 NIR_PASS(progress, nir, nir_opt_algebraic);
544 NIR_PASS(progress, nir, nir_opt_constant_folding);
545
546 if (lower_flrp != 0) {
547 bool lower_flrp_progress = false;
548 NIR_PASS(lower_flrp_progress,
549 nir,
550 nir_lower_flrp,
551 lower_flrp,
552 false /* always_precise */,
553 nir->options->lower_ffma);
554 if (lower_flrp_progress) {
555 NIR_PASS(progress, nir,
556 nir_opt_constant_folding);
557 progress = true;
558 }
559
560 /* Nothing should rematerialize any flrps, so we only
561 * need to do this lowering once.
562 */
563 lower_flrp = 0;
564 }
565
566 NIR_PASS(progress, nir, nir_opt_undef);
567 NIR_PASS(progress, nir, nir_undef_to_zero);
568
569 NIR_PASS(progress, nir, nir_opt_loop_unroll,
570 nir_var_shader_in |
571 nir_var_shader_out |
572 nir_var_function_temp);
573
574 NIR_PASS(progress, nir, nir_opt_vectorize);
575 } while (progress);
576
577 /* Run after opts so it can hit more */
578 if (!is_blend)
579 NIR_PASS(progress, nir, nir_fuse_io_16);
580
581 /* Must be run at the end to prevent creation of fsin/fcos ops */
582 NIR_PASS(progress, nir, midgard_nir_scale_trig);
583
584 do {
585 progress = false;
586
587 NIR_PASS(progress, nir, nir_opt_dce);
588 NIR_PASS(progress, nir, nir_opt_algebraic);
589 NIR_PASS(progress, nir, nir_opt_constant_folding);
590 NIR_PASS(progress, nir, nir_copy_prop);
591 } while (progress);
592
593 NIR_PASS(progress, nir, nir_opt_algebraic_late);
594 NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
595
596 /* We implement booleans as 32-bit 0/~0 */
597 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
598
599 /* Now that booleans are lowered, we can run out late opts */
600 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
601 NIR_PASS(progress, nir, midgard_nir_cancel_inot);
602
603 NIR_PASS(progress, nir, nir_copy_prop);
604 NIR_PASS(progress, nir, nir_opt_dce);
605
606 /* Take us out of SSA */
607 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
608 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
609
610 /* We are a vector architecture; write combine where possible */
611 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
612 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
613
614 NIR_PASS(progress, nir, nir_opt_dce);
615 }
616
617 /* Do not actually emit a load; instead, cache the constant for inlining */
618
619 static void
620 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
621 {
622 nir_ssa_def def = instr->def;
623
624 midgard_constants *consts = rzalloc(NULL, midgard_constants);
625
626 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
627
628 #define RAW_CONST_COPY(bits) \
629 nir_const_value_to_array(consts->u##bits, instr->value, \
630 instr->def.num_components, u##bits)
631
632 switch (instr->def.bit_size) {
633 case 64:
634 RAW_CONST_COPY(64);
635 break;
636 case 32:
637 RAW_CONST_COPY(32);
638 break;
639 case 16:
640 RAW_CONST_COPY(16);
641 break;
642 case 8:
643 RAW_CONST_COPY(8);
644 break;
645 default:
646 unreachable("Invalid bit_size for load_const instruction\n");
647 }
648
649 /* Shifted for SSA, +1 for off-by-one */
650 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
651 }
652
653 /* Normally constants are embedded implicitly, but for I/O and such we have to
654 * explicitly emit a move with the constant source */
655
656 static void
657 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
658 {
659 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
660
661 if (constant_value) {
662 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
663 attach_constants(ctx, &ins, constant_value, node + 1);
664 emit_mir_instruction(ctx, ins);
665 }
666 }
667
668 static bool
669 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
670 {
671 unsigned comp = src->swizzle[0];
672
673 for (unsigned c = 1; c < nr_components; ++c) {
674 if (src->swizzle[c] != comp)
675 return true;
676 }
677
678 return false;
679 }
680
681 #define ALU_CASE(nir, _op) \
682 case nir_op_##nir: \
683 op = midgard_alu_op_##_op; \
684 assert(src_bitsize == dst_bitsize); \
685 break;
686
687 #define ALU_CASE_RTZ(nir, _op) \
688 case nir_op_##nir: \
689 op = midgard_alu_op_##_op; \
690 roundmode = MIDGARD_RTZ; \
691 break;
692
693 #define ALU_CHECK_CMP(sext) \
694 assert(src_bitsize == 16 || src_bitsize == 32); \
695 assert(dst_bitsize == 16 || dst_bitsize == 32); \
696
697 #define ALU_CASE_BCAST(nir, _op, count) \
698 case nir_op_##nir: \
699 op = midgard_alu_op_##_op; \
700 broadcast_swizzle = count; \
701 ALU_CHECK_CMP(true); \
702 break;
703
704 #define ALU_CASE_CMP(nir, _op, sext) \
705 case nir_op_##nir: \
706 op = midgard_alu_op_##_op; \
707 ALU_CHECK_CMP(sext); \
708 break;
709
710 /* Compare mir_lower_invert */
711 static bool
712 nir_accepts_inot(nir_op op, unsigned src)
713 {
714 switch (op) {
715 case nir_op_ior:
716 case nir_op_iand: /* TODO: b2f16 */
717 case nir_op_ixor:
718 return true;
719 case nir_op_b32csel:
720 /* Only the condition */
721 return (src == 0);
722 default:
723 return false;
724 }
725 }
726
727 static bool
728 mir_accept_dest_mod(compiler_context *ctx, nir_dest **dest, nir_op op)
729 {
730 if (pan_has_dest_mod(dest, op)) {
731 assert((*dest)->is_ssa);
732 BITSET_SET(ctx->already_emitted, (*dest)->ssa.index);
733 return true;
734 }
735
736 return false;
737 }
738
739 static void
740 mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to, bool *abs, bool *neg, bool *not, enum midgard_roundmode *roundmode, bool is_int, unsigned bcast_count)
741 {
742 nir_alu_src src = instr->src[i];
743
744 if (!is_int) {
745 if (pan_has_source_mod(&src, nir_op_fneg))
746 *neg = !(*neg);
747
748 if (pan_has_source_mod(&src, nir_op_fabs))
749 *abs = true;
750 }
751
752 if (nir_accepts_inot(instr->op, i) && pan_has_source_mod(&src, nir_op_inot))
753 *not = true;
754
755 if (roundmode) {
756 if (pan_has_source_mod(&src, nir_op_fround_even))
757 *roundmode = MIDGARD_RTE;
758
759 if (pan_has_source_mod(&src, nir_op_ftrunc))
760 *roundmode = MIDGARD_RTZ;
761
762 if (pan_has_source_mod(&src, nir_op_ffloor))
763 *roundmode = MIDGARD_RTN;
764
765 if (pan_has_source_mod(&src, nir_op_fceil))
766 *roundmode = MIDGARD_RTP;
767 }
768
769 unsigned bits = nir_src_bit_size(src.src);
770
771 ins->src[to] = nir_src_index(NULL, &src.src);
772 ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
773
774 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) {
775 ins->swizzle[to][c] = src.swizzle[
776 (!bcast_count || c < bcast_count) ? c :
777 (bcast_count - 1)];
778 }
779 }
780
781 /* Midgard features both fcsel and icsel, depending on whether you want int or
782 * float modifiers. NIR's csel is typeless, so we want a heuristic to guess if
783 * we should emit an int or float csel depending on what modifiers could be
784 * placed. In the absense of modifiers, this is probably arbitrary. */
785
786 static bool
787 mir_is_bcsel_float(nir_alu_instr *instr)
788 {
789 nir_op intmods[] = {
790 nir_op_i2i8, nir_op_i2i16,
791 nir_op_i2i32, nir_op_i2i64
792 };
793
794 nir_op floatmods[] = {
795 nir_op_fabs, nir_op_fneg,
796 nir_op_f2f16, nir_op_f2f32,
797 nir_op_f2f64
798 };
799
800 nir_op floatdestmods[] = {
801 nir_op_fsat, nir_op_fsat_signed, nir_op_fclamp_pos,
802 nir_op_f2f16, nir_op_f2f32
803 };
804
805 signed score = 0;
806
807 for (unsigned i = 1; i < 3; ++i) {
808 nir_alu_src s = instr->src[i];
809 for (unsigned q = 0; q < ARRAY_SIZE(intmods); ++q) {
810 if (pan_has_source_mod(&s, intmods[q]))
811 score--;
812 }
813 }
814
815 for (unsigned i = 1; i < 3; ++i) {
816 nir_alu_src s = instr->src[i];
817 for (unsigned q = 0; q < ARRAY_SIZE(floatmods); ++q) {
818 if (pan_has_source_mod(&s, floatmods[q]))
819 score++;
820 }
821 }
822
823 for (unsigned q = 0; q < ARRAY_SIZE(floatdestmods); ++q) {
824 nir_dest *dest = &instr->dest.dest;
825 if (pan_has_dest_mod(&dest, floatdestmods[q]))
826 score++;
827 }
828
829 return (score > 0);
830 }
831
832 static void
833 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
834 {
835 nir_dest *dest = &instr->dest.dest;
836
837 if (dest->is_ssa && BITSET_TEST(ctx->already_emitted, dest->ssa.index))
838 return;
839
840 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
841 * is handled elsewhere */
842
843 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
844 midgard_emit_derivatives(ctx, instr);
845 return;
846 }
847
848 bool is_ssa = dest->is_ssa;
849
850 unsigned nr_components = nir_dest_num_components(*dest);
851 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
852 unsigned op = 0;
853
854 /* Number of components valid to check for the instruction (the rest
855 * will be forced to the last), or 0 to use as-is. Relevant as
856 * ball-type instructions have a channel count in NIR but are all vec4
857 * in Midgard */
858
859 unsigned broadcast_swizzle = 0;
860
861 /* Should we swap arguments? */
862 bool flip_src12 = false;
863
864 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
865 unsigned dst_bitsize = nir_dest_bit_size(*dest);
866
867 enum midgard_roundmode roundmode = MIDGARD_RTE;
868
869 switch (instr->op) {
870 ALU_CASE(fadd, fadd);
871 ALU_CASE(fmul, fmul);
872 ALU_CASE(fmin, fmin);
873 ALU_CASE(fmax, fmax);
874 ALU_CASE(imin, imin);
875 ALU_CASE(imax, imax);
876 ALU_CASE(umin, umin);
877 ALU_CASE(umax, umax);
878 ALU_CASE(ffloor, ffloor);
879 ALU_CASE(fround_even, froundeven);
880 ALU_CASE(ftrunc, ftrunc);
881 ALU_CASE(fceil, fceil);
882 ALU_CASE(fdot3, fdot3);
883 ALU_CASE(fdot4, fdot4);
884 ALU_CASE(iadd, iadd);
885 ALU_CASE(isub, isub);
886 ALU_CASE(imul, imul);
887
888 /* Zero shoved as second-arg */
889 ALU_CASE(iabs, iabsdiff);
890
891 ALU_CASE(mov, imov);
892
893 ALU_CASE_CMP(feq32, feq, false);
894 ALU_CASE_CMP(fne32, fne, false);
895 ALU_CASE_CMP(flt32, flt, false);
896 ALU_CASE_CMP(ieq32, ieq, true);
897 ALU_CASE_CMP(ine32, ine, true);
898 ALU_CASE_CMP(ilt32, ilt, true);
899 ALU_CASE_CMP(ult32, ult, false);
900
901 /* We don't have a native b2f32 instruction. Instead, like many
902 * GPUs, we exploit booleans as 0/~0 for false/true, and
903 * correspondingly AND
904 * by 1.0 to do the type conversion. For the moment, prime us
905 * to emit:
906 *
907 * iand [whatever], #0
908 *
909 * At the end of emit_alu (as MIR), we'll fix-up the constant
910 */
911
912 ALU_CASE_CMP(b2f32, iand, true);
913 ALU_CASE_CMP(b2f16, iand, true);
914 ALU_CASE_CMP(b2i32, iand, true);
915
916 /* Likewise, we don't have a dedicated f2b32 instruction, but
917 * we can do a "not equal to 0.0" test. */
918
919 ALU_CASE_CMP(f2b32, fne, false);
920 ALU_CASE_CMP(i2b32, ine, true);
921
922 ALU_CASE(frcp, frcp);
923 ALU_CASE(frsq, frsqrt);
924 ALU_CASE(fsqrt, fsqrt);
925 ALU_CASE(fexp2, fexp2);
926 ALU_CASE(flog2, flog2);
927
928 ALU_CASE_RTZ(f2i64, f2i_rte);
929 ALU_CASE_RTZ(f2u64, f2u_rte);
930 ALU_CASE_RTZ(i2f64, i2f_rte);
931 ALU_CASE_RTZ(u2f64, u2f_rte);
932
933 ALU_CASE_RTZ(f2i32, f2i_rte);
934 ALU_CASE_RTZ(f2u32, f2u_rte);
935 ALU_CASE_RTZ(i2f32, i2f_rte);
936 ALU_CASE_RTZ(u2f32, u2f_rte);
937
938 ALU_CASE_RTZ(f2i8, f2i_rte);
939 ALU_CASE_RTZ(f2u8, f2u_rte);
940
941 ALU_CASE_RTZ(f2i16, f2i_rte);
942 ALU_CASE_RTZ(f2u16, f2u_rte);
943 ALU_CASE_RTZ(i2f16, i2f_rte);
944 ALU_CASE_RTZ(u2f16, u2f_rte);
945
946 ALU_CASE(fsin, fsin);
947 ALU_CASE(fcos, fcos);
948
949 /* We'll get 0 in the second arg, so:
950 * ~a = ~(a | 0) = nor(a, 0) */
951 ALU_CASE(inot, inor);
952 ALU_CASE(iand, iand);
953 ALU_CASE(ior, ior);
954 ALU_CASE(ixor, ixor);
955 ALU_CASE(ishl, ishl);
956 ALU_CASE(ishr, iasr);
957 ALU_CASE(ushr, ilsr);
958
959 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
960 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
961 ALU_CASE_CMP(b32all_fequal4, fball_eq, true);
962
963 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
964 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
965 ALU_CASE_CMP(b32any_fnequal4, fbany_neq, true);
966
967 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
968 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
969 ALU_CASE_CMP(b32all_iequal4, iball_eq, true);
970
971 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
972 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
973 ALU_CASE_CMP(b32any_inequal4, ibany_neq, true);
974
975 /* Source mods will be shoved in later */
976 ALU_CASE(fabs, fmov);
977 ALU_CASE(fneg, fmov);
978 ALU_CASE(fsat, fmov);
979 ALU_CASE(fsat_signed, fmov);
980 ALU_CASE(fclamp_pos, fmov);
981
982 /* For size conversion, we use a move. Ideally though we would squash
983 * these ops together; maybe that has to happen after in NIR as part of
984 * propagation...? An earlier algebraic pass ensured we step down by
985 * only / exactly one size. If stepping down, we use a dest override to
986 * reduce the size; if stepping up, we use a larger-sized move with a
987 * half source and a sign/zero-extension modifier */
988
989 case nir_op_i2i8:
990 case nir_op_i2i16:
991 case nir_op_i2i32:
992 case nir_op_i2i64:
993 case nir_op_u2u8:
994 case nir_op_u2u16:
995 case nir_op_u2u32:
996 case nir_op_u2u64:
997 case nir_op_f2f16:
998 case nir_op_f2f32:
999 case nir_op_f2f64: {
1000 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
1001 instr->op == nir_op_f2f64)
1002 op = midgard_alu_op_fmov;
1003 else
1004 op = midgard_alu_op_imov;
1005
1006 break;
1007 }
1008
1009 /* For greater-or-equal, we lower to less-or-equal and flip the
1010 * arguments */
1011
1012 case nir_op_fge:
1013 case nir_op_fge32:
1014 case nir_op_ige32:
1015 case nir_op_uge32: {
1016 op =
1017 instr->op == nir_op_fge ? midgard_alu_op_fle :
1018 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1019 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1020 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1021 0;
1022
1023 flip_src12 = true;
1024 ALU_CHECK_CMP(false);
1025 break;
1026 }
1027
1028 case nir_op_b32csel: {
1029 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
1030 bool is_float = mir_is_bcsel_float(instr);
1031 op = is_float ?
1032 (mixed ? midgard_alu_op_fcsel_v : midgard_alu_op_fcsel) :
1033 (mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel);
1034
1035 break;
1036 }
1037
1038 case nir_op_unpack_32_2x16:
1039 case nir_op_unpack_32_4x8:
1040 case nir_op_pack_32_2x16:
1041 case nir_op_pack_32_4x8: {
1042 op = midgard_alu_op_imov;
1043 break;
1044 }
1045
1046 default:
1047 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1048 assert(0);
1049 return;
1050 }
1051
1052 /* Promote imov to fmov if it might help inline a constant */
1053 if (op == midgard_alu_op_imov && nir_src_is_const(instr->src[0].src)
1054 && nir_src_bit_size(instr->src[0].src) == 32
1055 && nir_is_same_comp_swizzle(instr->src[0].swizzle,
1056 nir_src_num_components(instr->src[0].src))) {
1057 op = midgard_alu_op_fmov;
1058 }
1059
1060 /* Midgard can perform certain modifiers on output of an ALU op */
1061
1062 unsigned outmod = 0;
1063 bool is_int = midgard_is_integer_op(op);
1064
1065 if (midgard_is_integer_out_op(op)) {
1066 outmod = midgard_outmod_int_wrap;
1067 } else if (instr->op == nir_op_fsat) {
1068 outmod = midgard_outmod_sat;
1069 } else if (instr->op == nir_op_fsat_signed) {
1070 outmod = midgard_outmod_sat_signed;
1071 } else if (instr->op == nir_op_fclamp_pos) {
1072 outmod = midgard_outmod_pos;
1073 }
1074
1075 /* Fetch unit, quirks, etc information */
1076 unsigned opcode_props = alu_opcode_props[op].props;
1077 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1078
1079 /* Look for floating point mods. We have the mods fsat, fsat_signed,
1080 * and fpos. We also have the relations (note 3 * 2 = 6 cases):
1081 *
1082 * fsat_signed(fpos(x)) = fsat(x)
1083 * fsat_signed(fsat(x)) = fsat(x)
1084 * fpos(fsat_signed(x)) = fsat(x)
1085 * fpos(fsat(x)) = fsat(x)
1086 * fsat(fsat_signed(x)) = fsat(x)
1087 * fsat(fpos(x)) = fsat(x)
1088 *
1089 * So by cases any composition of output modifiers is equivalent to
1090 * fsat alone.
1091 */
1092
1093 if (!midgard_is_integer_out_op(op)) {
1094 bool fpos = mir_accept_dest_mod(ctx, &dest, nir_op_fclamp_pos);
1095 bool fsat = mir_accept_dest_mod(ctx, &dest, nir_op_fsat);
1096 bool ssat = mir_accept_dest_mod(ctx, &dest, nir_op_fsat_signed);
1097 bool prior = (outmod != midgard_outmod_none);
1098 int count = (int) prior + (int) fpos + (int) ssat + (int) fsat;
1099
1100 outmod = ((count > 1) || fsat) ? midgard_outmod_sat :
1101 fpos ? midgard_outmod_pos :
1102 ssat ? midgard_outmod_sat_signed :
1103 outmod;
1104 }
1105
1106 midgard_instruction ins = {
1107 .type = TAG_ALU_4,
1108 .dest = nir_dest_index(dest),
1109 .dest_type = nir_op_infos[instr->op].output_type
1110 | nir_dest_bit_size(*dest),
1111 .roundmode = roundmode,
1112 };
1113
1114 enum midgard_roundmode *roundptr = (opcode_props & MIDGARD_ROUNDS) ?
1115 &ins.roundmode : NULL;
1116
1117 for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
1118 ins.src[i] = ~0;
1119
1120 if (quirk_flipped_r24) {
1121 ins.src[0] = ~0;
1122 mir_copy_src(&ins, instr, 0, 1, &ins.src_abs[1], &ins.src_neg[1], &ins.src_invert[1], roundptr, is_int, broadcast_swizzle);
1123 } else {
1124 for (unsigned i = 0; i < nr_inputs; ++i) {
1125 unsigned to = i;
1126
1127 if (instr->op == nir_op_b32csel) {
1128 /* The condition is the first argument; move
1129 * the other arguments up one to be a binary
1130 * instruction for Midgard with the condition
1131 * last */
1132
1133 if (i == 0)
1134 to = 2;
1135 else if (flip_src12)
1136 to = 2 - i;
1137 else
1138 to = i - 1;
1139 } else if (flip_src12) {
1140 to = 1 - to;
1141 }
1142
1143 mir_copy_src(&ins, instr, i, to, &ins.src_abs[to], &ins.src_neg[to], &ins.src_invert[to], roundptr, is_int, broadcast_swizzle);
1144
1145 /* (!c) ? a : b = c ? b : a */
1146 if (instr->op == nir_op_b32csel && ins.src_invert[2]) {
1147 ins.src_invert[2] = false;
1148 flip_src12 ^= true;
1149 }
1150 }
1151 }
1152
1153 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1154 /* Lowered to move */
1155 if (instr->op == nir_op_fneg)
1156 ins.src_neg[1] ^= true;
1157
1158 if (instr->op == nir_op_fabs)
1159 ins.src_abs[1] = true;
1160 }
1161
1162 ins.mask = mask_of(nr_components);
1163
1164 midgard_vector_alu alu = {
1165 .outmod = outmod,
1166 };
1167
1168 /* Apply writemask if non-SSA, keeping in mind that we can't write to
1169 * components that don't exist. Note modifier => SSA => !reg => no
1170 * writemask, so we don't have to worry about writemasks here.*/
1171
1172 if (!is_ssa)
1173 ins.mask &= instr->dest.write_mask;
1174
1175 ins.alu = alu;
1176
1177 ins.op = op;
1178
1179 /* Late fixup for emulated instructions */
1180
1181 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1182 /* Presently, our second argument is an inline #0 constant.
1183 * Switch over to an embedded 1.0 constant (that can't fit
1184 * inline, since we're 32-bit, not 16-bit like the inline
1185 * constants) */
1186
1187 ins.has_inline_constant = false;
1188 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1189 ins.src_types[1] = nir_type_float32;
1190 ins.has_constants = true;
1191
1192 if (instr->op == nir_op_b2f32)
1193 ins.constants.f32[0] = 1.0f;
1194 else
1195 ins.constants.i32[0] = 1;
1196
1197 for (unsigned c = 0; c < 16; ++c)
1198 ins.swizzle[1][c] = 0;
1199 } else if (instr->op == nir_op_b2f16) {
1200 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1201 ins.src_types[1] = nir_type_float16;
1202 ins.has_constants = true;
1203 ins.constants.i16[0] = _mesa_float_to_half(1.0);
1204
1205 for (unsigned c = 0; c < 16; ++c)
1206 ins.swizzle[1][c] = 0;
1207 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1208 /* Lots of instructions need a 0 plonked in */
1209 ins.has_inline_constant = false;
1210 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1211 ins.src_types[1] = ins.src_types[0];
1212 ins.has_constants = true;
1213 ins.constants.u32[0] = 0;
1214
1215 for (unsigned c = 0; c < 16; ++c)
1216 ins.swizzle[1][c] = 0;
1217 } else if (instr->op == nir_op_pack_32_2x16) {
1218 ins.dest_type = nir_type_uint16;
1219 ins.mask = mask_of(nr_components * 2);
1220 ins.is_pack = true;
1221 } else if (instr->op == nir_op_pack_32_4x8) {
1222 ins.dest_type = nir_type_uint8;
1223 ins.mask = mask_of(nr_components * 4);
1224 ins.is_pack = true;
1225 } else if (instr->op == nir_op_unpack_32_2x16) {
1226 ins.dest_type = nir_type_uint32;
1227 ins.mask = mask_of(nr_components >> 1);
1228 ins.is_pack = true;
1229 } else if (instr->op == nir_op_unpack_32_4x8) {
1230 ins.dest_type = nir_type_uint32;
1231 ins.mask = mask_of(nr_components >> 2);
1232 ins.is_pack = true;
1233 }
1234
1235 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1236 /* To avoid duplicating the lookup tables (probably), true LUT
1237 * instructions can only operate as if they were scalars. Lower
1238 * them here by changing the component. */
1239
1240 unsigned orig_mask = ins.mask;
1241
1242 unsigned swizzle_back[MIR_VEC_COMPONENTS];
1243 memcpy(&swizzle_back, ins.swizzle[0], sizeof(swizzle_back));
1244
1245 midgard_instruction ins_split[MIR_VEC_COMPONENTS];
1246 unsigned ins_count = 0;
1247
1248 for (int i = 0; i < nr_components; ++i) {
1249 /* Mask the associated component, dropping the
1250 * instruction if needed */
1251
1252 ins.mask = 1 << i;
1253 ins.mask &= orig_mask;
1254
1255 for (unsigned j = 0; j < ins_count; ++j) {
1256 if (swizzle_back[i] == ins_split[j].swizzle[0][0]) {
1257 ins_split[j].mask |= ins.mask;
1258 ins.mask = 0;
1259 break;
1260 }
1261 }
1262
1263 if (!ins.mask)
1264 continue;
1265
1266 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1267 ins.swizzle[0][j] = swizzle_back[i]; /* Pull from the correct component */
1268
1269 ins_split[ins_count] = ins;
1270
1271 ++ins_count;
1272 }
1273
1274 for (unsigned i = 0; i < ins_count; ++i) {
1275 emit_mir_instruction(ctx, ins_split[i]);
1276 }
1277 } else {
1278 emit_mir_instruction(ctx, ins);
1279 }
1280 }
1281
1282 #undef ALU_CASE
1283
1284 static void
1285 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1286 {
1287 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1288 unsigned nir_mask = 0;
1289 unsigned dsize = 0;
1290
1291 if (is_read) {
1292 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1293 dsize = nir_dest_bit_size(intr->dest);
1294 } else {
1295 nir_mask = nir_intrinsic_write_mask(intr);
1296 dsize = 32;
1297 }
1298
1299 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1300 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1301 mir_set_bytemask(ins, bytemask);
1302 ins->dest_type = nir_type_uint | dsize;
1303 }
1304
1305 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1306 * optimized) versions of UBO #0 */
1307
1308 static midgard_instruction *
1309 emit_ubo_read(
1310 compiler_context *ctx,
1311 nir_instr *instr,
1312 unsigned dest,
1313 unsigned offset,
1314 nir_src *indirect_offset,
1315 unsigned indirect_shift,
1316 unsigned index)
1317 {
1318 /* TODO: half-floats */
1319
1320 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1321 ins.constants.u32[0] = offset;
1322
1323 if (instr->type == nir_instr_type_intrinsic)
1324 mir_set_intr_mask(instr, &ins, true);
1325
1326 if (indirect_offset) {
1327 ins.src[2] = nir_src_index(ctx, indirect_offset);
1328 ins.src_types[2] = nir_type_uint32;
1329 ins.load_store.arg_2 = (indirect_shift << 5);
1330
1331 /* X component for the whole swizzle to prevent register
1332 * pressure from ballooning from the extra components */
1333 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[2]); ++i)
1334 ins.swizzle[2][i] = 0;
1335 } else {
1336 ins.load_store.arg_2 = 0x1E;
1337 }
1338
1339 ins.load_store.arg_1 = index;
1340
1341 return emit_mir_instruction(ctx, ins);
1342 }
1343
1344 /* Globals are like UBOs if you squint. And shared memory is like globals if
1345 * you squint even harder */
1346
1347 static void
1348 emit_global(
1349 compiler_context *ctx,
1350 nir_instr *instr,
1351 bool is_read,
1352 unsigned srcdest,
1353 nir_src *offset,
1354 bool is_shared)
1355 {
1356 /* TODO: types */
1357
1358 midgard_instruction ins;
1359
1360 if (is_read)
1361 ins = m_ld_int4(srcdest, 0);
1362 else
1363 ins = m_st_int4(srcdest, 0);
1364
1365 mir_set_offset(ctx, &ins, offset, is_shared);
1366 mir_set_intr_mask(instr, &ins, is_read);
1367
1368 emit_mir_instruction(ctx, ins);
1369 }
1370
1371 static void
1372 emit_varying_read(
1373 compiler_context *ctx,
1374 unsigned dest, unsigned offset,
1375 unsigned nr_comp, unsigned component,
1376 nir_src *indirect_offset, nir_alu_type type, bool flat)
1377 {
1378 /* XXX: Half-floats? */
1379 /* TODO: swizzle, mask */
1380
1381 midgard_instruction ins = m_ld_vary_32(dest, offset);
1382 ins.mask = mask_of(nr_comp);
1383 ins.dest_type = type;
1384
1385 if (type == nir_type_float16) {
1386 /* Ensure we are aligned so we can pack it later */
1387 ins.mask = mask_of(ALIGN_POT(nr_comp, 2));
1388 }
1389
1390 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1391 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1392
1393 midgard_varying_parameter p = {
1394 .is_varying = 1,
1395 .interpolation = midgard_interp_default,
1396 .flat = flat,
1397 };
1398
1399 unsigned u;
1400 memcpy(&u, &p, sizeof(p));
1401 ins.load_store.varying_parameters = u;
1402
1403 if (indirect_offset) {
1404 ins.src[2] = nir_src_index(ctx, indirect_offset);
1405 ins.src_types[2] = nir_type_uint32;
1406 } else
1407 ins.load_store.arg_2 = 0x1E;
1408
1409 ins.load_store.arg_1 = 0x9E;
1410
1411 /* Use the type appropriate load */
1412 switch (type) {
1413 case nir_type_uint32:
1414 case nir_type_bool32:
1415 ins.load_store.op = midgard_op_ld_vary_32u;
1416 break;
1417 case nir_type_int32:
1418 ins.load_store.op = midgard_op_ld_vary_32i;
1419 break;
1420 case nir_type_float32:
1421 ins.load_store.op = midgard_op_ld_vary_32;
1422 break;
1423 case nir_type_float16:
1424 ins.load_store.op = midgard_op_ld_vary_16;
1425 break;
1426 default:
1427 unreachable("Attempted to load unknown type");
1428 break;
1429 }
1430
1431 emit_mir_instruction(ctx, ins);
1432 }
1433
1434 static void
1435 emit_attr_read(
1436 compiler_context *ctx,
1437 unsigned dest, unsigned offset,
1438 unsigned nr_comp, nir_alu_type t)
1439 {
1440 midgard_instruction ins = m_ld_attr_32(dest, offset);
1441 ins.load_store.arg_1 = 0x1E;
1442 ins.load_store.arg_2 = 0x1E;
1443 ins.mask = mask_of(nr_comp);
1444
1445 /* Use the type appropriate load */
1446 switch (t) {
1447 case nir_type_uint:
1448 case nir_type_bool:
1449 ins.load_store.op = midgard_op_ld_attr_32u;
1450 break;
1451 case nir_type_int:
1452 ins.load_store.op = midgard_op_ld_attr_32i;
1453 break;
1454 case nir_type_float:
1455 ins.load_store.op = midgard_op_ld_attr_32;
1456 break;
1457 default:
1458 unreachable("Attempted to load unknown type");
1459 break;
1460 }
1461
1462 emit_mir_instruction(ctx, ins);
1463 }
1464
1465 static void
1466 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1467 unsigned nr_components, unsigned offset)
1468 {
1469 nir_dest nir_dest;
1470
1471 /* Figure out which uniform this is */
1472 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1473 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1474
1475 unsigned dest = nir_dest_index(&nir_dest);
1476
1477 /* Sysvals are prefix uniforms */
1478 unsigned uniform = ((uintptr_t) val) - 1;
1479
1480 /* Emit the read itself -- this is never indirect */
1481 midgard_instruction *ins =
1482 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1483
1484 ins->mask = mask_of(nr_components);
1485 }
1486
1487 static unsigned
1488 compute_builtin_arg(nir_op op)
1489 {
1490 switch (op) {
1491 case nir_intrinsic_load_work_group_id:
1492 return 0x14;
1493 case nir_intrinsic_load_local_invocation_id:
1494 return 0x10;
1495 default:
1496 unreachable("Invalid compute paramater loaded");
1497 }
1498 }
1499
1500 static void
1501 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned src_z, unsigned src_s, enum midgard_rt_id rt)
1502 {
1503 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1504
1505 midgard_instruction *br = ctx->writeout_branch[rt];
1506
1507 assert(!br);
1508
1509 emit_explicit_constant(ctx, src, src);
1510
1511 struct midgard_instruction ins =
1512 v_branch(false, false);
1513
1514 bool depth_only = (rt == MIDGARD_ZS_RT);
1515
1516 ins.writeout = depth_only ? 0 : PAN_WRITEOUT_C;
1517
1518 /* Add dependencies */
1519 ins.src[0] = src;
1520 ins.src_types[0] = nir_type_uint32;
1521 ins.constants.u32[0] = depth_only ? 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1522 for (int i = 0; i < 4; ++i)
1523 ins.swizzle[0][i] = i;
1524
1525 if (~src_z) {
1526 emit_explicit_constant(ctx, src_z, src_z);
1527 ins.src[2] = src_z;
1528 ins.src_types[2] = nir_type_uint32;
1529 ins.writeout |= PAN_WRITEOUT_Z;
1530 }
1531 if (~src_s) {
1532 emit_explicit_constant(ctx, src_s, src_s);
1533 ins.src[3] = src_s;
1534 ins.src_types[3] = nir_type_uint32;
1535 ins.writeout |= PAN_WRITEOUT_S;
1536 }
1537
1538 /* Emit the branch */
1539 br = emit_mir_instruction(ctx, ins);
1540 schedule_barrier(ctx);
1541 ctx->writeout_branch[rt] = br;
1542
1543 /* Push our current location = current block count - 1 = where we'll
1544 * jump to. Maybe a bit too clever for my own good */
1545
1546 br->branch.target_block = ctx->block_count - 1;
1547 }
1548
1549 static void
1550 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1551 {
1552 unsigned reg = nir_dest_index(&instr->dest);
1553 midgard_instruction ins = m_ld_compute_id(reg, 0);
1554 ins.mask = mask_of(3);
1555 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1556 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1557 emit_mir_instruction(ctx, ins);
1558 }
1559
1560 static unsigned
1561 vertex_builtin_arg(nir_op op)
1562 {
1563 switch (op) {
1564 case nir_intrinsic_load_vertex_id:
1565 return PAN_VERTEX_ID;
1566 case nir_intrinsic_load_instance_id:
1567 return PAN_INSTANCE_ID;
1568 default:
1569 unreachable("Invalid vertex builtin");
1570 }
1571 }
1572
1573 static void
1574 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1575 {
1576 unsigned reg = nir_dest_index(&instr->dest);
1577 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1578 }
1579
1580 static void
1581 emit_msaa_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1582 {
1583 unsigned reg = nir_dest_index(&instr->dest);
1584
1585 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1586 ld.load_store.op = midgard_op_ld_color_buffer_32u_old;
1587 ld.load_store.address = 97;
1588 ld.load_store.arg_2 = 0x1E;
1589
1590 for (int i = 0; i < 4; ++i)
1591 ld.swizzle[0][i] = COMPONENT_X;
1592
1593 emit_mir_instruction(ctx, ld);
1594 }
1595
1596 static void
1597 emit_control_barrier(compiler_context *ctx)
1598 {
1599 midgard_instruction ins = {
1600 .type = TAG_TEXTURE_4,
1601 .dest = ~0,
1602 .src = { ~0, ~0, ~0, ~0 },
1603 .texture = {
1604 .op = TEXTURE_OP_BARRIER,
1605
1606 /* TODO: optimize */
1607 .out_of_order = MIDGARD_BARRIER_BUFFER |
1608 MIDGARD_BARRIER_SHARED ,
1609 }
1610 };
1611
1612 emit_mir_instruction(ctx, ins);
1613 }
1614
1615 static unsigned
1616 mir_get_branch_cond(nir_src *src, bool *invert)
1617 {
1618 /* Wrap it. No swizzle since it's a scalar */
1619
1620 nir_alu_src alu = {
1621 .src = *src
1622 };
1623
1624 *invert = pan_has_source_mod(&alu, nir_op_inot);
1625 return nir_src_index(NULL, &alu.src);
1626 }
1627
1628 static uint8_t
1629 output_load_rt_addr(compiler_context *ctx, nir_intrinsic_instr *instr)
1630 {
1631 if (ctx->is_blend)
1632 return ctx->blend_rt;
1633
1634 const nir_variable *var;
1635 var = search_var(ctx->nir, nir_var_shader_out, nir_intrinsic_base(instr));
1636 assert(var);
1637
1638 unsigned loc = var->data.location;
1639
1640 if (loc == FRAG_RESULT_COLOR)
1641 loc = FRAG_RESULT_DATA0;
1642
1643 if (loc >= FRAG_RESULT_DATA0)
1644 return loc - FRAG_RESULT_DATA0;
1645
1646 if (loc == FRAG_RESULT_DEPTH)
1647 return 0x1F;
1648 if (loc == FRAG_RESULT_STENCIL)
1649 return 0x1E;
1650
1651 unreachable("Invalid RT to load from");
1652 }
1653
1654 static void
1655 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1656 {
1657 unsigned offset = 0, reg;
1658
1659 switch (instr->intrinsic) {
1660 case nir_intrinsic_discard_if:
1661 case nir_intrinsic_discard: {
1662 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1663 struct midgard_instruction discard = v_branch(conditional, false);
1664 discard.branch.target_type = TARGET_DISCARD;
1665
1666 if (conditional) {
1667 discard.src[0] = mir_get_branch_cond(&instr->src[0],
1668 &discard.branch.invert_conditional);
1669 discard.src_types[0] = nir_type_uint32;
1670 }
1671
1672 emit_mir_instruction(ctx, discard);
1673 schedule_barrier(ctx);
1674
1675 break;
1676 }
1677
1678 case nir_intrinsic_load_uniform:
1679 case nir_intrinsic_load_ubo:
1680 case nir_intrinsic_load_global:
1681 case nir_intrinsic_load_shared:
1682 case nir_intrinsic_load_input:
1683 case nir_intrinsic_load_interpolated_input: {
1684 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1685 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1686 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1687 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1688 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1689 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1690
1691 /* Get the base type of the intrinsic */
1692 /* TODO: Infer type? Does it matter? */
1693 nir_alu_type t =
1694 (is_ubo || is_global || is_shared) ? nir_type_uint :
1695 (is_interp) ? nir_type_float :
1696 nir_intrinsic_type(instr);
1697
1698 t = nir_alu_type_get_base_type(t);
1699
1700 if (!(is_ubo || is_global)) {
1701 offset = nir_intrinsic_base(instr);
1702 }
1703
1704 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1705
1706 nir_src *src_offset = nir_get_io_offset_src(instr);
1707
1708 bool direct = nir_src_is_const(*src_offset);
1709 nir_src *indirect_offset = direct ? NULL : src_offset;
1710
1711 if (direct)
1712 offset += nir_src_as_uint(*src_offset);
1713
1714 /* We may need to apply a fractional offset */
1715 int component = (is_flat || is_interp) ?
1716 nir_intrinsic_component(instr) : 0;
1717 reg = nir_dest_index(&instr->dest);
1718
1719 if (is_uniform && !ctx->is_blend) {
1720 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1721 } else if (is_ubo) {
1722 nir_src index = instr->src[0];
1723
1724 /* TODO: Is indirect block number possible? */
1725 assert(nir_src_is_const(index));
1726
1727 uint32_t uindex = nir_src_as_uint(index) + 1;
1728 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1729 } else if (is_global || is_shared) {
1730 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1731 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1732 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t | nir_dest_bit_size(instr->dest), is_flat);
1733 } else if (ctx->is_blend) {
1734 /* ctx->blend_input will be precoloured to r0/r2, where
1735 * the input is preloaded */
1736
1737 unsigned *input = offset ? &ctx->blend_src1 : &ctx->blend_input;
1738
1739 if (*input == ~0)
1740 *input = reg;
1741 else
1742 emit_mir_instruction(ctx, v_mov(*input, reg));
1743 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1744 emit_attr_read(ctx, reg, offset, nr_comp, t);
1745 } else {
1746 DBG("Unknown load\n");
1747 assert(0);
1748 }
1749
1750 break;
1751 }
1752
1753 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1754 case nir_intrinsic_load_barycentric_pixel:
1755 case nir_intrinsic_load_barycentric_centroid:
1756 break;
1757
1758 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1759
1760 case nir_intrinsic_load_raw_output_pan: {
1761 reg = nir_dest_index(&instr->dest);
1762
1763 /* T720 and below use different blend opcodes with slightly
1764 * different semantics than T760 and up */
1765
1766 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1767
1768 ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
1769
1770 if (nir_src_is_const(instr->src[0])) {
1771 ld.load_store.arg_1 = nir_src_as_uint(instr->src[0]);
1772 } else {
1773 ld.load_store.varying_parameters = 2;
1774 ld.src[1] = nir_src_index(ctx, &instr->src[0]);
1775 ld.src_types[1] = nir_type_int32;
1776 }
1777
1778 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1779 ld.load_store.op = midgard_op_ld_color_buffer_32u_old;
1780 ld.load_store.address = 16;
1781 ld.load_store.arg_2 = 0x1E;
1782 }
1783
1784 emit_mir_instruction(ctx, ld);
1785 break;
1786 }
1787
1788 case nir_intrinsic_load_output: {
1789 reg = nir_dest_index(&instr->dest);
1790
1791 unsigned bits = nir_dest_bit_size(instr->dest);
1792
1793 midgard_instruction ld;
1794 if (bits == 16)
1795 ld = m_ld_color_buffer_as_fp16(reg, 0);
1796 else
1797 ld = m_ld_color_buffer_as_fp32(reg, 0);
1798
1799 ld.load_store.arg_2 = output_load_rt_addr(ctx, instr);
1800
1801 for (unsigned c = 4; c < 16; ++c)
1802 ld.swizzle[0][c] = 0;
1803
1804 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1805 if (bits == 16)
1806 ld.load_store.op = midgard_op_ld_color_buffer_as_fp16_old;
1807 else
1808 ld.load_store.op = midgard_op_ld_color_buffer_as_fp32_old;
1809 ld.load_store.address = 1;
1810 ld.load_store.arg_2 = 0x1E;
1811 }
1812
1813 emit_mir_instruction(ctx, ld);
1814 break;
1815 }
1816
1817 case nir_intrinsic_load_blend_const_color_rgba: {
1818 assert(ctx->is_blend);
1819 reg = nir_dest_index(&instr->dest);
1820
1821 /* Blend constants are embedded directly in the shader and
1822 * patched in, so we use some magic routing */
1823
1824 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1825 ins.has_constants = true;
1826 ins.has_blend_constant = true;
1827 emit_mir_instruction(ctx, ins);
1828 break;
1829 }
1830
1831 case nir_intrinsic_store_output:
1832 case nir_intrinsic_store_combined_output_pan:
1833 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1834
1835 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1836
1837 reg = nir_src_index(ctx, &instr->src[0]);
1838
1839 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1840 bool combined = instr->intrinsic ==
1841 nir_intrinsic_store_combined_output_pan;
1842
1843 const nir_variable *var;
1844 var = search_var(ctx->nir, nir_var_shader_out,
1845 nir_intrinsic_base(instr));
1846 assert(var);
1847
1848 /* Dual-source blend writeout is done by leaving the
1849 * value in r2 for the blend shader to use. */
1850 if (var->data.index) {
1851 if (instr->src[0].is_ssa) {
1852 emit_explicit_constant(ctx, reg, reg);
1853
1854 unsigned out = make_compiler_temp(ctx);
1855
1856 midgard_instruction ins = v_mov(reg, out);
1857 emit_mir_instruction(ctx, ins);
1858
1859 ctx->blend_src1 = out;
1860 } else {
1861 ctx->blend_src1 = reg;
1862 }
1863
1864 break;
1865 }
1866
1867 enum midgard_rt_id rt;
1868 if (var->data.location == FRAG_RESULT_COLOR)
1869 rt = MIDGARD_COLOR_RT0;
1870 else if (var->data.location >= FRAG_RESULT_DATA0)
1871 rt = MIDGARD_COLOR_RT0 + var->data.location -
1872 FRAG_RESULT_DATA0;
1873 else if (combined)
1874 rt = MIDGARD_ZS_RT;
1875 else
1876 assert(0);
1877
1878 unsigned reg_z = ~0, reg_s = ~0;
1879 if (combined) {
1880 unsigned writeout = nir_intrinsic_component(instr);
1881 if (writeout & PAN_WRITEOUT_Z)
1882 reg_z = nir_src_index(ctx, &instr->src[2]);
1883 if (writeout & PAN_WRITEOUT_S)
1884 reg_s = nir_src_index(ctx, &instr->src[3]);
1885 }
1886
1887 emit_fragment_store(ctx, reg, reg_z, reg_s, rt);
1888 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1889 assert(instr->intrinsic == nir_intrinsic_store_output);
1890
1891 /* We should have been vectorized, though we don't
1892 * currently check that st_vary is emitted only once
1893 * per slot (this is relevant, since there's not a mask
1894 * parameter available on the store [set to 0 by the
1895 * blob]). We do respect the component by adjusting the
1896 * swizzle. If this is a constant source, we'll need to
1897 * emit that explicitly. */
1898
1899 emit_explicit_constant(ctx, reg, reg);
1900
1901 unsigned dst_component = nir_intrinsic_component(instr);
1902 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1903
1904 midgard_instruction st = m_st_vary_32(reg, offset);
1905 st.load_store.arg_1 = 0x9E;
1906 st.load_store.arg_2 = 0x1E;
1907
1908 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1909 case nir_type_uint:
1910 case nir_type_bool:
1911 st.load_store.op = midgard_op_st_vary_32u;
1912 break;
1913 case nir_type_int:
1914 st.load_store.op = midgard_op_st_vary_32i;
1915 break;
1916 case nir_type_float:
1917 st.load_store.op = midgard_op_st_vary_32;
1918 break;
1919 default:
1920 unreachable("Attempted to store unknown type");
1921 break;
1922 }
1923
1924 /* nir_intrinsic_component(store_intr) encodes the
1925 * destination component start. Source component offset
1926 * adjustment is taken care of in
1927 * install_registers_instr(), when offset_swizzle() is
1928 * called.
1929 */
1930 unsigned src_component = COMPONENT_X;
1931
1932 assert(nr_comp > 0);
1933 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1934 st.swizzle[0][i] = src_component;
1935 if (i >= dst_component && i < dst_component + nr_comp - 1)
1936 src_component++;
1937 }
1938
1939 emit_mir_instruction(ctx, st);
1940 } else {
1941 DBG("Unknown store\n");
1942 assert(0);
1943 }
1944
1945 break;
1946
1947 /* Special case of store_output for lowered blend shaders */
1948 case nir_intrinsic_store_raw_output_pan:
1949 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1950 reg = nir_src_index(ctx, &instr->src[0]);
1951 emit_fragment_store(ctx, reg, ~0, ~0, ctx->blend_rt);
1952 break;
1953
1954 case nir_intrinsic_store_global:
1955 case nir_intrinsic_store_shared:
1956 reg = nir_src_index(ctx, &instr->src[0]);
1957 emit_explicit_constant(ctx, reg, reg);
1958
1959 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
1960 break;
1961
1962 case nir_intrinsic_load_ssbo_address:
1963 emit_sysval_read(ctx, &instr->instr, 1, 0);
1964 break;
1965
1966 case nir_intrinsic_get_buffer_size:
1967 emit_sysval_read(ctx, &instr->instr, 1, 8);
1968 break;
1969
1970 case nir_intrinsic_load_viewport_scale:
1971 case nir_intrinsic_load_viewport_offset:
1972 case nir_intrinsic_load_num_work_groups:
1973 case nir_intrinsic_load_sampler_lod_parameters_pan:
1974 emit_sysval_read(ctx, &instr->instr, 3, 0);
1975 break;
1976
1977 case nir_intrinsic_load_work_group_id:
1978 case nir_intrinsic_load_local_invocation_id:
1979 emit_compute_builtin(ctx, instr);
1980 break;
1981
1982 case nir_intrinsic_load_vertex_id:
1983 case nir_intrinsic_load_instance_id:
1984 emit_vertex_builtin(ctx, instr);
1985 break;
1986
1987 case nir_intrinsic_load_sample_id:
1988 emit_msaa_builtin(ctx, instr);
1989 break;
1990
1991 case nir_intrinsic_memory_barrier_buffer:
1992 case nir_intrinsic_memory_barrier_shared:
1993 break;
1994
1995 case nir_intrinsic_control_barrier:
1996 schedule_barrier(ctx);
1997 emit_control_barrier(ctx);
1998 schedule_barrier(ctx);
1999 break;
2000
2001 default:
2002 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
2003 assert(0);
2004 break;
2005 }
2006 }
2007
2008 static unsigned
2009 midgard_tex_format(enum glsl_sampler_dim dim)
2010 {
2011 switch (dim) {
2012 case GLSL_SAMPLER_DIM_1D:
2013 case GLSL_SAMPLER_DIM_BUF:
2014 return MALI_TEX_1D;
2015
2016 case GLSL_SAMPLER_DIM_2D:
2017 case GLSL_SAMPLER_DIM_MS:
2018 case GLSL_SAMPLER_DIM_EXTERNAL:
2019 case GLSL_SAMPLER_DIM_RECT:
2020 return MALI_TEX_2D;
2021
2022 case GLSL_SAMPLER_DIM_3D:
2023 return MALI_TEX_3D;
2024
2025 case GLSL_SAMPLER_DIM_CUBE:
2026 return MALI_TEX_CUBE;
2027
2028 default:
2029 DBG("Unknown sampler dim type\n");
2030 assert(0);
2031 return 0;
2032 }
2033 }
2034
2035 /* Tries to attach an explicit LOD or bias as a constant. Returns whether this
2036 * was successful */
2037
2038 static bool
2039 pan_attach_constant_bias(
2040 compiler_context *ctx,
2041 nir_src lod,
2042 midgard_texture_word *word)
2043 {
2044 /* To attach as constant, it has to *be* constant */
2045
2046 if (!nir_src_is_const(lod))
2047 return false;
2048
2049 float f = nir_src_as_float(lod);
2050
2051 /* Break into fixed-point */
2052 signed lod_int = f;
2053 float lod_frac = f - lod_int;
2054
2055 /* Carry over negative fractions */
2056 if (lod_frac < 0.0) {
2057 lod_int--;
2058 lod_frac += 1.0;
2059 }
2060
2061 /* Encode */
2062 word->bias = float_to_ubyte(lod_frac);
2063 word->bias_int = lod_int;
2064
2065 return true;
2066 }
2067
2068 static void
2069 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
2070 unsigned midgard_texop)
2071 {
2072 /* TODO */
2073 //assert (!instr->sampler);
2074
2075 int texture_index = instr->texture_index;
2076 int sampler_index = texture_index;
2077
2078 nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
2079 nir_alu_type dest_type = dest_base | nir_dest_bit_size(instr->dest);
2080
2081 midgard_instruction ins = {
2082 .type = TAG_TEXTURE_4,
2083 .mask = 0xF,
2084 .dest = nir_dest_index(&instr->dest),
2085 .src = { ~0, ~0, ~0, ~0 },
2086 .dest_type = dest_type,
2087 .swizzle = SWIZZLE_IDENTITY_4,
2088 .texture = {
2089 .op = midgard_texop,
2090 .format = midgard_tex_format(instr->sampler_dim),
2091 .texture_handle = texture_index,
2092 .sampler_handle = sampler_index,
2093 .shadow = instr->is_shadow,
2094 }
2095 };
2096
2097 if (instr->is_shadow && !instr->is_new_style_shadow)
2098 for (int i = 0; i < 4; ++i)
2099 ins.swizzle[0][i] = COMPONENT_X;
2100
2101 /* We may need a temporary for the coordinate */
2102
2103 bool needs_temp_coord =
2104 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
2105 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
2106 (instr->is_shadow);
2107
2108 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
2109
2110 for (unsigned i = 0; i < instr->num_srcs; ++i) {
2111 int index = nir_src_index(ctx, &instr->src[i].src);
2112 unsigned nr_components = nir_src_num_components(instr->src[i].src);
2113 unsigned sz = nir_src_bit_size(instr->src[i].src);
2114 nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
2115
2116 switch (instr->src[i].src_type) {
2117 case nir_tex_src_coord: {
2118 emit_explicit_constant(ctx, index, index);
2119
2120 unsigned coord_mask = mask_of(instr->coord_components);
2121
2122 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
2123
2124 if (flip_zw)
2125 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
2126
2127 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
2128 /* texelFetch is undefined on samplerCube */
2129 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
2130
2131 /* For cubemaps, we use a special ld/st op to
2132 * select the face and copy the xy into the
2133 * texture register */
2134
2135 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
2136 ld.src[1] = index;
2137 ld.src_types[1] = T;
2138 ld.mask = 0x3; /* xy */
2139 ld.load_store.arg_1 = 0x20;
2140 ld.swizzle[1][3] = COMPONENT_X;
2141 emit_mir_instruction(ctx, ld);
2142
2143 /* xyzw -> xyxx */
2144 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
2145 ins.swizzle[1][3] = COMPONENT_X;
2146 } else if (needs_temp_coord) {
2147 /* mov coord_temp, coords */
2148 midgard_instruction mov = v_mov(index, coords);
2149 mov.mask = coord_mask;
2150
2151 if (flip_zw)
2152 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
2153
2154 emit_mir_instruction(ctx, mov);
2155 } else {
2156 coords = index;
2157 }
2158
2159 ins.src[1] = coords;
2160 ins.src_types[1] = T;
2161
2162 /* Texelfetch coordinates uses all four elements
2163 * (xyz/index) regardless of texture dimensionality,
2164 * which means it's necessary to zero the unused
2165 * components to keep everything happy */
2166
2167 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
2168 /* mov index.zw, #0, or generalized */
2169 midgard_instruction mov =
2170 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
2171 mov.has_constants = true;
2172 mov.mask = coord_mask ^ 0xF;
2173 emit_mir_instruction(ctx, mov);
2174 }
2175
2176 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
2177 /* Array component in w but NIR wants it in z,
2178 * but if we have a temp coord we already fixed
2179 * that up */
2180
2181 if (nr_components == 3) {
2182 ins.swizzle[1][2] = COMPONENT_Z;
2183 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
2184 } else if (nr_components == 2) {
2185 ins.swizzle[1][2] =
2186 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
2187 ins.swizzle[1][3] = COMPONENT_X;
2188 } else
2189 unreachable("Invalid texture 2D components");
2190 }
2191
2192 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
2193 /* We zeroed */
2194 ins.swizzle[1][2] = COMPONENT_Z;
2195 ins.swizzle[1][3] = COMPONENT_W;
2196 }
2197
2198 break;
2199 }
2200
2201 case nir_tex_src_bias:
2202 case nir_tex_src_lod: {
2203 /* Try as a constant if we can */
2204
2205 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
2206 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
2207 break;
2208
2209 ins.texture.lod_register = true;
2210 ins.src[2] = index;
2211 ins.src_types[2] = T;
2212
2213 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
2214 ins.swizzle[2][c] = COMPONENT_X;
2215
2216 emit_explicit_constant(ctx, index, index);
2217
2218 break;
2219 };
2220
2221 case nir_tex_src_offset: {
2222 ins.texture.offset_register = true;
2223 ins.src[3] = index;
2224 ins.src_types[3] = T;
2225
2226 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
2227 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
2228
2229 emit_explicit_constant(ctx, index, index);
2230 break;
2231 };
2232
2233 case nir_tex_src_comparator:
2234 case nir_tex_src_ms_index: {
2235 unsigned comp = COMPONENT_Z;
2236
2237 /* mov coord_temp.foo, coords */
2238 midgard_instruction mov = v_mov(index, coords);
2239 mov.mask = 1 << comp;
2240
2241 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
2242 mov.swizzle[1][i] = COMPONENT_X;
2243
2244 emit_mir_instruction(ctx, mov);
2245 break;
2246 }
2247
2248 default: {
2249 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
2250 assert(0);
2251 }
2252 }
2253 }
2254
2255 emit_mir_instruction(ctx, ins);
2256 }
2257
2258 static void
2259 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
2260 {
2261 switch (instr->op) {
2262 case nir_texop_tex:
2263 case nir_texop_txb:
2264 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
2265 break;
2266 case nir_texop_txl:
2267 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
2268 break;
2269 case nir_texop_txf:
2270 case nir_texop_txf_ms:
2271 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
2272 break;
2273 case nir_texop_txs:
2274 emit_sysval_read(ctx, &instr->instr, 4, 0);
2275 break;
2276 default: {
2277 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
2278 assert(0);
2279 }
2280 }
2281 }
2282
2283 static void
2284 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
2285 {
2286 switch (instr->type) {
2287 case nir_jump_break: {
2288 /* Emit a branch out of the loop */
2289 struct midgard_instruction br = v_branch(false, false);
2290 br.branch.target_type = TARGET_BREAK;
2291 br.branch.target_break = ctx->current_loop_depth;
2292 emit_mir_instruction(ctx, br);
2293 break;
2294 }
2295
2296 default:
2297 DBG("Unknown jump type %d\n", instr->type);
2298 break;
2299 }
2300 }
2301
2302 static void
2303 emit_instr(compiler_context *ctx, struct nir_instr *instr)
2304 {
2305 switch (instr->type) {
2306 case nir_instr_type_load_const:
2307 emit_load_const(ctx, nir_instr_as_load_const(instr));
2308 break;
2309
2310 case nir_instr_type_intrinsic:
2311 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2312 break;
2313
2314 case nir_instr_type_alu:
2315 emit_alu(ctx, nir_instr_as_alu(instr));
2316 break;
2317
2318 case nir_instr_type_tex:
2319 emit_tex(ctx, nir_instr_as_tex(instr));
2320 break;
2321
2322 case nir_instr_type_jump:
2323 emit_jump(ctx, nir_instr_as_jump(instr));
2324 break;
2325
2326 case nir_instr_type_ssa_undef:
2327 /* Spurious */
2328 break;
2329
2330 default:
2331 DBG("Unhandled instruction type\n");
2332 break;
2333 }
2334 }
2335
2336
2337 /* ALU instructions can inline or embed constants, which decreases register
2338 * pressure and saves space. */
2339
2340 #define CONDITIONAL_ATTACH(idx) { \
2341 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2342 \
2343 if (entry) { \
2344 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2345 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2346 } \
2347 }
2348
2349 static void
2350 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2351 {
2352 mir_foreach_instr_in_block(block, alu) {
2353 /* Other instructions cannot inline constants */
2354 if (alu->type != TAG_ALU_4) continue;
2355 if (alu->compact_branch) continue;
2356
2357 /* If there is already a constant here, we can do nothing */
2358 if (alu->has_constants) continue;
2359
2360 CONDITIONAL_ATTACH(0);
2361
2362 if (!alu->has_constants) {
2363 CONDITIONAL_ATTACH(1)
2364 } else if (!alu->inline_constant) {
2365 /* Corner case: _two_ vec4 constants, for instance with a
2366 * csel. For this case, we can only use a constant
2367 * register for one, we'll have to emit a move for the
2368 * other. */
2369
2370 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2371 unsigned scratch = make_compiler_temp(ctx);
2372
2373 if (entry) {
2374 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2375 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2376
2377 /* Set the source */
2378 alu->src[1] = scratch;
2379
2380 /* Inject us -before- the last instruction which set r31 */
2381 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2382 }
2383 }
2384 }
2385 }
2386
2387 unsigned
2388 max_bitsize_for_alu(midgard_instruction *ins)
2389 {
2390 unsigned max_bitsize = 0;
2391 for (int i = 0; i < MIR_SRC_COUNT; i++) {
2392 if (ins->src[i] == ~0) continue;
2393 unsigned src_bitsize = nir_alu_type_get_type_size(ins->src_types[i]);
2394 max_bitsize = MAX2(src_bitsize, max_bitsize);
2395 }
2396 unsigned dst_bitsize = nir_alu_type_get_type_size(ins->dest_type);
2397 max_bitsize = MAX2(dst_bitsize, max_bitsize);
2398
2399 /* We don't have fp16 LUTs, so we'll want to emit code like:
2400 *
2401 * vlut.fsinr hr0, hr0
2402 *
2403 * where both input and output are 16-bit but the operation is carried
2404 * out in 32-bit
2405 */
2406
2407 switch (ins->op) {
2408 case midgard_alu_op_fsqrt:
2409 case midgard_alu_op_frcp:
2410 case midgard_alu_op_frsqrt:
2411 case midgard_alu_op_fsin:
2412 case midgard_alu_op_fcos:
2413 case midgard_alu_op_fexp2:
2414 case midgard_alu_op_flog2:
2415 max_bitsize = MAX2(max_bitsize, 32);
2416 break;
2417
2418 default:
2419 break;
2420 }
2421
2422 return max_bitsize;
2423 }
2424
2425 midgard_reg_mode
2426 reg_mode_for_bitsize(unsigned bitsize)
2427 {
2428 switch (bitsize) {
2429 /* use 16 pipe for 8 since we don't support vec16 yet */
2430 case 8:
2431 case 16:
2432 return midgard_reg_mode_16;
2433 case 32:
2434 return midgard_reg_mode_32;
2435 case 64:
2436 return midgard_reg_mode_64;
2437 default:
2438 unreachable("invalid bit size");
2439 }
2440 }
2441
2442 /* Midgard supports two types of constants, embedded constants (128-bit) and
2443 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2444 * constants can be demoted to inline constants, for space savings and
2445 * sometimes a performance boost */
2446
2447 static void
2448 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2449 {
2450 mir_foreach_instr_in_block(block, ins) {
2451 if (!ins->has_constants) continue;
2452 if (ins->has_inline_constant) continue;
2453
2454 /* Blend constants must not be inlined by definition */
2455 if (ins->has_blend_constant) continue;
2456
2457 unsigned max_bitsize = max_bitsize_for_alu(ins);
2458
2459 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2460 bool is_16 = max_bitsize == 16;
2461 bool is_32 = max_bitsize == 32;
2462
2463 if (!(is_16 || is_32))
2464 continue;
2465
2466 /* src1 cannot be an inline constant due to encoding
2467 * restrictions. So, if possible we try to flip the arguments
2468 * in that case */
2469
2470 int op = ins->op;
2471
2472 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
2473 alu_opcode_props[op].props & OP_COMMUTES) {
2474 mir_flip(ins);
2475 }
2476
2477 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2478 /* Component is from the swizzle. Take a nonzero component */
2479 assert(ins->mask);
2480 unsigned first_comp = ffs(ins->mask) - 1;
2481 unsigned component = ins->swizzle[1][first_comp];
2482
2483 /* Scale constant appropriately, if we can legally */
2484 int16_t scaled_constant = 0;
2485
2486 if (is_16) {
2487 scaled_constant = ins->constants.u16[component];
2488 } else if (midgard_is_integer_op(op)) {
2489 scaled_constant = ins->constants.u32[component];
2490
2491 /* Constant overflow after resize */
2492 if (scaled_constant != ins->constants.u32[component])
2493 continue;
2494 } else {
2495 float original = ins->constants.f32[component];
2496 scaled_constant = _mesa_float_to_half(original);
2497
2498 /* Check for loss of precision. If this is
2499 * mediump, we don't care, but for a highp
2500 * shader, we need to pay attention. NIR
2501 * doesn't yet tell us which mode we're in!
2502 * Practically this prevents most constants
2503 * from being inlined, sadly. */
2504
2505 float fp32 = _mesa_half_to_float(scaled_constant);
2506
2507 if (fp32 != original)
2508 continue;
2509 }
2510
2511 /* Should've been const folded */
2512 if (ins->src_abs[1] || ins->src_neg[1])
2513 continue;
2514
2515 /* Make sure that the constant is not itself a vector
2516 * by checking if all accessed values are the same. */
2517
2518 const midgard_constants *cons = &ins->constants;
2519 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2520
2521 bool is_vector = false;
2522 unsigned mask = effective_writemask(ins->op, ins->mask);
2523
2524 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2525 /* We only care if this component is actually used */
2526 if (!(mask & (1 << c)))
2527 continue;
2528
2529 uint32_t test = is_16 ?
2530 cons->u16[ins->swizzle[1][c]] :
2531 cons->u32[ins->swizzle[1][c]];
2532
2533 if (test != value) {
2534 is_vector = true;
2535 break;
2536 }
2537 }
2538
2539 if (is_vector)
2540 continue;
2541
2542 /* Get rid of the embedded constant */
2543 ins->has_constants = false;
2544 ins->src[1] = ~0;
2545 ins->has_inline_constant = true;
2546 ins->inline_constant = scaled_constant;
2547 }
2548 }
2549 }
2550
2551 /* Dead code elimination for branches at the end of a block - only one branch
2552 * per block is legal semantically */
2553
2554 static void
2555 midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2556 {
2557 bool branched = false;
2558
2559 mir_foreach_instr_in_block_safe(block, ins) {
2560 if (!midgard_is_branch_unit(ins->unit)) continue;
2561
2562 if (branched)
2563 mir_remove_instruction(ins);
2564
2565 branched = true;
2566 }
2567 }
2568
2569 /* We want to force the invert on AND/OR to the second slot to legalize into
2570 * iandnot/iornot. The relevant patterns are for AND (and OR respectively)
2571 *
2572 * ~a & #b = ~a & ~(#~b)
2573 * ~a & b = b & ~a
2574 */
2575
2576 static void
2577 midgard_legalize_invert(compiler_context *ctx, midgard_block *block)
2578 {
2579 mir_foreach_instr_in_block(block, ins) {
2580 if (ins->type != TAG_ALU_4) continue;
2581
2582 if (ins->op != midgard_alu_op_iand &&
2583 ins->op != midgard_alu_op_ior) continue;
2584
2585 if (ins->src_invert[1] || !ins->src_invert[0]) continue;
2586
2587 if (ins->has_inline_constant) {
2588 /* ~(#~a) = ~(~#a) = a, so valid, and forces both
2589 * inverts on */
2590 ins->inline_constant = ~ins->inline_constant;
2591 ins->src_invert[1] = true;
2592 } else {
2593 /* Flip to the right invert order. Note
2594 * has_inline_constant false by assumption on the
2595 * branch, so flipping makes sense. */
2596 mir_flip(ins);
2597 }
2598 }
2599 }
2600
2601 static unsigned
2602 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2603 {
2604 /* Loop to ourselves */
2605 midgard_instruction *br = ctx->writeout_branch[rt];
2606 struct midgard_instruction ins = v_branch(false, false);
2607 ins.writeout = br->writeout;
2608 ins.branch.target_block = ctx->block_count - 1;
2609 ins.constants.u32[0] = br->constants.u32[0];
2610 memcpy(&ins.src_types, &br->src_types, sizeof(ins.src_types));
2611 emit_mir_instruction(ctx, ins);
2612
2613 ctx->current_block->epilogue = true;
2614 schedule_barrier(ctx);
2615 return ins.branch.target_block;
2616 }
2617
2618 static midgard_block *
2619 emit_block_init(compiler_context *ctx)
2620 {
2621 midgard_block *this_block = ctx->after_block;
2622 ctx->after_block = NULL;
2623
2624 if (!this_block)
2625 this_block = create_empty_block(ctx);
2626
2627 list_addtail(&this_block->base.link, &ctx->blocks);
2628
2629 this_block->scheduled = false;
2630 ++ctx->block_count;
2631
2632 /* Set up current block */
2633 list_inithead(&this_block->base.instructions);
2634 ctx->current_block = this_block;
2635
2636 return this_block;
2637 }
2638
2639 static midgard_block *
2640 emit_block(compiler_context *ctx, nir_block *block)
2641 {
2642 midgard_block *this_block = emit_block_init(ctx);
2643
2644 nir_foreach_instr(instr, block) {
2645 emit_instr(ctx, instr);
2646 ++ctx->instruction_count;
2647 }
2648
2649 return this_block;
2650 }
2651
2652 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2653
2654 static void
2655 emit_if(struct compiler_context *ctx, nir_if *nif)
2656 {
2657 midgard_block *before_block = ctx->current_block;
2658
2659 /* Speculatively emit the branch, but we can't fill it in until later */
2660 bool inv = false;
2661 EMIT(branch, true, true);
2662 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2663 then_branch->src[0] = mir_get_branch_cond(&nif->condition, &inv);
2664 then_branch->src_types[0] = nir_type_uint32;
2665 then_branch->branch.invert_conditional = !inv;
2666
2667 /* Emit the two subblocks. */
2668 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2669 midgard_block *end_then_block = ctx->current_block;
2670
2671 /* Emit a jump from the end of the then block to the end of the else */
2672 EMIT(branch, false, false);
2673 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2674
2675 /* Emit second block, and check if it's empty */
2676
2677 int else_idx = ctx->block_count;
2678 int count_in = ctx->instruction_count;
2679 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2680 midgard_block *end_else_block = ctx->current_block;
2681 int after_else_idx = ctx->block_count;
2682
2683 /* Now that we have the subblocks emitted, fix up the branches */
2684
2685 assert(then_block);
2686 assert(else_block);
2687
2688 if (ctx->instruction_count == count_in) {
2689 /* The else block is empty, so don't emit an exit jump */
2690 mir_remove_instruction(then_exit);
2691 then_branch->branch.target_block = after_else_idx;
2692 } else {
2693 then_branch->branch.target_block = else_idx;
2694 then_exit->branch.target_block = after_else_idx;
2695 }
2696
2697 /* Wire up the successors */
2698
2699 ctx->after_block = create_empty_block(ctx);
2700
2701 pan_block_add_successor(&before_block->base, &then_block->base);
2702 pan_block_add_successor(&before_block->base, &else_block->base);
2703
2704 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2705 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2706 }
2707
2708 static void
2709 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2710 {
2711 /* Remember where we are */
2712 midgard_block *start_block = ctx->current_block;
2713
2714 /* Allocate a loop number, growing the current inner loop depth */
2715 int loop_idx = ++ctx->current_loop_depth;
2716
2717 /* Get index from before the body so we can loop back later */
2718 int start_idx = ctx->block_count;
2719
2720 /* Emit the body itself */
2721 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2722
2723 /* Branch back to loop back */
2724 struct midgard_instruction br_back = v_branch(false, false);
2725 br_back.branch.target_block = start_idx;
2726 emit_mir_instruction(ctx, br_back);
2727
2728 /* Mark down that branch in the graph. */
2729 pan_block_add_successor(&start_block->base, &loop_block->base);
2730 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2731
2732 /* Find the index of the block about to follow us (note: we don't add
2733 * one; blocks are 0-indexed so we get a fencepost problem) */
2734 int break_block_idx = ctx->block_count;
2735
2736 /* Fix up the break statements we emitted to point to the right place,
2737 * now that we can allocate a block number for them */
2738 ctx->after_block = create_empty_block(ctx);
2739
2740 mir_foreach_block_from(ctx, start_block, _block) {
2741 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2742 if (ins->type != TAG_ALU_4) continue;
2743 if (!ins->compact_branch) continue;
2744
2745 /* We found a branch -- check the type to see if we need to do anything */
2746 if (ins->branch.target_type != TARGET_BREAK) continue;
2747
2748 /* It's a break! Check if it's our break */
2749 if (ins->branch.target_break != loop_idx) continue;
2750
2751 /* Okay, cool, we're breaking out of this loop.
2752 * Rewrite from a break to a goto */
2753
2754 ins->branch.target_type = TARGET_GOTO;
2755 ins->branch.target_block = break_block_idx;
2756
2757 pan_block_add_successor(_block, &ctx->after_block->base);
2758 }
2759 }
2760
2761 /* Now that we've finished emitting the loop, free up the depth again
2762 * so we play nice with recursion amid nested loops */
2763 --ctx->current_loop_depth;
2764
2765 /* Dump loop stats */
2766 ++ctx->loop_count;
2767 }
2768
2769 static midgard_block *
2770 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2771 {
2772 midgard_block *start_block = NULL;
2773
2774 foreach_list_typed(nir_cf_node, node, node, list) {
2775 switch (node->type) {
2776 case nir_cf_node_block: {
2777 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2778
2779 if (!start_block)
2780 start_block = block;
2781
2782 break;
2783 }
2784
2785 case nir_cf_node_if:
2786 emit_if(ctx, nir_cf_node_as_if(node));
2787 break;
2788
2789 case nir_cf_node_loop:
2790 emit_loop(ctx, nir_cf_node_as_loop(node));
2791 break;
2792
2793 case nir_cf_node_function:
2794 assert(0);
2795 break;
2796 }
2797 }
2798
2799 return start_block;
2800 }
2801
2802 /* Due to lookahead, we need to report the first tag executed in the command
2803 * stream and in branch targets. An initial block might be empty, so iterate
2804 * until we find one that 'works' */
2805
2806 static unsigned
2807 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2808 {
2809 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2810
2811 mir_foreach_block_from(ctx, initial_block, _v) {
2812 midgard_block *v = (midgard_block *) _v;
2813 if (v->quadword_count) {
2814 midgard_bundle *initial_bundle =
2815 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2816
2817 return initial_bundle->tag;
2818 }
2819 }
2820
2821 /* Default to a tag 1 which will break from the shader, in case we jump
2822 * to the exit block (i.e. `return` in a compute shader) */
2823
2824 return 1;
2825 }
2826
2827 /* For each fragment writeout instruction, generate a writeout loop to
2828 * associate with it */
2829
2830 static void
2831 mir_add_writeout_loops(compiler_context *ctx)
2832 {
2833 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2834 midgard_instruction *br = ctx->writeout_branch[rt];
2835 if (!br) continue;
2836
2837 unsigned popped = br->branch.target_block;
2838 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2839 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2840 br->branch.target_type = TARGET_GOTO;
2841
2842 /* If we have more RTs, we'll need to restore back after our
2843 * loop terminates */
2844
2845 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2846 midgard_instruction uncond = v_branch(false, false);
2847 uncond.branch.target_block = popped;
2848 uncond.branch.target_type = TARGET_GOTO;
2849 emit_mir_instruction(ctx, uncond);
2850 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2851 schedule_barrier(ctx);
2852 } else {
2853 /* We're last, so we can terminate here */
2854 br->last_writeout = true;
2855 }
2856 }
2857 }
2858
2859 int
2860 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb, bool silent)
2861 {
2862 struct util_dynarray *compiled = &program->compiled;
2863
2864 midgard_debug = debug_get_option_midgard_debug();
2865
2866 /* TODO: Bound against what? */
2867 compiler_context *ctx = rzalloc(NULL, compiler_context);
2868
2869 ctx->nir = nir;
2870 ctx->stage = nir->info.stage;
2871 ctx->is_blend = is_blend;
2872 ctx->alpha_ref = program->alpha_ref;
2873 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2874 ctx->blend_input = ~0;
2875 ctx->blend_src1 = ~0;
2876 ctx->quirks = midgard_get_quirks(gpu_id);
2877
2878 /* Start off with a safe cutoff, allowing usage of all 16 work
2879 * registers. Later, we'll promote uniform reads to uniform registers
2880 * if we determine it is beneficial to do so */
2881 ctx->uniform_cutoff = 8;
2882
2883 /* Initialize at a global (not block) level hash tables */
2884
2885 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2886 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2887
2888 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2889 * (so we don't accidentally duplicate the epilogue since mesa/st has
2890 * messed with our I/O quite a bit already) */
2891
2892 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2893
2894 if (ctx->stage == MESA_SHADER_VERTEX) {
2895 NIR_PASS_V(nir, nir_lower_viewport_transform);
2896 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2897 }
2898
2899 NIR_PASS_V(nir, nir_lower_var_copies);
2900 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2901 NIR_PASS_V(nir, nir_split_var_copies);
2902 NIR_PASS_V(nir, nir_lower_var_copies);
2903 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2904 NIR_PASS_V(nir, nir_lower_var_copies);
2905 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2906
2907 unsigned pan_quirks = panfrost_get_quirks(gpu_id);
2908 NIR_PASS_V(nir, pan_lower_framebuffer,
2909 program->rt_formats, is_blend, pan_quirks);
2910
2911 NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in | nir_var_shader_out,
2912 glsl_type_size, 0);
2913 NIR_PASS_V(nir, nir_lower_ssbo);
2914 NIR_PASS_V(nir, midgard_nir_lower_zs_store);
2915
2916 /* Optimisation passes */
2917
2918 optimise_nir(nir, ctx->quirks, is_blend);
2919
2920 NIR_PASS_V(nir, midgard_nir_reorder_writeout);
2921
2922 if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent) {
2923 nir_print_shader(nir, stdout);
2924 }
2925
2926 /* Assign sysvals and counts, now that we're sure
2927 * (post-optimisation) */
2928
2929 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
2930 program->sysval_count = ctx->sysvals.sysval_count;
2931 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2932
2933 nir_foreach_function(func, nir) {
2934 if (!func->impl)
2935 continue;
2936
2937 list_inithead(&ctx->blocks);
2938 ctx->block_count = 0;
2939 ctx->func = func;
2940 ctx->already_emitted = calloc(BITSET_WORDS(func->impl->ssa_alloc), sizeof(BITSET_WORD));
2941
2942 if (nir->info.outputs_read && !is_blend) {
2943 emit_block_init(ctx);
2944
2945 struct midgard_instruction wait = v_branch(false, false);
2946 wait.branch.target_type = TARGET_TILEBUF_WAIT;
2947
2948 emit_mir_instruction(ctx, wait);
2949
2950 ++ctx->instruction_count;
2951 }
2952
2953 emit_cf_list(ctx, &func->impl->body);
2954 free(ctx->already_emitted);
2955 break; /* TODO: Multi-function shaders */
2956 }
2957
2958 util_dynarray_init(compiled, NULL);
2959
2960 /* Per-block lowering before opts */
2961
2962 mir_foreach_block(ctx, _block) {
2963 midgard_block *block = (midgard_block *) _block;
2964 inline_alu_constants(ctx, block);
2965 embedded_to_inline_constant(ctx, block);
2966 }
2967 /* MIR-level optimizations */
2968
2969 bool progress = false;
2970
2971 do {
2972 progress = false;
2973 progress |= midgard_opt_dead_code_eliminate(ctx);
2974
2975 mir_foreach_block(ctx, _block) {
2976 midgard_block *block = (midgard_block *) _block;
2977 progress |= midgard_opt_copy_prop(ctx, block);
2978 progress |= midgard_opt_combine_projection(ctx, block);
2979 progress |= midgard_opt_varying_projection(ctx, block);
2980 }
2981 } while (progress);
2982
2983 mir_foreach_block(ctx, _block) {
2984 midgard_block *block = (midgard_block *) _block;
2985 midgard_lower_derivatives(ctx, block);
2986 midgard_legalize_invert(ctx, block);
2987 midgard_cull_dead_branch(ctx, block);
2988 }
2989
2990 if (ctx->stage == MESA_SHADER_FRAGMENT)
2991 mir_add_writeout_loops(ctx);
2992
2993 /* Analyze now that the code is known but before scheduling creates
2994 * pipeline registers which are harder to track */
2995 mir_analyze_helper_terminate(ctx);
2996 mir_analyze_helper_requirements(ctx);
2997
2998 /* Schedule! */
2999 midgard_schedule_program(ctx);
3000 mir_ra(ctx);
3001
3002 /* Now that all the bundles are scheduled and we can calculate block
3003 * sizes, emit actual branch instructions rather than placeholders */
3004
3005 int br_block_idx = 0;
3006
3007 mir_foreach_block(ctx, _block) {
3008 midgard_block *block = (midgard_block *) _block;
3009 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3010 for (int c = 0; c < bundle->instruction_count; ++c) {
3011 midgard_instruction *ins = bundle->instructions[c];
3012
3013 if (!midgard_is_branch_unit(ins->unit)) continue;
3014
3015 /* Parse some basic branch info */
3016 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3017 bool is_conditional = ins->branch.conditional;
3018 bool is_inverted = ins->branch.invert_conditional;
3019 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3020 bool is_tilebuf_wait = ins->branch.target_type == TARGET_TILEBUF_WAIT;
3021 bool is_special = is_discard || is_tilebuf_wait;
3022 bool is_writeout = ins->writeout;
3023
3024 /* Determine the block we're jumping to */
3025 int target_number = ins->branch.target_block;
3026
3027 /* Report the destination tag */
3028 int dest_tag = is_discard ? 0 :
3029 is_tilebuf_wait ? bundle->tag :
3030 midgard_get_first_tag_from_block(ctx, target_number);
3031
3032 /* Count up the number of quadwords we're
3033 * jumping over = number of quadwords until
3034 * (br_block_idx, target_number) */
3035
3036 int quadword_offset = 0;
3037
3038 if (is_discard) {
3039 /* Ignored */
3040 } else if (is_tilebuf_wait) {
3041 quadword_offset = -1;
3042 } else if (target_number > br_block_idx) {
3043 /* Jump forward */
3044
3045 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3046 midgard_block *blk = mir_get_block(ctx, idx);
3047 assert(blk);
3048
3049 quadword_offset += blk->quadword_count;
3050 }
3051 } else {
3052 /* Jump backwards */
3053
3054 for (int idx = br_block_idx; idx >= target_number; --idx) {
3055 midgard_block *blk = mir_get_block(ctx, idx);
3056 assert(blk);
3057
3058 quadword_offset -= blk->quadword_count;
3059 }
3060 }
3061
3062 /* Unconditional extended branches (far jumps)
3063 * have issues, so we always use a conditional
3064 * branch, setting the condition to always for
3065 * unconditional. For compact unconditional
3066 * branches, cond isn't used so it doesn't
3067 * matter what we pick. */
3068
3069 midgard_condition cond =
3070 !is_conditional ? midgard_condition_always :
3071 is_inverted ? midgard_condition_false :
3072 midgard_condition_true;
3073
3074 midgard_jmp_writeout_op op =
3075 is_discard ? midgard_jmp_writeout_op_discard :
3076 is_tilebuf_wait ? midgard_jmp_writeout_op_tilebuffer_pending :
3077 is_writeout ? midgard_jmp_writeout_op_writeout :
3078 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3079 midgard_jmp_writeout_op_branch_cond;
3080
3081 if (!is_compact) {
3082 midgard_branch_extended branch =
3083 midgard_create_branch_extended(
3084 cond, op,
3085 dest_tag,
3086 quadword_offset);
3087
3088 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3089 } else if (is_conditional || is_special) {
3090 midgard_branch_cond branch = {
3091 .op = op,
3092 .dest_tag = dest_tag,
3093 .offset = quadword_offset,
3094 .cond = cond
3095 };
3096
3097 assert(branch.offset == quadword_offset);
3098
3099 memcpy(&ins->br_compact, &branch, sizeof(branch));
3100 } else {
3101 assert(op == midgard_jmp_writeout_op_branch_uncond);
3102
3103 midgard_branch_uncond branch = {
3104 .op = op,
3105 .dest_tag = dest_tag,
3106 .offset = quadword_offset,
3107 .unknown = 1
3108 };
3109
3110 assert(branch.offset == quadword_offset);
3111
3112 memcpy(&ins->br_compact, &branch, sizeof(branch));
3113 }
3114 }
3115 }
3116
3117 ++br_block_idx;
3118 }
3119
3120 /* Emit flat binary from the instruction arrays. Iterate each block in
3121 * sequence. Save instruction boundaries such that lookahead tags can
3122 * be assigned easily */
3123
3124 /* Cache _all_ bundles in source order for lookahead across failed branches */
3125
3126 int bundle_count = 0;
3127 mir_foreach_block(ctx, _block) {
3128 midgard_block *block = (midgard_block *) _block;
3129 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3130 }
3131 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3132 int bundle_idx = 0;
3133 mir_foreach_block(ctx, _block) {
3134 midgard_block *block = (midgard_block *) _block;
3135 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3136 source_order_bundles[bundle_idx++] = bundle;
3137 }
3138 }
3139
3140 int current_bundle = 0;
3141
3142 /* Midgard prefetches instruction types, so during emission we
3143 * need to lookahead. Unless this is the last instruction, in
3144 * which we return 1. */
3145
3146 mir_foreach_block(ctx, _block) {
3147 midgard_block *block = (midgard_block *) _block;
3148 mir_foreach_bundle_in_block(block, bundle) {
3149 int lookahead = 1;
3150
3151 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
3152 lookahead = source_order_bundles[current_bundle + 1]->tag;
3153
3154 emit_binary_bundle(ctx, block, bundle, compiled, lookahead);
3155 ++current_bundle;
3156 }
3157
3158 /* TODO: Free deeper */
3159 //util_dynarray_fini(&block->instructions);
3160 }
3161
3162 free(source_order_bundles);
3163
3164 /* Report the very first tag executed */
3165 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3166
3167 /* Deal with off-by-one related to the fencepost problem */
3168 program->work_register_count = ctx->work_registers + 1;
3169 program->uniform_cutoff = ctx->uniform_cutoff;
3170
3171 program->blend_patch_offset = ctx->blend_constant_offset;
3172 program->tls_size = ctx->tls_size;
3173
3174 if ((midgard_debug & MIDGARD_DBG_SHADERS) && !silent)
3175 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
3176
3177 if ((midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) && !silent) {
3178 unsigned nr_bundles = 0, nr_ins = 0;
3179
3180 /* Count instructions and bundles */
3181
3182 mir_foreach_block(ctx, _block) {
3183 midgard_block *block = (midgard_block *) _block;
3184 nr_bundles += util_dynarray_num_elements(
3185 &block->bundles, midgard_bundle);
3186
3187 mir_foreach_bundle_in_block(block, bun)
3188 nr_ins += bun->instruction_count;
3189 }
3190
3191 /* Calculate thread count. There are certain cutoffs by
3192 * register count for thread count */
3193
3194 unsigned nr_registers = program->work_register_count;
3195
3196 unsigned nr_threads =
3197 (nr_registers <= 4) ? 4 :
3198 (nr_registers <= 8) ? 2 :
3199 1;
3200
3201 /* Dump stats */
3202
3203 fprintf(stderr, "shader%d - %s shader: "
3204 "%u inst, %u bundles, %u quadwords, "
3205 "%u registers, %u threads, %u loops, "
3206 "%u:%u spills:fills\n",
3207 SHADER_DB_COUNT++,
3208 ctx->is_blend ? "PAN_SHADER_BLEND" :
3209 gl_shader_stage_name(ctx->stage),
3210 nr_ins, nr_bundles, ctx->quadword_count,
3211 nr_registers, nr_threads,
3212 ctx->loop_count,
3213 ctx->spills, ctx->fills);
3214 }
3215
3216 ralloc_free(ctx);
3217
3218 return 0;
3219 }