Move compiler.h and imports.h/c from src/mesa/main into src/util
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "util/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51 #include "midgard_quirks.h"
52
53 #include "disassemble.h"
54
55 static const struct debug_named_value debug_options[] = {
56 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
57 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
58 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
59 DEBUG_NAMED_VALUE_END
60 };
61
62 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
63
64 unsigned SHADER_DB_COUNT = 0;
65
66 int midgard_debug = 0;
67
68 #define DBG(fmt, ...) \
69 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
70 fprintf(stderr, "%s:%d: "fmt, \
71 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
72 static midgard_block *
73 create_empty_block(compiler_context *ctx)
74 {
75 midgard_block *blk = rzalloc(ctx, midgard_block);
76
77 blk->base.predecessors = _mesa_set_create(blk,
78 _mesa_hash_pointer,
79 _mesa_key_pointer_equal);
80
81 blk->base.name = ctx->block_source_count++;
82
83 return blk;
84 }
85
86 static void
87 schedule_barrier(compiler_context *ctx)
88 {
89 midgard_block *temp = ctx->after_block;
90 ctx->after_block = create_empty_block(ctx);
91 ctx->block_count++;
92 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
93 list_inithead(&ctx->after_block->base.instructions);
94 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
95 ctx->current_block = ctx->after_block;
96 ctx->after_block = temp;
97 }
98
99 /* Helpers to generate midgard_instruction's using macro magic, since every
100 * driver seems to do it that way */
101
102 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
103
104 #define M_LOAD_STORE(name, store) \
105 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
106 midgard_instruction i = { \
107 .type = TAG_LOAD_STORE_4, \
108 .mask = 0xF, \
109 .dest = ~0, \
110 .src = { ~0, ~0, ~0, ~0 }, \
111 .swizzle = SWIZZLE_IDENTITY_4, \
112 .load_store = { \
113 .op = midgard_op_##name, \
114 .address = address \
115 } \
116 }; \
117 \
118 if (store) \
119 i.src[0] = ssa; \
120 else \
121 i.dest = ssa; \
122 \
123 return i; \
124 }
125
126 #define M_LOAD(name) M_LOAD_STORE(name, false)
127 #define M_STORE(name) M_LOAD_STORE(name, true)
128
129 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
130 * the corresponding Midgard source */
131
132 static midgard_vector_alu_src
133 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
134 bool half, bool sext)
135 {
136 /* Figure out how many components there are so we can adjust.
137 * Specifically we want to broadcast the last channel so things like
138 * ball2/3 work.
139 */
140
141 if (broadcast_count && src) {
142 uint8_t last_component = src->swizzle[broadcast_count - 1];
143
144 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
145 src->swizzle[c] = last_component;
146 }
147 }
148
149 midgard_vector_alu_src alu_src = {
150 .rep_low = 0,
151 .rep_high = 0,
152 .half = half
153 };
154
155 if (is_int) {
156 alu_src.mod = midgard_int_normal;
157
158 /* Sign/zero-extend if needed */
159
160 if (half) {
161 alu_src.mod = sext ?
162 midgard_int_sign_extend
163 : midgard_int_zero_extend;
164 }
165
166 /* These should have been lowered away */
167 if (src)
168 assert(!(src->abs || src->negate));
169 } else {
170 if (src)
171 alu_src.mod = (src->abs << 0) | (src->negate << 1);
172 }
173
174 return alu_src;
175 }
176
177 /* load/store instructions have both 32-bit and 16-bit variants, depending on
178 * whether we are using vectors composed of highp or mediump. At the moment, we
179 * don't support half-floats -- this requires changes in other parts of the
180 * compiler -- therefore the 16-bit versions are commented out. */
181
182 //M_LOAD(ld_attr_16);
183 M_LOAD(ld_attr_32);
184 //M_LOAD(ld_vary_16);
185 M_LOAD(ld_vary_32);
186 M_LOAD(ld_ubo_int4);
187 M_LOAD(ld_int4);
188 M_STORE(st_int4);
189 M_LOAD(ld_color_buffer_32u);
190 //M_STORE(st_vary_16);
191 M_STORE(st_vary_32);
192 M_LOAD(ld_cubemap_coords);
193 M_LOAD(ld_compute_id);
194
195 static midgard_instruction
196 v_branch(bool conditional, bool invert)
197 {
198 midgard_instruction ins = {
199 .type = TAG_ALU_4,
200 .unit = ALU_ENAB_BRANCH,
201 .compact_branch = true,
202 .branch = {
203 .conditional = conditional,
204 .invert_conditional = invert
205 },
206 .dest = ~0,
207 .src = { ~0, ~0, ~0, ~0 },
208 };
209
210 return ins;
211 }
212
213 static midgard_branch_extended
214 midgard_create_branch_extended( midgard_condition cond,
215 midgard_jmp_writeout_op op,
216 unsigned dest_tag,
217 signed quadword_offset)
218 {
219 /* The condition code is actually a LUT describing a function to
220 * combine multiple condition codes. However, we only support a single
221 * condition code at the moment, so we just duplicate over a bunch of
222 * times. */
223
224 uint16_t duplicated_cond =
225 (cond << 14) |
226 (cond << 12) |
227 (cond << 10) |
228 (cond << 8) |
229 (cond << 6) |
230 (cond << 4) |
231 (cond << 2) |
232 (cond << 0);
233
234 midgard_branch_extended branch = {
235 .op = op,
236 .dest_tag = dest_tag,
237 .offset = quadword_offset,
238 .cond = duplicated_cond
239 };
240
241 return branch;
242 }
243
244 static void
245 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
246 {
247 ins->has_constants = true;
248 memcpy(&ins->constants, constants, 16);
249 }
250
251 static int
252 glsl_type_size(const struct glsl_type *type, bool bindless)
253 {
254 return glsl_count_attribute_slots(type, false);
255 }
256
257 /* Lower fdot2 to a vector multiplication followed by channel addition */
258 static void
259 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
260 {
261 if (alu->op != nir_op_fdot2)
262 return;
263
264 b->cursor = nir_before_instr(&alu->instr);
265
266 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
267 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
268
269 nir_ssa_def *product = nir_fmul(b, src0, src1);
270
271 nir_ssa_def *sum = nir_fadd(b,
272 nir_channel(b, product, 0),
273 nir_channel(b, product, 1));
274
275 /* Replace the fdot2 with this sum */
276 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
277 }
278
279 static bool
280 midgard_nir_lower_fdot2(nir_shader *shader)
281 {
282 bool progress = false;
283
284 nir_foreach_function(function, shader) {
285 if (!function->impl) continue;
286
287 nir_builder _b;
288 nir_builder *b = &_b;
289 nir_builder_init(b, function->impl);
290
291 nir_foreach_block(block, function->impl) {
292 nir_foreach_instr_safe(instr, block) {
293 if (instr->type != nir_instr_type_alu) continue;
294
295 nir_alu_instr *alu = nir_instr_as_alu(instr);
296 midgard_nir_lower_fdot2_body(b, alu);
297
298 progress |= true;
299 }
300 }
301
302 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
303
304 }
305
306 return progress;
307 }
308
309 /* Midgard can't write depth and stencil separately. It has to happen in a
310 * single store operation containing both. Let's add a panfrost specific
311 * intrinsic and turn all depth/stencil stores into a packed depth+stencil
312 * one.
313 */
314 static bool
315 midgard_nir_lower_zs_store(nir_shader *nir)
316 {
317 if (nir->info.stage != MESA_SHADER_FRAGMENT)
318 return false;
319
320 nir_variable *z_var = NULL, *s_var = NULL;
321
322 nir_foreach_variable(var, &nir->outputs) {
323 if (var->data.location == FRAG_RESULT_DEPTH)
324 z_var = var;
325 else if (var->data.location == FRAG_RESULT_STENCIL)
326 s_var = var;
327 }
328
329 if (!z_var && !s_var)
330 return false;
331
332 bool progress = false;
333
334 nir_foreach_function(function, nir) {
335 if (!function->impl) continue;
336
337 nir_intrinsic_instr *z_store = NULL, *s_store = NULL, *last_store = NULL;
338
339 nir_foreach_block(block, function->impl) {
340 nir_foreach_instr_safe(instr, block) {
341 if (instr->type != nir_instr_type_intrinsic)
342 continue;
343
344 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
345 if (intr->intrinsic != nir_intrinsic_store_output)
346 continue;
347
348 if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
349 assert(!z_store);
350 z_store = intr;
351 last_store = intr;
352 }
353
354 if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
355 assert(!s_store);
356 s_store = intr;
357 last_store = intr;
358 }
359 }
360 }
361
362 if (!z_store && !s_store) continue;
363
364 nir_builder b;
365 nir_builder_init(&b, function->impl);
366
367 b.cursor = nir_before_instr(&last_store->instr);
368
369 nir_ssa_def *zs_store_src;
370
371 if (z_store && s_store) {
372 nir_ssa_def *srcs[2] = {
373 nir_ssa_for_src(&b, z_store->src[0], 1),
374 nir_ssa_for_src(&b, s_store->src[0], 1),
375 };
376
377 zs_store_src = nir_vec(&b, srcs, 2);
378 } else {
379 zs_store_src = nir_ssa_for_src(&b, last_store->src[0], 1);
380 }
381
382 nir_intrinsic_instr *zs_store;
383
384 zs_store = nir_intrinsic_instr_create(b.shader,
385 nir_intrinsic_store_zs_output_pan);
386 zs_store->src[0] = nir_src_for_ssa(zs_store_src);
387 zs_store->num_components = z_store && s_store ? 2 : 1;
388 nir_intrinsic_set_component(zs_store, z_store ? 0 : 1);
389
390 /* Replace the Z and S store by a ZS store */
391 nir_builder_instr_insert(&b, &zs_store->instr);
392
393 if (z_store)
394 nir_instr_remove(&z_store->instr);
395
396 if (s_store)
397 nir_instr_remove(&s_store->instr);
398
399 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
400 progress = true;
401 }
402
403 return progress;
404 }
405
406 /* Flushes undefined values to zero */
407
408 static void
409 optimise_nir(nir_shader *nir, unsigned quirks)
410 {
411 bool progress;
412 unsigned lower_flrp =
413 (nir->options->lower_flrp16 ? 16 : 0) |
414 (nir->options->lower_flrp32 ? 32 : 0) |
415 (nir->options->lower_flrp64 ? 64 : 0);
416
417 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
418 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
419
420 nir_lower_tex_options lower_tex_options = {
421 .lower_txs_lod = true,
422 .lower_txp = ~0,
423 .lower_tex_without_implicit_lod =
424 (quirks & MIDGARD_EXPLICIT_LOD),
425
426 /* TODO: we have native gradient.. */
427 .lower_txd = true,
428 };
429
430 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
431
432 /* Must lower fdot2 after tex is lowered */
433 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
434
435 /* T720 is broken. */
436
437 if (quirks & MIDGARD_BROKEN_LOD)
438 NIR_PASS_V(nir, midgard_nir_lod_errata);
439
440 do {
441 progress = false;
442
443 NIR_PASS(progress, nir, nir_lower_var_copies);
444 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
445
446 NIR_PASS(progress, nir, nir_copy_prop);
447 NIR_PASS(progress, nir, nir_opt_remove_phis);
448 NIR_PASS(progress, nir, nir_opt_dce);
449 NIR_PASS(progress, nir, nir_opt_dead_cf);
450 NIR_PASS(progress, nir, nir_opt_cse);
451 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
452 NIR_PASS(progress, nir, nir_opt_algebraic);
453 NIR_PASS(progress, nir, nir_opt_constant_folding);
454
455 if (lower_flrp != 0) {
456 bool lower_flrp_progress = false;
457 NIR_PASS(lower_flrp_progress,
458 nir,
459 nir_lower_flrp,
460 lower_flrp,
461 false /* always_precise */,
462 nir->options->lower_ffma);
463 if (lower_flrp_progress) {
464 NIR_PASS(progress, nir,
465 nir_opt_constant_folding);
466 progress = true;
467 }
468
469 /* Nothing should rematerialize any flrps, so we only
470 * need to do this lowering once.
471 */
472 lower_flrp = 0;
473 }
474
475 NIR_PASS(progress, nir, nir_opt_undef);
476 NIR_PASS(progress, nir, nir_undef_to_zero);
477
478 NIR_PASS(progress, nir, nir_opt_loop_unroll,
479 nir_var_shader_in |
480 nir_var_shader_out |
481 nir_var_function_temp);
482
483 NIR_PASS(progress, nir, nir_opt_vectorize);
484 } while (progress);
485
486 /* Must be run at the end to prevent creation of fsin/fcos ops */
487 NIR_PASS(progress, nir, midgard_nir_scale_trig);
488
489 do {
490 progress = false;
491
492 NIR_PASS(progress, nir, nir_opt_dce);
493 NIR_PASS(progress, nir, nir_opt_algebraic);
494 NIR_PASS(progress, nir, nir_opt_constant_folding);
495 NIR_PASS(progress, nir, nir_copy_prop);
496 } while (progress);
497
498 NIR_PASS(progress, nir, nir_opt_algebraic_late);
499
500 /* We implement booleans as 32-bit 0/~0 */
501 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
502
503 /* Now that booleans are lowered, we can run out late opts */
504 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
505
506 /* Lower mods for float ops only. Integer ops don't support modifiers
507 * (saturate doesn't make sense on integers, neg/abs require dedicated
508 * instructions) */
509
510 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
511 NIR_PASS(progress, nir, nir_copy_prop);
512 NIR_PASS(progress, nir, nir_opt_dce);
513
514 /* Take us out of SSA */
515 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
516 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
517
518 /* We are a vector architecture; write combine where possible */
519 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
520 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
521
522 NIR_PASS(progress, nir, nir_opt_dce);
523 }
524
525 /* Do not actually emit a load; instead, cache the constant for inlining */
526
527 static void
528 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
529 {
530 nir_ssa_def def = instr->def;
531
532 midgard_constants *consts = rzalloc(NULL, midgard_constants);
533
534 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
535
536 #define RAW_CONST_COPY(bits) \
537 nir_const_value_to_array(consts->u##bits, instr->value, \
538 instr->def.num_components, u##bits)
539
540 switch (instr->def.bit_size) {
541 case 64:
542 RAW_CONST_COPY(64);
543 break;
544 case 32:
545 RAW_CONST_COPY(32);
546 break;
547 case 16:
548 RAW_CONST_COPY(16);
549 break;
550 case 8:
551 RAW_CONST_COPY(8);
552 break;
553 default:
554 unreachable("Invalid bit_size for load_const instruction\n");
555 }
556
557 /* Shifted for SSA, +1 for off-by-one */
558 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
559 }
560
561 /* Normally constants are embedded implicitly, but for I/O and such we have to
562 * explicitly emit a move with the constant source */
563
564 static void
565 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
566 {
567 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
568
569 if (constant_value) {
570 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
571 attach_constants(ctx, &ins, constant_value, node + 1);
572 emit_mir_instruction(ctx, ins);
573 }
574 }
575
576 static bool
577 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
578 {
579 unsigned comp = src->swizzle[0];
580
581 for (unsigned c = 1; c < nr_components; ++c) {
582 if (src->swizzle[c] != comp)
583 return true;
584 }
585
586 return false;
587 }
588
589 #define ALU_CASE(nir, _op) \
590 case nir_op_##nir: \
591 op = midgard_alu_op_##_op; \
592 assert(src_bitsize == dst_bitsize); \
593 break;
594
595 #define ALU_CASE_BCAST(nir, _op, count) \
596 case nir_op_##nir: \
597 op = midgard_alu_op_##_op; \
598 broadcast_swizzle = count; \
599 assert(src_bitsize == dst_bitsize); \
600 break;
601 static bool
602 nir_is_fzero_constant(nir_src src)
603 {
604 if (!nir_src_is_const(src))
605 return false;
606
607 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
608 if (nir_src_comp_as_float(src, c) != 0.0)
609 return false;
610 }
611
612 return true;
613 }
614
615 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
616 * special treatment override this anyway. */
617
618 static midgard_reg_mode
619 reg_mode_for_nir(nir_alu_instr *instr)
620 {
621 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
622
623 switch (src_bitsize) {
624 case 8:
625 return midgard_reg_mode_8;
626 case 16:
627 return midgard_reg_mode_16;
628 case 32:
629 return midgard_reg_mode_32;
630 case 64:
631 return midgard_reg_mode_64;
632 default:
633 unreachable("Invalid bit size");
634 }
635 }
636
637 static void
638 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
639 {
640 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
641 * is handled elsewhere */
642
643 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
644 midgard_emit_derivatives(ctx, instr);
645 return;
646 }
647
648 bool is_ssa = instr->dest.dest.is_ssa;
649
650 unsigned dest = nir_dest_index(&instr->dest.dest);
651 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
652 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
653
654 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
655 * supported. A few do not and are commented for now. Also, there are a
656 * number of NIR ops which Midgard does not support and need to be
657 * lowered, also TODO. This switch block emits the opcode and calling
658 * convention of the Midgard instruction; actual packing is done in
659 * emit_alu below */
660
661 unsigned op;
662
663 /* Number of components valid to check for the instruction (the rest
664 * will be forced to the last), or 0 to use as-is. Relevant as
665 * ball-type instructions have a channel count in NIR but are all vec4
666 * in Midgard */
667
668 unsigned broadcast_swizzle = 0;
669
670 /* What register mode should we operate in? */
671 midgard_reg_mode reg_mode =
672 reg_mode_for_nir(instr);
673
674 /* Do we need a destination override? Used for inline
675 * type conversion */
676
677 midgard_dest_override dest_override =
678 midgard_dest_override_none;
679
680 /* Should we use a smaller respective source and sign-extend? */
681
682 bool half_1 = false, sext_1 = false;
683 bool half_2 = false, sext_2 = false;
684
685 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
686 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
687
688 switch (instr->op) {
689 ALU_CASE(fadd, fadd);
690 ALU_CASE(fmul, fmul);
691 ALU_CASE(fmin, fmin);
692 ALU_CASE(fmax, fmax);
693 ALU_CASE(imin, imin);
694 ALU_CASE(imax, imax);
695 ALU_CASE(umin, umin);
696 ALU_CASE(umax, umax);
697 ALU_CASE(ffloor, ffloor);
698 ALU_CASE(fround_even, froundeven);
699 ALU_CASE(ftrunc, ftrunc);
700 ALU_CASE(fceil, fceil);
701 ALU_CASE(fdot3, fdot3);
702 ALU_CASE(fdot4, fdot4);
703 ALU_CASE(iadd, iadd);
704 ALU_CASE(isub, isub);
705 ALU_CASE(imul, imul);
706
707 /* Zero shoved as second-arg */
708 ALU_CASE(iabs, iabsdiff);
709
710 ALU_CASE(mov, imov);
711
712 ALU_CASE(feq32, feq);
713 ALU_CASE(fne32, fne);
714 ALU_CASE(flt32, flt);
715 ALU_CASE(ieq32, ieq);
716 ALU_CASE(ine32, ine);
717 ALU_CASE(ilt32, ilt);
718 ALU_CASE(ult32, ult);
719
720 /* We don't have a native b2f32 instruction. Instead, like many
721 * GPUs, we exploit booleans as 0/~0 for false/true, and
722 * correspondingly AND
723 * by 1.0 to do the type conversion. For the moment, prime us
724 * to emit:
725 *
726 * iand [whatever], #0
727 *
728 * At the end of emit_alu (as MIR), we'll fix-up the constant
729 */
730
731 ALU_CASE(b2f32, iand);
732 ALU_CASE(b2i32, iand);
733
734 /* Likewise, we don't have a dedicated f2b32 instruction, but
735 * we can do a "not equal to 0.0" test. */
736
737 ALU_CASE(f2b32, fne);
738 ALU_CASE(i2b32, ine);
739
740 ALU_CASE(frcp, frcp);
741 ALU_CASE(frsq, frsqrt);
742 ALU_CASE(fsqrt, fsqrt);
743 ALU_CASE(fexp2, fexp2);
744 ALU_CASE(flog2, flog2);
745
746 ALU_CASE(f2i64, f2i_rtz);
747 ALU_CASE(f2u64, f2u_rtz);
748 ALU_CASE(i2f64, i2f_rtz);
749 ALU_CASE(u2f64, u2f_rtz);
750
751 ALU_CASE(f2i32, f2i_rtz);
752 ALU_CASE(f2u32, f2u_rtz);
753 ALU_CASE(i2f32, i2f_rtz);
754 ALU_CASE(u2f32, u2f_rtz);
755
756 ALU_CASE(f2i16, f2i_rtz);
757 ALU_CASE(f2u16, f2u_rtz);
758 ALU_CASE(i2f16, i2f_rtz);
759 ALU_CASE(u2f16, u2f_rtz);
760
761 ALU_CASE(fsin, fsin);
762 ALU_CASE(fcos, fcos);
763
764 /* We'll set invert */
765 ALU_CASE(inot, imov);
766 ALU_CASE(iand, iand);
767 ALU_CASE(ior, ior);
768 ALU_CASE(ixor, ixor);
769 ALU_CASE(ishl, ishl);
770 ALU_CASE(ishr, iasr);
771 ALU_CASE(ushr, ilsr);
772
773 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
774 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
775 ALU_CASE(b32all_fequal4, fball_eq);
776
777 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
778 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
779 ALU_CASE(b32any_fnequal4, fbany_neq);
780
781 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
782 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
783 ALU_CASE(b32all_iequal4, iball_eq);
784
785 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
786 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
787 ALU_CASE(b32any_inequal4, ibany_neq);
788
789 /* Source mods will be shoved in later */
790 ALU_CASE(fabs, fmov);
791 ALU_CASE(fneg, fmov);
792 ALU_CASE(fsat, fmov);
793
794 /* For size conversion, we use a move. Ideally though we would squash
795 * these ops together; maybe that has to happen after in NIR as part of
796 * propagation...? An earlier algebraic pass ensured we step down by
797 * only / exactly one size. If stepping down, we use a dest override to
798 * reduce the size; if stepping up, we use a larger-sized move with a
799 * half source and a sign/zero-extension modifier */
800
801 case nir_op_i2i8:
802 case nir_op_i2i16:
803 case nir_op_i2i32:
804 case nir_op_i2i64:
805 /* If we end up upscale, we'll need a sign-extend on the
806 * operand (the second argument) */
807
808 sext_2 = true;
809 /* fallthrough */
810 case nir_op_u2u8:
811 case nir_op_u2u16:
812 case nir_op_u2u32:
813 case nir_op_u2u64:
814 case nir_op_f2f16:
815 case nir_op_f2f32:
816 case nir_op_f2f64: {
817 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
818 instr->op == nir_op_f2f64)
819 op = midgard_alu_op_fmov;
820 else
821 op = midgard_alu_op_imov;
822
823 if (dst_bitsize == (src_bitsize * 2)) {
824 /* Converting up */
825 half_2 = true;
826
827 /* Use a greater register mode */
828 reg_mode++;
829 } else if (src_bitsize == (dst_bitsize * 2)) {
830 /* Converting down */
831 dest_override = midgard_dest_override_lower;
832 }
833
834 break;
835 }
836
837 /* For greater-or-equal, we lower to less-or-equal and flip the
838 * arguments */
839
840 case nir_op_fge:
841 case nir_op_fge32:
842 case nir_op_ige32:
843 case nir_op_uge32: {
844 op =
845 instr->op == nir_op_fge ? midgard_alu_op_fle :
846 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
847 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
848 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
849 0;
850
851 /* Swap via temporary */
852 nir_alu_src temp = instr->src[1];
853 instr->src[1] = instr->src[0];
854 instr->src[0] = temp;
855
856 break;
857 }
858
859 case nir_op_b32csel: {
860 /* Midgard features both fcsel and icsel, depending on
861 * the type of the arguments/output. However, as long
862 * as we're careful we can _always_ use icsel and
863 * _never_ need fcsel, since the latter does additional
864 * floating-point-specific processing whereas the
865 * former just moves bits on the wire. It's not obvious
866 * why these are separate opcodes, save for the ability
867 * to do things like sat/pos/abs/neg for free */
868
869 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
870 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
871
872 /* The condition is the first argument; move the other
873 * arguments up one to be a binary instruction for
874 * Midgard with the condition last */
875
876 nir_alu_src temp = instr->src[2];
877
878 instr->src[2] = instr->src[0];
879 instr->src[0] = instr->src[1];
880 instr->src[1] = temp;
881
882 break;
883 }
884
885 default:
886 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
887 assert(0);
888 return;
889 }
890
891 /* Midgard can perform certain modifiers on output of an ALU op */
892 unsigned outmod;
893
894 if (midgard_is_integer_out_op(op)) {
895 outmod = midgard_outmod_int_wrap;
896 } else {
897 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
898 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
899 }
900
901 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
902
903 if (instr->op == nir_op_fmax) {
904 if (nir_is_fzero_constant(instr->src[0].src)) {
905 op = midgard_alu_op_fmov;
906 nr_inputs = 1;
907 outmod = midgard_outmod_pos;
908 instr->src[0] = instr->src[1];
909 } else if (nir_is_fzero_constant(instr->src[1].src)) {
910 op = midgard_alu_op_fmov;
911 nr_inputs = 1;
912 outmod = midgard_outmod_pos;
913 }
914 }
915
916 /* Fetch unit, quirks, etc information */
917 unsigned opcode_props = alu_opcode_props[op].props;
918 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
919
920 /* src0 will always exist afaik, but src1 will not for 1-argument
921 * instructions. The latter can only be fetched if the instruction
922 * needs it, or else we may segfault. */
923
924 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
925 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
926 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
927 assert(nr_inputs <= 3);
928
929 /* Rather than use the instruction generation helpers, we do it
930 * ourselves here to avoid the mess */
931
932 midgard_instruction ins = {
933 .type = TAG_ALU_4,
934 .src = {
935 quirk_flipped_r24 ? ~0 : src0,
936 quirk_flipped_r24 ? src0 : src1,
937 src2,
938 ~0
939 },
940 .dest = dest,
941 };
942
943 nir_alu_src *nirmods[3] = { NULL };
944
945 if (nr_inputs >= 2) {
946 nirmods[0] = &instr->src[0];
947 nirmods[1] = &instr->src[1];
948 } else if (nr_inputs == 1) {
949 nirmods[quirk_flipped_r24] = &instr->src[0];
950 } else {
951 assert(0);
952 }
953
954 if (nr_inputs == 3)
955 nirmods[2] = &instr->src[2];
956
957 /* These were lowered to a move, so apply the corresponding mod */
958
959 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
960 nir_alu_src *s = nirmods[quirk_flipped_r24];
961
962 if (instr->op == nir_op_fneg)
963 s->negate = !s->negate;
964
965 if (instr->op == nir_op_fabs)
966 s->abs = !s->abs;
967 }
968
969 bool is_int = midgard_is_integer_op(op);
970
971 ins.mask = mask_of(nr_components);
972
973 midgard_vector_alu alu = {
974 .op = op,
975 .reg_mode = reg_mode,
976 .dest_override = dest_override,
977 .outmod = outmod,
978
979 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
980 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
981 };
982
983 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
984
985 if (!is_ssa)
986 ins.mask &= instr->dest.write_mask;
987
988 for (unsigned m = 0; m < 3; ++m) {
989 if (!nirmods[m])
990 continue;
991
992 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
993 ins.swizzle[m][c] = nirmods[m]->swizzle[c];
994
995 /* Replicate. TODO: remove when vec16 lands */
996 for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
997 ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
998 }
999
1000 if (nr_inputs == 3) {
1001 /* Conditions can't have mods */
1002 assert(!nirmods[2]->abs);
1003 assert(!nirmods[2]->negate);
1004 }
1005
1006 ins.alu = alu;
1007
1008 /* Late fixup for emulated instructions */
1009
1010 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1011 /* Presently, our second argument is an inline #0 constant.
1012 * Switch over to an embedded 1.0 constant (that can't fit
1013 * inline, since we're 32-bit, not 16-bit like the inline
1014 * constants) */
1015
1016 ins.has_inline_constant = false;
1017 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1018 ins.has_constants = true;
1019
1020 if (instr->op == nir_op_b2f32)
1021 ins.constants.f32[0] = 1.0f;
1022 else
1023 ins.constants.i32[0] = 1;
1024
1025 for (unsigned c = 0; c < 16; ++c)
1026 ins.swizzle[1][c] = 0;
1027 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1028 /* Lots of instructions need a 0 plonked in */
1029 ins.has_inline_constant = false;
1030 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1031 ins.has_constants = true;
1032 ins.constants.u32[0] = 0;
1033
1034 for (unsigned c = 0; c < 16; ++c)
1035 ins.swizzle[1][c] = 0;
1036 } else if (instr->op == nir_op_inot) {
1037 ins.invert = true;
1038 }
1039
1040 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1041 /* To avoid duplicating the lookup tables (probably), true LUT
1042 * instructions can only operate as if they were scalars. Lower
1043 * them here by changing the component. */
1044
1045 unsigned orig_mask = ins.mask;
1046
1047 for (int i = 0; i < nr_components; ++i) {
1048 /* Mask the associated component, dropping the
1049 * instruction if needed */
1050
1051 ins.mask = 1 << i;
1052 ins.mask &= orig_mask;
1053
1054 if (!ins.mask)
1055 continue;
1056
1057 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1058 ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
1059
1060 emit_mir_instruction(ctx, ins);
1061 }
1062 } else {
1063 emit_mir_instruction(ctx, ins);
1064 }
1065 }
1066
1067 #undef ALU_CASE
1068
1069 static void
1070 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1071 {
1072 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1073 unsigned nir_mask = 0;
1074 unsigned dsize = 0;
1075
1076 if (is_read) {
1077 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1078 dsize = nir_dest_bit_size(intr->dest);
1079 } else {
1080 nir_mask = nir_intrinsic_write_mask(intr);
1081 dsize = 32;
1082 }
1083
1084 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1085 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1086 mir_set_bytemask(ins, bytemask);
1087
1088 if (dsize == 64)
1089 ins->load_64 = true;
1090 }
1091
1092 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1093 * optimized) versions of UBO #0 */
1094
1095 static midgard_instruction *
1096 emit_ubo_read(
1097 compiler_context *ctx,
1098 nir_instr *instr,
1099 unsigned dest,
1100 unsigned offset,
1101 nir_src *indirect_offset,
1102 unsigned indirect_shift,
1103 unsigned index)
1104 {
1105 /* TODO: half-floats */
1106
1107 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1108 ins.constants.u32[0] = offset;
1109
1110 if (instr->type == nir_instr_type_intrinsic)
1111 mir_set_intr_mask(instr, &ins, true);
1112
1113 if (indirect_offset) {
1114 ins.src[2] = nir_src_index(ctx, indirect_offset);
1115 ins.load_store.arg_2 = (indirect_shift << 5);
1116 } else {
1117 ins.load_store.arg_2 = 0x1E;
1118 }
1119
1120 ins.load_store.arg_1 = index;
1121
1122 return emit_mir_instruction(ctx, ins);
1123 }
1124
1125 /* Globals are like UBOs if you squint. And shared memory is like globals if
1126 * you squint even harder */
1127
1128 static void
1129 emit_global(
1130 compiler_context *ctx,
1131 nir_instr *instr,
1132 bool is_read,
1133 unsigned srcdest,
1134 nir_src *offset,
1135 bool is_shared)
1136 {
1137 /* TODO: types */
1138
1139 midgard_instruction ins;
1140
1141 if (is_read)
1142 ins = m_ld_int4(srcdest, 0);
1143 else
1144 ins = m_st_int4(srcdest, 0);
1145
1146 mir_set_offset(ctx, &ins, offset, is_shared);
1147 mir_set_intr_mask(instr, &ins, is_read);
1148
1149 emit_mir_instruction(ctx, ins);
1150 }
1151
1152 static void
1153 emit_varying_read(
1154 compiler_context *ctx,
1155 unsigned dest, unsigned offset,
1156 unsigned nr_comp, unsigned component,
1157 nir_src *indirect_offset, nir_alu_type type, bool flat)
1158 {
1159 /* XXX: Half-floats? */
1160 /* TODO: swizzle, mask */
1161
1162 midgard_instruction ins = m_ld_vary_32(dest, offset);
1163 ins.mask = mask_of(nr_comp);
1164
1165 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1166 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1167
1168 midgard_varying_parameter p = {
1169 .is_varying = 1,
1170 .interpolation = midgard_interp_default,
1171 .flat = flat,
1172 };
1173
1174 unsigned u;
1175 memcpy(&u, &p, sizeof(p));
1176 ins.load_store.varying_parameters = u;
1177
1178 if (indirect_offset)
1179 ins.src[2] = nir_src_index(ctx, indirect_offset);
1180 else
1181 ins.load_store.arg_2 = 0x1E;
1182
1183 ins.load_store.arg_1 = 0x9E;
1184
1185 /* Use the type appropriate load */
1186 switch (type) {
1187 case nir_type_uint:
1188 case nir_type_bool:
1189 ins.load_store.op = midgard_op_ld_vary_32u;
1190 break;
1191 case nir_type_int:
1192 ins.load_store.op = midgard_op_ld_vary_32i;
1193 break;
1194 case nir_type_float:
1195 ins.load_store.op = midgard_op_ld_vary_32;
1196 break;
1197 default:
1198 unreachable("Attempted to load unknown type");
1199 break;
1200 }
1201
1202 emit_mir_instruction(ctx, ins);
1203 }
1204
1205 static void
1206 emit_attr_read(
1207 compiler_context *ctx,
1208 unsigned dest, unsigned offset,
1209 unsigned nr_comp, nir_alu_type t)
1210 {
1211 midgard_instruction ins = m_ld_attr_32(dest, offset);
1212 ins.load_store.arg_1 = 0x1E;
1213 ins.load_store.arg_2 = 0x1E;
1214 ins.mask = mask_of(nr_comp);
1215
1216 /* Use the type appropriate load */
1217 switch (t) {
1218 case nir_type_uint:
1219 case nir_type_bool:
1220 ins.load_store.op = midgard_op_ld_attr_32u;
1221 break;
1222 case nir_type_int:
1223 ins.load_store.op = midgard_op_ld_attr_32i;
1224 break;
1225 case nir_type_float:
1226 ins.load_store.op = midgard_op_ld_attr_32;
1227 break;
1228 default:
1229 unreachable("Attempted to load unknown type");
1230 break;
1231 }
1232
1233 emit_mir_instruction(ctx, ins);
1234 }
1235
1236 static void
1237 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1238 unsigned nr_components, unsigned offset)
1239 {
1240 nir_dest nir_dest;
1241
1242 /* Figure out which uniform this is */
1243 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1244 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1245
1246 unsigned dest = nir_dest_index(&nir_dest);
1247
1248 /* Sysvals are prefix uniforms */
1249 unsigned uniform = ((uintptr_t) val) - 1;
1250
1251 /* Emit the read itself -- this is never indirect */
1252 midgard_instruction *ins =
1253 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1254
1255 ins->mask = mask_of(nr_components);
1256 }
1257
1258 static unsigned
1259 compute_builtin_arg(nir_op op)
1260 {
1261 switch (op) {
1262 case nir_intrinsic_load_work_group_id:
1263 return 0x14;
1264 case nir_intrinsic_load_local_invocation_id:
1265 return 0x10;
1266 default:
1267 unreachable("Invalid compute paramater loaded");
1268 }
1269 }
1270
1271 static void
1272 emit_fragment_store(compiler_context *ctx, unsigned src, enum midgard_rt_id rt)
1273 {
1274 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1275
1276 midgard_instruction *br = ctx->writeout_branch[rt];
1277
1278 assert(!br);
1279
1280 emit_explicit_constant(ctx, src, src);
1281
1282 struct midgard_instruction ins =
1283 v_branch(false, false);
1284
1285 ins.writeout = true;
1286
1287 /* Add dependencies */
1288 ins.src[0] = src;
1289 ins.constants.u32[0] = rt == MIDGARD_ZS_RT ?
1290 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1291
1292 /* Emit the branch */
1293 br = emit_mir_instruction(ctx, ins);
1294 schedule_barrier(ctx);
1295 ctx->writeout_branch[rt] = br;
1296
1297 /* Push our current location = current block count - 1 = where we'll
1298 * jump to. Maybe a bit too clever for my own good */
1299
1300 br->branch.target_block = ctx->block_count - 1;
1301 }
1302
1303 static void
1304 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1305 {
1306 unsigned reg = nir_dest_index(&instr->dest);
1307 midgard_instruction ins = m_ld_compute_id(reg, 0);
1308 ins.mask = mask_of(3);
1309 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1310 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1311 emit_mir_instruction(ctx, ins);
1312 }
1313
1314 static unsigned
1315 vertex_builtin_arg(nir_op op)
1316 {
1317 switch (op) {
1318 case nir_intrinsic_load_vertex_id:
1319 return PAN_VERTEX_ID;
1320 case nir_intrinsic_load_instance_id:
1321 return PAN_INSTANCE_ID;
1322 default:
1323 unreachable("Invalid vertex builtin");
1324 }
1325 }
1326
1327 static void
1328 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1329 {
1330 unsigned reg = nir_dest_index(&instr->dest);
1331 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1332 }
1333
1334 static void
1335 emit_control_barrier(compiler_context *ctx)
1336 {
1337 midgard_instruction ins = {
1338 .type = TAG_TEXTURE_4,
1339 .src = { ~0, ~0, ~0, ~0 },
1340 .texture = {
1341 .op = TEXTURE_OP_BARRIER,
1342
1343 /* TODO: optimize */
1344 .barrier_buffer = 1,
1345 .barrier_shared = 1
1346 }
1347 };
1348
1349 emit_mir_instruction(ctx, ins);
1350 }
1351
1352 static const nir_variable *
1353 search_var(struct exec_list *vars, unsigned driver_loc)
1354 {
1355 nir_foreach_variable(var, vars) {
1356 if (var->data.driver_location == driver_loc)
1357 return var;
1358 }
1359
1360 return NULL;
1361 }
1362
1363 static void
1364 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1365 {
1366 unsigned offset = 0, reg;
1367
1368 switch (instr->intrinsic) {
1369 case nir_intrinsic_discard_if:
1370 case nir_intrinsic_discard: {
1371 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1372 struct midgard_instruction discard = v_branch(conditional, false);
1373 discard.branch.target_type = TARGET_DISCARD;
1374
1375 if (conditional)
1376 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1377
1378 emit_mir_instruction(ctx, discard);
1379 schedule_barrier(ctx);
1380
1381 break;
1382 }
1383
1384 case nir_intrinsic_load_uniform:
1385 case nir_intrinsic_load_ubo:
1386 case nir_intrinsic_load_global:
1387 case nir_intrinsic_load_shared:
1388 case nir_intrinsic_load_input:
1389 case nir_intrinsic_load_interpolated_input: {
1390 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1391 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1392 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1393 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1394 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1395 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1396
1397 /* Get the base type of the intrinsic */
1398 /* TODO: Infer type? Does it matter? */
1399 nir_alu_type t =
1400 (is_ubo || is_global || is_shared) ? nir_type_uint :
1401 (is_interp) ? nir_type_float :
1402 nir_intrinsic_type(instr);
1403
1404 t = nir_alu_type_get_base_type(t);
1405
1406 if (!(is_ubo || is_global)) {
1407 offset = nir_intrinsic_base(instr);
1408 }
1409
1410 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1411
1412 nir_src *src_offset = nir_get_io_offset_src(instr);
1413
1414 bool direct = nir_src_is_const(*src_offset);
1415 nir_src *indirect_offset = direct ? NULL : src_offset;
1416
1417 if (direct)
1418 offset += nir_src_as_uint(*src_offset);
1419
1420 /* We may need to apply a fractional offset */
1421 int component = (is_flat || is_interp) ?
1422 nir_intrinsic_component(instr) : 0;
1423 reg = nir_dest_index(&instr->dest);
1424
1425 if (is_uniform && !ctx->is_blend) {
1426 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1427 } else if (is_ubo) {
1428 nir_src index = instr->src[0];
1429
1430 /* TODO: Is indirect block number possible? */
1431 assert(nir_src_is_const(index));
1432
1433 uint32_t uindex = nir_src_as_uint(index) + 1;
1434 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1435 } else if (is_global || is_shared) {
1436 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1437 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1438 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t, is_flat);
1439 } else if (ctx->is_blend) {
1440 /* For blend shaders, load the input color, which is
1441 * preloaded to r0 */
1442
1443 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1444 emit_mir_instruction(ctx, move);
1445 schedule_barrier(ctx);
1446 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1447 emit_attr_read(ctx, reg, offset, nr_comp, t);
1448 } else {
1449 DBG("Unknown load\n");
1450 assert(0);
1451 }
1452
1453 break;
1454 }
1455
1456 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1457 case nir_intrinsic_load_barycentric_pixel:
1458 case nir_intrinsic_load_barycentric_centroid:
1459 break;
1460
1461 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1462
1463 case nir_intrinsic_load_raw_output_pan:
1464 case nir_intrinsic_load_output_u8_as_fp16_pan:
1465 reg = nir_dest_index(&instr->dest);
1466 assert(ctx->is_blend);
1467
1468 /* T720 and below use different blend opcodes with slightly
1469 * different semantics than T760 and up */
1470
1471 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1472 bool old_blend = ctx->quirks & MIDGARD_OLD_BLEND;
1473
1474 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1475 ld.load_store.op = old_blend ?
1476 midgard_op_ld_color_buffer_u8_as_fp16_old :
1477 midgard_op_ld_color_buffer_u8_as_fp16;
1478
1479 if (old_blend) {
1480 ld.load_store.address = 1;
1481 ld.load_store.arg_2 = 0x1E;
1482 }
1483
1484 for (unsigned c = 2; c < 16; ++c)
1485 ld.swizzle[0][c] = 0;
1486 }
1487
1488 emit_mir_instruction(ctx, ld);
1489 break;
1490
1491 case nir_intrinsic_load_blend_const_color_rgba: {
1492 assert(ctx->is_blend);
1493 reg = nir_dest_index(&instr->dest);
1494
1495 /* Blend constants are embedded directly in the shader and
1496 * patched in, so we use some magic routing */
1497
1498 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1499 ins.has_constants = true;
1500 ins.has_blend_constant = true;
1501 emit_mir_instruction(ctx, ins);
1502 break;
1503 }
1504
1505 case nir_intrinsic_store_zs_output_pan: {
1506 assert(ctx->stage == MESA_SHADER_FRAGMENT);
1507 emit_fragment_store(ctx, nir_src_index(ctx, &instr->src[0]),
1508 MIDGARD_ZS_RT);
1509
1510 midgard_instruction *br = ctx->writeout_branch[MIDGARD_ZS_RT];
1511
1512 if (!nir_intrinsic_component(instr))
1513 br->writeout_depth = true;
1514 if (nir_intrinsic_component(instr) ||
1515 instr->num_components)
1516 br->writeout_stencil = true;
1517 assert(br->writeout_depth | br->writeout_stencil);
1518 break;
1519 }
1520
1521 case nir_intrinsic_store_output:
1522 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1523
1524 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1525
1526 reg = nir_src_index(ctx, &instr->src[0]);
1527
1528 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1529 const nir_variable *var;
1530 enum midgard_rt_id rt;
1531
1532 var = search_var(&ctx->nir->outputs,
1533 nir_intrinsic_base(instr));
1534 assert(var);
1535 if (var->data.location == FRAG_RESULT_COLOR)
1536 rt = MIDGARD_COLOR_RT0;
1537 else if (var->data.location >= FRAG_RESULT_DATA0)
1538 rt = MIDGARD_COLOR_RT0 + var->data.location -
1539 FRAG_RESULT_DATA0;
1540 else
1541 assert(0);
1542
1543 emit_fragment_store(ctx, reg, rt);
1544 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1545 /* We should have been vectorized, though we don't
1546 * currently check that st_vary is emitted only once
1547 * per slot (this is relevant, since there's not a mask
1548 * parameter available on the store [set to 0 by the
1549 * blob]). We do respect the component by adjusting the
1550 * swizzle. If this is a constant source, we'll need to
1551 * emit that explicitly. */
1552
1553 emit_explicit_constant(ctx, reg, reg);
1554
1555 unsigned dst_component = nir_intrinsic_component(instr);
1556 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1557
1558 midgard_instruction st = m_st_vary_32(reg, offset);
1559 st.load_store.arg_1 = 0x9E;
1560 st.load_store.arg_2 = 0x1E;
1561
1562 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1563 case nir_type_uint:
1564 case nir_type_bool:
1565 st.load_store.op = midgard_op_st_vary_32u;
1566 break;
1567 case nir_type_int:
1568 st.load_store.op = midgard_op_st_vary_32i;
1569 break;
1570 case nir_type_float:
1571 st.load_store.op = midgard_op_st_vary_32;
1572 break;
1573 default:
1574 unreachable("Attempted to store unknown type");
1575 break;
1576 }
1577
1578 /* nir_intrinsic_component(store_intr) encodes the
1579 * destination component start. Source component offset
1580 * adjustment is taken care of in
1581 * install_registers_instr(), when offset_swizzle() is
1582 * called.
1583 */
1584 unsigned src_component = COMPONENT_X;
1585
1586 assert(nr_comp > 0);
1587 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1588 st.swizzle[0][i] = src_component;
1589 if (i >= dst_component && i < dst_component + nr_comp - 1)
1590 src_component++;
1591 }
1592
1593 emit_mir_instruction(ctx, st);
1594 } else {
1595 DBG("Unknown store\n");
1596 assert(0);
1597 }
1598
1599 break;
1600
1601 /* Special case of store_output for lowered blend shaders */
1602 case nir_intrinsic_store_raw_output_pan:
1603 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1604 reg = nir_src_index(ctx, &instr->src[0]);
1605
1606 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1607 /* Suppose reg = qr0.xyzw. That means 4 8-bit ---> 1 32-bit. So
1608 * reg = r0.x. We want to splatter. So we can do a 32-bit move
1609 * of:
1610 *
1611 * imov r0.xyzw, r0.xxxx
1612 */
1613
1614 unsigned expanded = make_compiler_temp(ctx);
1615
1616 midgard_instruction splatter = v_mov(reg, expanded);
1617
1618 for (unsigned c = 0; c < 16; ++c)
1619 splatter.swizzle[1][c] = 0;
1620
1621 emit_mir_instruction(ctx, splatter);
1622 emit_fragment_store(ctx, expanded, ctx->blend_rt);
1623 } else
1624 emit_fragment_store(ctx, reg, ctx->blend_rt);
1625
1626 break;
1627
1628 case nir_intrinsic_store_global:
1629 case nir_intrinsic_store_shared:
1630 reg = nir_src_index(ctx, &instr->src[0]);
1631 emit_explicit_constant(ctx, reg, reg);
1632
1633 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
1634 break;
1635
1636 case nir_intrinsic_load_ssbo_address:
1637 emit_sysval_read(ctx, &instr->instr, 1, 0);
1638 break;
1639
1640 case nir_intrinsic_get_buffer_size:
1641 emit_sysval_read(ctx, &instr->instr, 1, 8);
1642 break;
1643
1644 case nir_intrinsic_load_viewport_scale:
1645 case nir_intrinsic_load_viewport_offset:
1646 case nir_intrinsic_load_num_work_groups:
1647 case nir_intrinsic_load_sampler_lod_parameters_pan:
1648 emit_sysval_read(ctx, &instr->instr, 3, 0);
1649 break;
1650
1651 case nir_intrinsic_load_work_group_id:
1652 case nir_intrinsic_load_local_invocation_id:
1653 emit_compute_builtin(ctx, instr);
1654 break;
1655
1656 case nir_intrinsic_load_vertex_id:
1657 case nir_intrinsic_load_instance_id:
1658 emit_vertex_builtin(ctx, instr);
1659 break;
1660
1661 case nir_intrinsic_memory_barrier_buffer:
1662 case nir_intrinsic_memory_barrier_shared:
1663 break;
1664
1665 case nir_intrinsic_control_barrier:
1666 schedule_barrier(ctx);
1667 emit_control_barrier(ctx);
1668 schedule_barrier(ctx);
1669 break;
1670
1671 default:
1672 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
1673 assert(0);
1674 break;
1675 }
1676 }
1677
1678 static unsigned
1679 midgard_tex_format(enum glsl_sampler_dim dim)
1680 {
1681 switch (dim) {
1682 case GLSL_SAMPLER_DIM_1D:
1683 case GLSL_SAMPLER_DIM_BUF:
1684 return MALI_TEX_1D;
1685
1686 case GLSL_SAMPLER_DIM_2D:
1687 case GLSL_SAMPLER_DIM_EXTERNAL:
1688 case GLSL_SAMPLER_DIM_RECT:
1689 return MALI_TEX_2D;
1690
1691 case GLSL_SAMPLER_DIM_3D:
1692 return MALI_TEX_3D;
1693
1694 case GLSL_SAMPLER_DIM_CUBE:
1695 return MALI_TEX_CUBE;
1696
1697 default:
1698 DBG("Unknown sampler dim type\n");
1699 assert(0);
1700 return 0;
1701 }
1702 }
1703
1704 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1705 * was successful */
1706
1707 static bool
1708 pan_attach_constant_bias(
1709 compiler_context *ctx,
1710 nir_src lod,
1711 midgard_texture_word *word)
1712 {
1713 /* To attach as constant, it has to *be* constant */
1714
1715 if (!nir_src_is_const(lod))
1716 return false;
1717
1718 float f = nir_src_as_float(lod);
1719
1720 /* Break into fixed-point */
1721 signed lod_int = f;
1722 float lod_frac = f - lod_int;
1723
1724 /* Carry over negative fractions */
1725 if (lod_frac < 0.0) {
1726 lod_int--;
1727 lod_frac += 1.0;
1728 }
1729
1730 /* Encode */
1731 word->bias = float_to_ubyte(lod_frac);
1732 word->bias_int = lod_int;
1733
1734 return true;
1735 }
1736
1737 static enum mali_sampler_type
1738 midgard_sampler_type(nir_alu_type t) {
1739 switch (nir_alu_type_get_base_type(t))
1740 {
1741 case nir_type_float:
1742 return MALI_SAMPLER_FLOAT;
1743 case nir_type_int:
1744 return MALI_SAMPLER_SIGNED;
1745 case nir_type_uint:
1746 return MALI_SAMPLER_UNSIGNED;
1747 default:
1748 unreachable("Unknown sampler type");
1749 }
1750 }
1751
1752 static void
1753 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1754 unsigned midgard_texop)
1755 {
1756 /* TODO */
1757 //assert (!instr->sampler);
1758
1759 int texture_index = instr->texture_index;
1760 int sampler_index = texture_index;
1761
1762 /* No helper to build texture words -- we do it all here */
1763 midgard_instruction ins = {
1764 .type = TAG_TEXTURE_4,
1765 .mask = 0xF,
1766 .dest = nir_dest_index(&instr->dest),
1767 .src = { ~0, ~0, ~0, ~0 },
1768 .swizzle = SWIZZLE_IDENTITY_4,
1769 .texture = {
1770 .op = midgard_texop,
1771 .format = midgard_tex_format(instr->sampler_dim),
1772 .texture_handle = texture_index,
1773 .sampler_handle = sampler_index,
1774
1775 /* TODO: half */
1776 .in_reg_full = 1,
1777 .out_full = 1,
1778
1779 .sampler_type = midgard_sampler_type(instr->dest_type),
1780 .shadow = instr->is_shadow,
1781 }
1782 };
1783
1784 /* We may need a temporary for the coordinate */
1785
1786 bool needs_temp_coord =
1787 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
1788 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
1789 (instr->is_shadow);
1790
1791 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
1792
1793 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1794 int index = nir_src_index(ctx, &instr->src[i].src);
1795 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1796
1797 switch (instr->src[i].src_type) {
1798 case nir_tex_src_coord: {
1799 emit_explicit_constant(ctx, index, index);
1800
1801 unsigned coord_mask = mask_of(instr->coord_components);
1802
1803 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
1804
1805 if (flip_zw)
1806 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
1807
1808 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1809 /* texelFetch is undefined on samplerCube */
1810 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1811
1812 /* For cubemaps, we use a special ld/st op to
1813 * select the face and copy the xy into the
1814 * texture register */
1815
1816 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
1817 ld.src[1] = index;
1818 ld.mask = 0x3; /* xy */
1819 ld.load_store.arg_1 = 0x20;
1820 ld.swizzle[1][3] = COMPONENT_X;
1821 emit_mir_instruction(ctx, ld);
1822
1823 /* xyzw -> xyxx */
1824 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1825 ins.swizzle[1][3] = COMPONENT_X;
1826 } else if (needs_temp_coord) {
1827 /* mov coord_temp, coords */
1828 midgard_instruction mov = v_mov(index, coords);
1829 mov.mask = coord_mask;
1830
1831 if (flip_zw)
1832 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
1833
1834 emit_mir_instruction(ctx, mov);
1835 } else {
1836 coords = index;
1837 }
1838
1839 ins.src[1] = coords;
1840
1841 /* Texelfetch coordinates uses all four elements
1842 * (xyz/index) regardless of texture dimensionality,
1843 * which means it's necessary to zero the unused
1844 * components to keep everything happy */
1845
1846 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1847 /* mov index.zw, #0, or generalized */
1848 midgard_instruction mov =
1849 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
1850 mov.has_constants = true;
1851 mov.mask = coord_mask ^ 0xF;
1852 emit_mir_instruction(ctx, mov);
1853 }
1854
1855 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1856 /* Array component in w but NIR wants it in z,
1857 * but if we have a temp coord we already fixed
1858 * that up */
1859
1860 if (nr_components == 3) {
1861 ins.swizzle[1][2] = COMPONENT_Z;
1862 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
1863 } else if (nr_components == 2) {
1864 ins.swizzle[1][2] =
1865 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1866 ins.swizzle[1][3] = COMPONENT_X;
1867 } else
1868 unreachable("Invalid texture 2D components");
1869 }
1870
1871 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1872 /* We zeroed */
1873 ins.swizzle[1][2] = COMPONENT_Z;
1874 ins.swizzle[1][3] = COMPONENT_W;
1875 }
1876
1877 break;
1878 }
1879
1880 case nir_tex_src_bias:
1881 case nir_tex_src_lod: {
1882 /* Try as a constant if we can */
1883
1884 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1885 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1886 break;
1887
1888 ins.texture.lod_register = true;
1889 ins.src[2] = index;
1890
1891 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1892 ins.swizzle[2][c] = COMPONENT_X;
1893
1894 emit_explicit_constant(ctx, index, index);
1895
1896 break;
1897 };
1898
1899 case nir_tex_src_offset: {
1900 ins.texture.offset_register = true;
1901 ins.src[3] = index;
1902
1903 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1904 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
1905
1906 emit_explicit_constant(ctx, index, index);
1907 break;
1908 };
1909
1910 case nir_tex_src_comparator: {
1911 unsigned comp = COMPONENT_Z;
1912
1913 /* mov coord_temp.foo, coords */
1914 midgard_instruction mov = v_mov(index, coords);
1915 mov.mask = 1 << comp;
1916
1917 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
1918 mov.swizzle[1][i] = COMPONENT_X;
1919
1920 emit_mir_instruction(ctx, mov);
1921 break;
1922 }
1923
1924 default: {
1925 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
1926 assert(0);
1927 }
1928 }
1929 }
1930
1931 emit_mir_instruction(ctx, ins);
1932
1933 /* Used for .cont and .last hinting */
1934 ctx->texture_op_count++;
1935 }
1936
1937 static void
1938 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1939 {
1940 switch (instr->op) {
1941 case nir_texop_tex:
1942 case nir_texop_txb:
1943 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1944 break;
1945 case nir_texop_txl:
1946 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1947 break;
1948 case nir_texop_txf:
1949 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1950 break;
1951 case nir_texop_txs:
1952 emit_sysval_read(ctx, &instr->instr, 4, 0);
1953 break;
1954 default: {
1955 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
1956 assert(0);
1957 }
1958 }
1959 }
1960
1961 static void
1962 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1963 {
1964 switch (instr->type) {
1965 case nir_jump_break: {
1966 /* Emit a branch out of the loop */
1967 struct midgard_instruction br = v_branch(false, false);
1968 br.branch.target_type = TARGET_BREAK;
1969 br.branch.target_break = ctx->current_loop_depth;
1970 emit_mir_instruction(ctx, br);
1971 break;
1972 }
1973
1974 default:
1975 DBG("Unknown jump type %d\n", instr->type);
1976 break;
1977 }
1978 }
1979
1980 static void
1981 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1982 {
1983 switch (instr->type) {
1984 case nir_instr_type_load_const:
1985 emit_load_const(ctx, nir_instr_as_load_const(instr));
1986 break;
1987
1988 case nir_instr_type_intrinsic:
1989 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1990 break;
1991
1992 case nir_instr_type_alu:
1993 emit_alu(ctx, nir_instr_as_alu(instr));
1994 break;
1995
1996 case nir_instr_type_tex:
1997 emit_tex(ctx, nir_instr_as_tex(instr));
1998 break;
1999
2000 case nir_instr_type_jump:
2001 emit_jump(ctx, nir_instr_as_jump(instr));
2002 break;
2003
2004 case nir_instr_type_ssa_undef:
2005 /* Spurious */
2006 break;
2007
2008 default:
2009 DBG("Unhandled instruction type\n");
2010 break;
2011 }
2012 }
2013
2014
2015 /* ALU instructions can inline or embed constants, which decreases register
2016 * pressure and saves space. */
2017
2018 #define CONDITIONAL_ATTACH(idx) { \
2019 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2020 \
2021 if (entry) { \
2022 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2023 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2024 } \
2025 }
2026
2027 static void
2028 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2029 {
2030 mir_foreach_instr_in_block(block, alu) {
2031 /* Other instructions cannot inline constants */
2032 if (alu->type != TAG_ALU_4) continue;
2033 if (alu->compact_branch) continue;
2034
2035 /* If there is already a constant here, we can do nothing */
2036 if (alu->has_constants) continue;
2037
2038 CONDITIONAL_ATTACH(0);
2039
2040 if (!alu->has_constants) {
2041 CONDITIONAL_ATTACH(1)
2042 } else if (!alu->inline_constant) {
2043 /* Corner case: _two_ vec4 constants, for instance with a
2044 * csel. For this case, we can only use a constant
2045 * register for one, we'll have to emit a move for the
2046 * other. Note, if both arguments are constants, then
2047 * necessarily neither argument depends on the value of
2048 * any particular register. As the destination register
2049 * will be wiped, that means we can spill the constant
2050 * to the destination register.
2051 */
2052
2053 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2054 unsigned scratch = alu->dest;
2055
2056 if (entry) {
2057 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2058 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2059
2060 /* Set the source */
2061 alu->src[1] = scratch;
2062
2063 /* Inject us -before- the last instruction which set r31 */
2064 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2065 }
2066 }
2067 }
2068 }
2069
2070 /* Being a little silly with the names, but returns the op that is the bitwise
2071 * inverse of the op with the argument switched. I.e. (f and g are
2072 * contrapositives):
2073 *
2074 * f(a, b) = ~g(b, a)
2075 *
2076 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
2077 *
2078 * f(a, b) = ~g(b, a)
2079 * ~f(a, b) = g(b, a)
2080 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
2081 * f(a, b) = h(a, b)
2082 *
2083 * Thus we define this function in pairs.
2084 */
2085
2086 static inline midgard_alu_op
2087 mir_contrapositive(midgard_alu_op op)
2088 {
2089 switch (op) {
2090 case midgard_alu_op_flt:
2091 return midgard_alu_op_fle;
2092 case midgard_alu_op_fle:
2093 return midgard_alu_op_flt;
2094
2095 case midgard_alu_op_ilt:
2096 return midgard_alu_op_ile;
2097 case midgard_alu_op_ile:
2098 return midgard_alu_op_ilt;
2099
2100 default:
2101 unreachable("No known contrapositive");
2102 }
2103 }
2104
2105 /* Midgard supports two types of constants, embedded constants (128-bit) and
2106 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2107 * constants can be demoted to inline constants, for space savings and
2108 * sometimes a performance boost */
2109
2110 static void
2111 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2112 {
2113 mir_foreach_instr_in_block(block, ins) {
2114 if (!ins->has_constants) continue;
2115 if (ins->has_inline_constant) continue;
2116
2117 /* Blend constants must not be inlined by definition */
2118 if (ins->has_blend_constant) continue;
2119
2120 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2121 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2122 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2123
2124 if (!(is_16 || is_32))
2125 continue;
2126
2127 /* src1 cannot be an inline constant due to encoding
2128 * restrictions. So, if possible we try to flip the arguments
2129 * in that case */
2130
2131 int op = ins->alu.op;
2132
2133 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2134 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2135
2136 switch (op) {
2137 /* Conditionals can be inverted */
2138 case midgard_alu_op_flt:
2139 case midgard_alu_op_ilt:
2140 case midgard_alu_op_fle:
2141 case midgard_alu_op_ile:
2142 ins->alu.op = mir_contrapositive(ins->alu.op);
2143 ins->invert = true;
2144 flip = true;
2145 break;
2146
2147 case midgard_alu_op_fcsel:
2148 case midgard_alu_op_icsel:
2149 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2150 default:
2151 break;
2152 }
2153
2154 if (flip)
2155 mir_flip(ins);
2156 }
2157
2158 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2159 /* Extract the source information */
2160
2161 midgard_vector_alu_src *src;
2162 int q = ins->alu.src2;
2163 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2164 src = m;
2165
2166 /* Component is from the swizzle. Take a nonzero component */
2167 assert(ins->mask);
2168 unsigned first_comp = ffs(ins->mask) - 1;
2169 unsigned component = ins->swizzle[1][first_comp];
2170
2171 /* Scale constant appropriately, if we can legally */
2172 uint16_t scaled_constant = 0;
2173
2174 if (is_16) {
2175 scaled_constant = ins->constants.u16[component];
2176 } else if (midgard_is_integer_op(op)) {
2177 scaled_constant = ins->constants.u32[component];
2178
2179 /* Constant overflow after resize */
2180 if (scaled_constant != ins->constants.u32[component])
2181 continue;
2182 } else {
2183 float original = ins->constants.f32[component];
2184 scaled_constant = _mesa_float_to_half(original);
2185
2186 /* Check for loss of precision. If this is
2187 * mediump, we don't care, but for a highp
2188 * shader, we need to pay attention. NIR
2189 * doesn't yet tell us which mode we're in!
2190 * Practically this prevents most constants
2191 * from being inlined, sadly. */
2192
2193 float fp32 = _mesa_half_to_float(scaled_constant);
2194
2195 if (fp32 != original)
2196 continue;
2197 }
2198
2199 /* We don't know how to handle these with a constant */
2200
2201 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2202 DBG("Bailing inline constant...\n");
2203 continue;
2204 }
2205
2206 /* Make sure that the constant is not itself a vector
2207 * by checking if all accessed values are the same. */
2208
2209 const midgard_constants *cons = &ins->constants;
2210 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2211
2212 bool is_vector = false;
2213 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2214
2215 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2216 /* We only care if this component is actually used */
2217 if (!(mask & (1 << c)))
2218 continue;
2219
2220 uint32_t test = is_16 ?
2221 cons->u16[ins->swizzle[1][c]] :
2222 cons->u32[ins->swizzle[1][c]];
2223
2224 if (test != value) {
2225 is_vector = true;
2226 break;
2227 }
2228 }
2229
2230 if (is_vector)
2231 continue;
2232
2233 /* Get rid of the embedded constant */
2234 ins->has_constants = false;
2235 ins->src[1] = ~0;
2236 ins->has_inline_constant = true;
2237 ins->inline_constant = scaled_constant;
2238 }
2239 }
2240 }
2241
2242 /* Dead code elimination for branches at the end of a block - only one branch
2243 * per block is legal semantically */
2244
2245 static void
2246 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2247 {
2248 bool branched = false;
2249
2250 mir_foreach_instr_in_block_safe(block, ins) {
2251 if (!midgard_is_branch_unit(ins->unit)) continue;
2252
2253 if (branched)
2254 mir_remove_instruction(ins);
2255
2256 branched = true;
2257 }
2258 }
2259
2260 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2261 * the move can be propagated away entirely */
2262
2263 static bool
2264 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2265 {
2266 /* Nothing to do */
2267 if (comp == midgard_outmod_none)
2268 return true;
2269
2270 if (*outmod == midgard_outmod_none) {
2271 *outmod = comp;
2272 return true;
2273 }
2274
2275 /* TODO: Compose rules */
2276 return false;
2277 }
2278
2279 static bool
2280 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2281 {
2282 bool progress = false;
2283
2284 mir_foreach_instr_in_block_safe(block, ins) {
2285 if (ins->type != TAG_ALU_4) continue;
2286 if (ins->alu.op != midgard_alu_op_fmov) continue;
2287 if (ins->alu.outmod != midgard_outmod_pos) continue;
2288
2289 /* TODO: Registers? */
2290 unsigned src = ins->src[1];
2291 if (src & IS_REG) continue;
2292
2293 /* There might be a source modifier, too */
2294 if (mir_nontrivial_source2_mod(ins)) continue;
2295
2296 /* Backpropagate the modifier */
2297 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2298 if (v->type != TAG_ALU_4) continue;
2299 if (v->dest != src) continue;
2300
2301 /* Can we even take a float outmod? */
2302 if (midgard_is_integer_out_op(v->alu.op)) continue;
2303
2304 midgard_outmod_float temp = v->alu.outmod;
2305 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2306
2307 /* Throw in the towel.. */
2308 if (!progress) break;
2309
2310 /* Otherwise, transfer the modifier */
2311 v->alu.outmod = temp;
2312 ins->alu.outmod = midgard_outmod_none;
2313
2314 break;
2315 }
2316 }
2317
2318 return progress;
2319 }
2320
2321 static unsigned
2322 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2323 {
2324 /* Loop to ourselves */
2325 midgard_instruction *br = ctx->writeout_branch[rt];
2326 struct midgard_instruction ins = v_branch(false, false);
2327 ins.writeout = true;
2328 ins.writeout_depth = br->writeout_depth;
2329 ins.writeout_stencil = br->writeout_stencil;
2330 ins.branch.target_block = ctx->block_count - 1;
2331 ins.constants.u32[0] = br->constants.u32[0];
2332 emit_mir_instruction(ctx, ins);
2333
2334 ctx->current_block->epilogue = true;
2335 schedule_barrier(ctx);
2336 return ins.branch.target_block;
2337 }
2338
2339 static midgard_block *
2340 emit_block(compiler_context *ctx, nir_block *block)
2341 {
2342 midgard_block *this_block = ctx->after_block;
2343 ctx->after_block = NULL;
2344
2345 if (!this_block)
2346 this_block = create_empty_block(ctx);
2347
2348 list_addtail(&this_block->base.link, &ctx->blocks);
2349
2350 this_block->scheduled = false;
2351 ++ctx->block_count;
2352
2353 /* Set up current block */
2354 list_inithead(&this_block->base.instructions);
2355 ctx->current_block = this_block;
2356
2357 nir_foreach_instr(instr, block) {
2358 emit_instr(ctx, instr);
2359 ++ctx->instruction_count;
2360 }
2361
2362 return this_block;
2363 }
2364
2365 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2366
2367 static void
2368 emit_if(struct compiler_context *ctx, nir_if *nif)
2369 {
2370 midgard_block *before_block = ctx->current_block;
2371
2372 /* Speculatively emit the branch, but we can't fill it in until later */
2373 EMIT(branch, true, true);
2374 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2375 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2376
2377 /* Emit the two subblocks. */
2378 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2379 midgard_block *end_then_block = ctx->current_block;
2380
2381 /* Emit a jump from the end of the then block to the end of the else */
2382 EMIT(branch, false, false);
2383 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2384
2385 /* Emit second block, and check if it's empty */
2386
2387 int else_idx = ctx->block_count;
2388 int count_in = ctx->instruction_count;
2389 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2390 midgard_block *end_else_block = ctx->current_block;
2391 int after_else_idx = ctx->block_count;
2392
2393 /* Now that we have the subblocks emitted, fix up the branches */
2394
2395 assert(then_block);
2396 assert(else_block);
2397
2398 if (ctx->instruction_count == count_in) {
2399 /* The else block is empty, so don't emit an exit jump */
2400 mir_remove_instruction(then_exit);
2401 then_branch->branch.target_block = after_else_idx;
2402 } else {
2403 then_branch->branch.target_block = else_idx;
2404 then_exit->branch.target_block = after_else_idx;
2405 }
2406
2407 /* Wire up the successors */
2408
2409 ctx->after_block = create_empty_block(ctx);
2410
2411 pan_block_add_successor(&before_block->base, &then_block->base);
2412 pan_block_add_successor(&before_block->base, &else_block->base);
2413
2414 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2415 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2416 }
2417
2418 static void
2419 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2420 {
2421 /* Remember where we are */
2422 midgard_block *start_block = ctx->current_block;
2423
2424 /* Allocate a loop number, growing the current inner loop depth */
2425 int loop_idx = ++ctx->current_loop_depth;
2426
2427 /* Get index from before the body so we can loop back later */
2428 int start_idx = ctx->block_count;
2429
2430 /* Emit the body itself */
2431 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2432
2433 /* Branch back to loop back */
2434 struct midgard_instruction br_back = v_branch(false, false);
2435 br_back.branch.target_block = start_idx;
2436 emit_mir_instruction(ctx, br_back);
2437
2438 /* Mark down that branch in the graph. */
2439 pan_block_add_successor(&start_block->base, &loop_block->base);
2440 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2441
2442 /* Find the index of the block about to follow us (note: we don't add
2443 * one; blocks are 0-indexed so we get a fencepost problem) */
2444 int break_block_idx = ctx->block_count;
2445
2446 /* Fix up the break statements we emitted to point to the right place,
2447 * now that we can allocate a block number for them */
2448 ctx->after_block = create_empty_block(ctx);
2449
2450 mir_foreach_block_from(ctx, start_block, _block) {
2451 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2452 if (ins->type != TAG_ALU_4) continue;
2453 if (!ins->compact_branch) continue;
2454
2455 /* We found a branch -- check the type to see if we need to do anything */
2456 if (ins->branch.target_type != TARGET_BREAK) continue;
2457
2458 /* It's a break! Check if it's our break */
2459 if (ins->branch.target_break != loop_idx) continue;
2460
2461 /* Okay, cool, we're breaking out of this loop.
2462 * Rewrite from a break to a goto */
2463
2464 ins->branch.target_type = TARGET_GOTO;
2465 ins->branch.target_block = break_block_idx;
2466
2467 pan_block_add_successor(_block, &ctx->after_block->base);
2468 }
2469 }
2470
2471 /* Now that we've finished emitting the loop, free up the depth again
2472 * so we play nice with recursion amid nested loops */
2473 --ctx->current_loop_depth;
2474
2475 /* Dump loop stats */
2476 ++ctx->loop_count;
2477 }
2478
2479 static midgard_block *
2480 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2481 {
2482 midgard_block *start_block = NULL;
2483
2484 foreach_list_typed(nir_cf_node, node, node, list) {
2485 switch (node->type) {
2486 case nir_cf_node_block: {
2487 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2488
2489 if (!start_block)
2490 start_block = block;
2491
2492 break;
2493 }
2494
2495 case nir_cf_node_if:
2496 emit_if(ctx, nir_cf_node_as_if(node));
2497 break;
2498
2499 case nir_cf_node_loop:
2500 emit_loop(ctx, nir_cf_node_as_loop(node));
2501 break;
2502
2503 case nir_cf_node_function:
2504 assert(0);
2505 break;
2506 }
2507 }
2508
2509 return start_block;
2510 }
2511
2512 /* Due to lookahead, we need to report the first tag executed in the command
2513 * stream and in branch targets. An initial block might be empty, so iterate
2514 * until we find one that 'works' */
2515
2516 static unsigned
2517 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2518 {
2519 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2520
2521 mir_foreach_block_from(ctx, initial_block, _v) {
2522 midgard_block *v = (midgard_block *) _v;
2523 if (v->quadword_count) {
2524 midgard_bundle *initial_bundle =
2525 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2526
2527 return initial_bundle->tag;
2528 }
2529 }
2530
2531 /* Default to a tag 1 which will break from the shader, in case we jump
2532 * to the exit block (i.e. `return` in a compute shader) */
2533
2534 return 1;
2535 }
2536
2537 static unsigned
2538 pan_format_from_nir_base(nir_alu_type base)
2539 {
2540 switch (base) {
2541 case nir_type_int:
2542 return MALI_FORMAT_SINT;
2543 case nir_type_uint:
2544 case nir_type_bool:
2545 return MALI_FORMAT_UINT;
2546 case nir_type_float:
2547 return MALI_CHANNEL_FLOAT;
2548 default:
2549 unreachable("Invalid base");
2550 }
2551 }
2552
2553 static unsigned
2554 pan_format_from_nir_size(nir_alu_type base, unsigned size)
2555 {
2556 if (base == nir_type_float) {
2557 switch (size) {
2558 case 16: return MALI_FORMAT_SINT;
2559 case 32: return MALI_FORMAT_UNORM;
2560 default:
2561 unreachable("Invalid float size for format");
2562 }
2563 } else {
2564 switch (size) {
2565 case 1:
2566 case 8: return MALI_CHANNEL_8;
2567 case 16: return MALI_CHANNEL_16;
2568 case 32: return MALI_CHANNEL_32;
2569 default:
2570 unreachable("Invalid int size for format");
2571 }
2572 }
2573 }
2574
2575 static enum mali_format
2576 pan_format_from_glsl(const struct glsl_type *type)
2577 {
2578 enum glsl_base_type glsl_base = glsl_get_base_type(glsl_without_array(type));
2579 nir_alu_type t = nir_get_nir_type_for_glsl_base_type(glsl_base);
2580
2581 unsigned base = nir_alu_type_get_base_type(t);
2582 unsigned size = nir_alu_type_get_type_size(t);
2583
2584 return pan_format_from_nir_base(base) |
2585 pan_format_from_nir_size(base, size) |
2586 MALI_NR_CHANNELS(4);
2587 }
2588
2589 /* For each fragment writeout instruction, generate a writeout loop to
2590 * associate with it */
2591
2592 static void
2593 mir_add_writeout_loops(compiler_context *ctx)
2594 {
2595 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2596 midgard_instruction *br = ctx->writeout_branch[rt];
2597 if (!br) continue;
2598
2599 unsigned popped = br->branch.target_block;
2600 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2601 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2602
2603 /* If we have more RTs, we'll need to restore back after our
2604 * loop terminates */
2605
2606 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2607 midgard_instruction uncond = v_branch(false, false);
2608 uncond.branch.target_block = popped;
2609 emit_mir_instruction(ctx, uncond);
2610 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2611 schedule_barrier(ctx);
2612 } else {
2613 /* We're last, so we can terminate here */
2614 br->last_writeout = true;
2615 }
2616 }
2617 }
2618
2619 int
2620 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
2621 {
2622 struct util_dynarray *compiled = &program->compiled;
2623
2624 midgard_debug = debug_get_option_midgard_debug();
2625
2626 /* TODO: Bound against what? */
2627 compiler_context *ctx = rzalloc(NULL, compiler_context);
2628
2629 ctx->nir = nir;
2630 ctx->stage = nir->info.stage;
2631 ctx->is_blend = is_blend;
2632 ctx->alpha_ref = program->alpha_ref;
2633 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2634 ctx->quirks = midgard_get_quirks(gpu_id);
2635
2636 /* Start off with a safe cutoff, allowing usage of all 16 work
2637 * registers. Later, we'll promote uniform reads to uniform registers
2638 * if we determine it is beneficial to do so */
2639 ctx->uniform_cutoff = 8;
2640
2641 /* Initialize at a global (not block) level hash tables */
2642
2643 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2644 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2645
2646 /* Record the varying mapping for the command stream's bookkeeping */
2647
2648 struct exec_list *varyings =
2649 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2650
2651 unsigned max_varying = 0;
2652 nir_foreach_variable(var, varyings) {
2653 unsigned loc = var->data.driver_location;
2654 unsigned sz = glsl_type_size(var->type, FALSE);
2655
2656 for (int c = 0; c < sz; ++c) {
2657 program->varyings[loc + c] = var->data.location + c;
2658 program->varying_type[loc + c] = pan_format_from_glsl(var->type);
2659 max_varying = MAX2(max_varying, loc + c);
2660 }
2661 }
2662
2663 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2664 * (so we don't accidentally duplicate the epilogue since mesa/st has
2665 * messed with our I/O quite a bit already) */
2666
2667 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2668
2669 if (ctx->stage == MESA_SHADER_VERTEX) {
2670 NIR_PASS_V(nir, nir_lower_viewport_transform);
2671 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2672 }
2673
2674 NIR_PASS_V(nir, nir_lower_var_copies);
2675 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2676 NIR_PASS_V(nir, nir_split_var_copies);
2677 NIR_PASS_V(nir, nir_lower_var_copies);
2678 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2679 NIR_PASS_V(nir, nir_lower_var_copies);
2680 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2681
2682 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2683 NIR_PASS_V(nir, nir_lower_ssbo);
2684 NIR_PASS_V(nir, midgard_nir_lower_zs_store);
2685
2686 /* Optimisation passes */
2687
2688 optimise_nir(nir, ctx->quirks);
2689
2690 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2691 nir_print_shader(nir, stdout);
2692 }
2693
2694 /* Assign sysvals and counts, now that we're sure
2695 * (post-optimisation) */
2696
2697 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
2698
2699 program->uniform_count = nir->num_uniforms;
2700 program->sysval_count = ctx->sysvals.sysval_count;
2701 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2702
2703 nir_foreach_function(func, nir) {
2704 if (!func->impl)
2705 continue;
2706
2707 list_inithead(&ctx->blocks);
2708 ctx->block_count = 0;
2709 ctx->func = func;
2710
2711 emit_cf_list(ctx, &func->impl->body);
2712 break; /* TODO: Multi-function shaders */
2713 }
2714
2715 util_dynarray_init(compiled, NULL);
2716
2717 /* Per-block lowering before opts */
2718
2719 mir_foreach_block(ctx, _block) {
2720 midgard_block *block = (midgard_block *) _block;
2721 inline_alu_constants(ctx, block);
2722 midgard_opt_promote_fmov(ctx, block);
2723 embedded_to_inline_constant(ctx, block);
2724 }
2725 /* MIR-level optimizations */
2726
2727 bool progress = false;
2728
2729 do {
2730 progress = false;
2731
2732 mir_foreach_block(ctx, _block) {
2733 midgard_block *block = (midgard_block *) _block;
2734 progress |= midgard_opt_pos_propagate(ctx, block);
2735 progress |= midgard_opt_copy_prop(ctx, block);
2736 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2737 progress |= midgard_opt_combine_projection(ctx, block);
2738 progress |= midgard_opt_varying_projection(ctx, block);
2739 progress |= midgard_opt_not_propagate(ctx, block);
2740 progress |= midgard_opt_fuse_src_invert(ctx, block);
2741 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2742 progress |= midgard_opt_csel_invert(ctx, block);
2743 progress |= midgard_opt_drop_cmp_invert(ctx, block);
2744 progress |= midgard_opt_invert_branch(ctx, block);
2745 }
2746 } while (progress);
2747
2748 mir_foreach_block(ctx, _block) {
2749 midgard_block *block = (midgard_block *) _block;
2750 midgard_lower_invert(ctx, block);
2751 midgard_lower_derivatives(ctx, block);
2752 }
2753
2754 /* Nested control-flow can result in dead branches at the end of the
2755 * block. This messes with our analysis and is just dead code, so cull
2756 * them */
2757 mir_foreach_block(ctx, _block) {
2758 midgard_block *block = (midgard_block *) _block;
2759 midgard_opt_cull_dead_branch(ctx, block);
2760 }
2761
2762 /* Ensure we were lowered */
2763 mir_foreach_instr_global(ctx, ins) {
2764 assert(!ins->invert);
2765 }
2766
2767 if (ctx->stage == MESA_SHADER_FRAGMENT)
2768 mir_add_writeout_loops(ctx);
2769
2770 /* Schedule! */
2771 midgard_schedule_program(ctx);
2772 mir_ra(ctx);
2773
2774 /* Now that all the bundles are scheduled and we can calculate block
2775 * sizes, emit actual branch instructions rather than placeholders */
2776
2777 int br_block_idx = 0;
2778
2779 mir_foreach_block(ctx, _block) {
2780 midgard_block *block = (midgard_block *) _block;
2781 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2782 for (int c = 0; c < bundle->instruction_count; ++c) {
2783 midgard_instruction *ins = bundle->instructions[c];
2784
2785 if (!midgard_is_branch_unit(ins->unit)) continue;
2786
2787 /* Parse some basic branch info */
2788 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2789 bool is_conditional = ins->branch.conditional;
2790 bool is_inverted = ins->branch.invert_conditional;
2791 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2792 bool is_writeout = ins->writeout;
2793
2794 /* Determine the block we're jumping to */
2795 int target_number = ins->branch.target_block;
2796
2797 /* Report the destination tag */
2798 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2799
2800 /* Count up the number of quadwords we're
2801 * jumping over = number of quadwords until
2802 * (br_block_idx, target_number) */
2803
2804 int quadword_offset = 0;
2805
2806 if (is_discard) {
2807 /* Ignored */
2808 } else if (target_number > br_block_idx) {
2809 /* Jump forward */
2810
2811 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2812 midgard_block *blk = mir_get_block(ctx, idx);
2813 assert(blk);
2814
2815 quadword_offset += blk->quadword_count;
2816 }
2817 } else {
2818 /* Jump backwards */
2819
2820 for (int idx = br_block_idx; idx >= target_number; --idx) {
2821 midgard_block *blk = mir_get_block(ctx, idx);
2822 assert(blk);
2823
2824 quadword_offset -= blk->quadword_count;
2825 }
2826 }
2827
2828 /* Unconditional extended branches (far jumps)
2829 * have issues, so we always use a conditional
2830 * branch, setting the condition to always for
2831 * unconditional. For compact unconditional
2832 * branches, cond isn't used so it doesn't
2833 * matter what we pick. */
2834
2835 midgard_condition cond =
2836 !is_conditional ? midgard_condition_always :
2837 is_inverted ? midgard_condition_false :
2838 midgard_condition_true;
2839
2840 midgard_jmp_writeout_op op =
2841 is_discard ? midgard_jmp_writeout_op_discard :
2842 is_writeout ? midgard_jmp_writeout_op_writeout :
2843 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2844 midgard_jmp_writeout_op_branch_cond;
2845
2846 if (!is_compact) {
2847 midgard_branch_extended branch =
2848 midgard_create_branch_extended(
2849 cond, op,
2850 dest_tag,
2851 quadword_offset);
2852
2853 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2854 } else if (is_conditional || is_discard) {
2855 midgard_branch_cond branch = {
2856 .op = op,
2857 .dest_tag = dest_tag,
2858 .offset = quadword_offset,
2859 .cond = cond
2860 };
2861
2862 assert(branch.offset == quadword_offset);
2863
2864 memcpy(&ins->br_compact, &branch, sizeof(branch));
2865 } else {
2866 assert(op == midgard_jmp_writeout_op_branch_uncond);
2867
2868 midgard_branch_uncond branch = {
2869 .op = op,
2870 .dest_tag = dest_tag,
2871 .offset = quadword_offset,
2872 .unknown = 1
2873 };
2874
2875 assert(branch.offset == quadword_offset);
2876
2877 memcpy(&ins->br_compact, &branch, sizeof(branch));
2878 }
2879 }
2880 }
2881
2882 ++br_block_idx;
2883 }
2884
2885 /* Emit flat binary from the instruction arrays. Iterate each block in
2886 * sequence. Save instruction boundaries such that lookahead tags can
2887 * be assigned easily */
2888
2889 /* Cache _all_ bundles in source order for lookahead across failed branches */
2890
2891 int bundle_count = 0;
2892 mir_foreach_block(ctx, _block) {
2893 midgard_block *block = (midgard_block *) _block;
2894 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2895 }
2896 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2897 int bundle_idx = 0;
2898 mir_foreach_block(ctx, _block) {
2899 midgard_block *block = (midgard_block *) _block;
2900 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2901 source_order_bundles[bundle_idx++] = bundle;
2902 }
2903 }
2904
2905 int current_bundle = 0;
2906
2907 /* Midgard prefetches instruction types, so during emission we
2908 * need to lookahead. Unless this is the last instruction, in
2909 * which we return 1. */
2910
2911 mir_foreach_block(ctx, _block) {
2912 midgard_block *block = (midgard_block *) _block;
2913 mir_foreach_bundle_in_block(block, bundle) {
2914 int lookahead = 1;
2915
2916 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
2917 lookahead = source_order_bundles[current_bundle + 1]->tag;
2918
2919 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2920 ++current_bundle;
2921 }
2922
2923 /* TODO: Free deeper */
2924 //util_dynarray_fini(&block->instructions);
2925 }
2926
2927 free(source_order_bundles);
2928
2929 /* Report the very first tag executed */
2930 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2931
2932 /* Deal with off-by-one related to the fencepost problem */
2933 program->work_register_count = ctx->work_registers + 1;
2934 program->uniform_cutoff = ctx->uniform_cutoff;
2935
2936 program->blend_patch_offset = ctx->blend_constant_offset;
2937 program->tls_size = ctx->tls_size;
2938
2939 if (midgard_debug & MIDGARD_DBG_SHADERS)
2940 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2941
2942 if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
2943 unsigned nr_bundles = 0, nr_ins = 0;
2944
2945 /* Count instructions and bundles */
2946
2947 mir_foreach_block(ctx, _block) {
2948 midgard_block *block = (midgard_block *) _block;
2949 nr_bundles += util_dynarray_num_elements(
2950 &block->bundles, midgard_bundle);
2951
2952 mir_foreach_bundle_in_block(block, bun)
2953 nr_ins += bun->instruction_count;
2954 }
2955
2956 /* Calculate thread count. There are certain cutoffs by
2957 * register count for thread count */
2958
2959 unsigned nr_registers = program->work_register_count;
2960
2961 unsigned nr_threads =
2962 (nr_registers <= 4) ? 4 :
2963 (nr_registers <= 8) ? 2 :
2964 1;
2965
2966 /* Dump stats */
2967
2968 fprintf(stderr, "shader%d - %s shader: "
2969 "%u inst, %u bundles, %u quadwords, "
2970 "%u registers, %u threads, %u loops, "
2971 "%u:%u spills:fills\n",
2972 SHADER_DB_COUNT++,
2973 gl_shader_stage_name(ctx->stage),
2974 nr_ins, nr_bundles, ctx->quadword_count,
2975 nr_registers, nr_threads,
2976 ctx->loop_count,
2977 ctx->spills, ctx->fills);
2978 }
2979
2980 ralloc_free(ctx);
2981
2982 return 0;
2983 }