pan/mdg: Remove texture_op_count
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/u_math.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50 #include "midgard_quirks.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71 static midgard_block *
72 create_empty_block(compiler_context *ctx)
73 {
74 midgard_block *blk = rzalloc(ctx, midgard_block);
75
76 blk->base.predecessors = _mesa_set_create(blk,
77 _mesa_hash_pointer,
78 _mesa_key_pointer_equal);
79
80 blk->base.name = ctx->block_source_count++;
81
82 return blk;
83 }
84
85 static void
86 schedule_barrier(compiler_context *ctx)
87 {
88 midgard_block *temp = ctx->after_block;
89 ctx->after_block = create_empty_block(ctx);
90 ctx->block_count++;
91 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
92 list_inithead(&ctx->after_block->base.instructions);
93 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
94 ctx->current_block = ctx->after_block;
95 ctx->after_block = temp;
96 }
97
98 /* Helpers to generate midgard_instruction's using macro magic, since every
99 * driver seems to do it that way */
100
101 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
102
103 #define M_LOAD_STORE(name, store, T) \
104 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
105 midgard_instruction i = { \
106 .type = TAG_LOAD_STORE_4, \
107 .mask = 0xF, \
108 .dest = ~0, \
109 .src = { ~0, ~0, ~0, ~0 }, \
110 .swizzle = SWIZZLE_IDENTITY_4, \
111 .load_store = { \
112 .op = midgard_op_##name, \
113 .address = address \
114 } \
115 }; \
116 \
117 if (store) { \
118 i.src[0] = ssa; \
119 i.src_types[0] = T; \
120 } else { \
121 i.dest = ssa; \
122 i.dest_type = T; \
123 } \
124 return i; \
125 }
126
127 #define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
128 #define M_STORE(name, T) M_LOAD_STORE(name, true, T)
129
130 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
131 * the corresponding Midgard source */
132
133 static midgard_vector_alu_src
134 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
135 bool half, bool sext)
136 {
137 /* Figure out how many components there are so we can adjust.
138 * Specifically we want to broadcast the last channel so things like
139 * ball2/3 work.
140 */
141
142 if (broadcast_count && src) {
143 uint8_t last_component = src->swizzle[broadcast_count - 1];
144
145 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
146 src->swizzle[c] = last_component;
147 }
148 }
149
150 midgard_vector_alu_src alu_src = {
151 .rep_low = 0,
152 .rep_high = 0,
153 .half = half
154 };
155
156 if (is_int) {
157 alu_src.mod = midgard_int_normal;
158
159 /* Sign/zero-extend if needed */
160
161 if (half) {
162 alu_src.mod = sext ?
163 midgard_int_sign_extend
164 : midgard_int_zero_extend;
165 }
166
167 /* These should have been lowered away */
168 if (src)
169 assert(!(src->abs || src->negate));
170 } else {
171 if (src)
172 alu_src.mod = (src->abs << 0) | (src->negate << 1);
173 }
174
175 return alu_src;
176 }
177
178 M_LOAD(ld_attr_32, nir_type_uint32);
179 M_LOAD(ld_vary_32, nir_type_uint32);
180 M_LOAD(ld_ubo_int4, nir_type_uint32);
181 M_LOAD(ld_int4, nir_type_uint32);
182 M_STORE(st_int4, nir_type_uint32);
183 M_LOAD(ld_color_buffer_32u, nir_type_uint32);
184 M_STORE(st_vary_32, nir_type_uint32);
185 M_LOAD(ld_cubemap_coords, nir_type_uint32);
186 M_LOAD(ld_compute_id, nir_type_uint32);
187
188 static midgard_instruction
189 v_branch(bool conditional, bool invert)
190 {
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BRANCH,
194 .compact_branch = true,
195 .branch = {
196 .conditional = conditional,
197 .invert_conditional = invert
198 },
199 .dest = ~0,
200 .src = { ~0, ~0, ~0, ~0 },
201 };
202
203 return ins;
204 }
205
206 static midgard_branch_extended
207 midgard_create_branch_extended( midgard_condition cond,
208 midgard_jmp_writeout_op op,
209 unsigned dest_tag,
210 signed quadword_offset)
211 {
212 /* The condition code is actually a LUT describing a function to
213 * combine multiple condition codes. However, we only support a single
214 * condition code at the moment, so we just duplicate over a bunch of
215 * times. */
216
217 uint16_t duplicated_cond =
218 (cond << 14) |
219 (cond << 12) |
220 (cond << 10) |
221 (cond << 8) |
222 (cond << 6) |
223 (cond << 4) |
224 (cond << 2) |
225 (cond << 0);
226
227 midgard_branch_extended branch = {
228 .op = op,
229 .dest_tag = dest_tag,
230 .offset = quadword_offset,
231 .cond = duplicated_cond
232 };
233
234 return branch;
235 }
236
237 static void
238 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
239 {
240 ins->has_constants = true;
241 memcpy(&ins->constants, constants, 16);
242 }
243
244 static int
245 glsl_type_size(const struct glsl_type *type, bool bindless)
246 {
247 return glsl_count_attribute_slots(type, false);
248 }
249
250 /* Lower fdot2 to a vector multiplication followed by channel addition */
251 static void
252 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
253 {
254 if (alu->op != nir_op_fdot2)
255 return;
256
257 b->cursor = nir_before_instr(&alu->instr);
258
259 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
260 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
261
262 nir_ssa_def *product = nir_fmul(b, src0, src1);
263
264 nir_ssa_def *sum = nir_fadd(b,
265 nir_channel(b, product, 0),
266 nir_channel(b, product, 1));
267
268 /* Replace the fdot2 with this sum */
269 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
270 }
271
272 static bool
273 midgard_nir_lower_fdot2(nir_shader *shader)
274 {
275 bool progress = false;
276
277 nir_foreach_function(function, shader) {
278 if (!function->impl) continue;
279
280 nir_builder _b;
281 nir_builder *b = &_b;
282 nir_builder_init(b, function->impl);
283
284 nir_foreach_block(block, function->impl) {
285 nir_foreach_instr_safe(instr, block) {
286 if (instr->type != nir_instr_type_alu) continue;
287
288 nir_alu_instr *alu = nir_instr_as_alu(instr);
289 midgard_nir_lower_fdot2_body(b, alu);
290
291 progress |= true;
292 }
293 }
294
295 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
296
297 }
298
299 return progress;
300 }
301
302 /* Midgard can't write depth and stencil separately. It has to happen in a
303 * single store operation containing both. Let's add a panfrost specific
304 * intrinsic and turn all depth/stencil stores into a packed depth+stencil
305 * one.
306 */
307 static bool
308 midgard_nir_lower_zs_store(nir_shader *nir)
309 {
310 if (nir->info.stage != MESA_SHADER_FRAGMENT)
311 return false;
312
313 nir_variable *z_var = NULL, *s_var = NULL;
314
315 nir_foreach_variable(var, &nir->outputs) {
316 if (var->data.location == FRAG_RESULT_DEPTH)
317 z_var = var;
318 else if (var->data.location == FRAG_RESULT_STENCIL)
319 s_var = var;
320 }
321
322 if (!z_var && !s_var)
323 return false;
324
325 bool progress = false;
326
327 nir_foreach_function(function, nir) {
328 if (!function->impl) continue;
329
330 nir_intrinsic_instr *z_store = NULL, *s_store = NULL, *last_store = NULL;
331
332 nir_foreach_block(block, function->impl) {
333 nir_foreach_instr_safe(instr, block) {
334 if (instr->type != nir_instr_type_intrinsic)
335 continue;
336
337 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
338 if (intr->intrinsic != nir_intrinsic_store_output)
339 continue;
340
341 if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
342 assert(!z_store);
343 z_store = intr;
344 last_store = intr;
345 }
346
347 if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
348 assert(!s_store);
349 s_store = intr;
350 last_store = intr;
351 }
352 }
353 }
354
355 if (!z_store && !s_store) continue;
356
357 nir_builder b;
358 nir_builder_init(&b, function->impl);
359
360 b.cursor = nir_before_instr(&last_store->instr);
361
362 nir_ssa_def *zs_store_src;
363
364 if (z_store && s_store) {
365 nir_ssa_def *srcs[2] = {
366 nir_ssa_for_src(&b, z_store->src[0], 1),
367 nir_ssa_for_src(&b, s_store->src[0], 1),
368 };
369
370 zs_store_src = nir_vec(&b, srcs, 2);
371 } else {
372 zs_store_src = nir_ssa_for_src(&b, last_store->src[0], 1);
373 }
374
375 nir_intrinsic_instr *zs_store;
376
377 zs_store = nir_intrinsic_instr_create(b.shader,
378 nir_intrinsic_store_zs_output_pan);
379 zs_store->src[0] = nir_src_for_ssa(zs_store_src);
380 zs_store->num_components = z_store && s_store ? 2 : 1;
381 nir_intrinsic_set_component(zs_store, z_store ? 0 : 1);
382
383 /* Replace the Z and S store by a ZS store */
384 nir_builder_instr_insert(&b, &zs_store->instr);
385
386 if (z_store)
387 nir_instr_remove(&z_store->instr);
388
389 if (s_store)
390 nir_instr_remove(&s_store->instr);
391
392 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
393 progress = true;
394 }
395
396 return progress;
397 }
398
399 /* Flushes undefined values to zero */
400
401 static void
402 optimise_nir(nir_shader *nir, unsigned quirks)
403 {
404 bool progress;
405 unsigned lower_flrp =
406 (nir->options->lower_flrp16 ? 16 : 0) |
407 (nir->options->lower_flrp32 ? 32 : 0) |
408 (nir->options->lower_flrp64 ? 64 : 0);
409
410 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
411 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
412
413 nir_lower_tex_options lower_tex_options = {
414 .lower_txs_lod = true,
415 .lower_txp = ~0,
416 .lower_tex_without_implicit_lod =
417 (quirks & MIDGARD_EXPLICIT_LOD),
418
419 /* TODO: we have native gradient.. */
420 .lower_txd = true,
421 };
422
423 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
424
425 /* Must lower fdot2 after tex is lowered */
426 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
427
428 /* T720 is broken. */
429
430 if (quirks & MIDGARD_BROKEN_LOD)
431 NIR_PASS_V(nir, midgard_nir_lod_errata);
432
433 do {
434 progress = false;
435
436 NIR_PASS(progress, nir, nir_lower_var_copies);
437 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
438
439 NIR_PASS(progress, nir, nir_copy_prop);
440 NIR_PASS(progress, nir, nir_opt_remove_phis);
441 NIR_PASS(progress, nir, nir_opt_dce);
442 NIR_PASS(progress, nir, nir_opt_dead_cf);
443 NIR_PASS(progress, nir, nir_opt_cse);
444 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
445 NIR_PASS(progress, nir, nir_opt_algebraic);
446 NIR_PASS(progress, nir, nir_opt_constant_folding);
447
448 if (lower_flrp != 0) {
449 bool lower_flrp_progress = false;
450 NIR_PASS(lower_flrp_progress,
451 nir,
452 nir_lower_flrp,
453 lower_flrp,
454 false /* always_precise */,
455 nir->options->lower_ffma);
456 if (lower_flrp_progress) {
457 NIR_PASS(progress, nir,
458 nir_opt_constant_folding);
459 progress = true;
460 }
461
462 /* Nothing should rematerialize any flrps, so we only
463 * need to do this lowering once.
464 */
465 lower_flrp = 0;
466 }
467
468 NIR_PASS(progress, nir, nir_opt_undef);
469 NIR_PASS(progress, nir, nir_undef_to_zero);
470
471 NIR_PASS(progress, nir, nir_opt_loop_unroll,
472 nir_var_shader_in |
473 nir_var_shader_out |
474 nir_var_function_temp);
475
476 NIR_PASS(progress, nir, nir_opt_vectorize);
477 } while (progress);
478
479 /* Must be run at the end to prevent creation of fsin/fcos ops */
480 NIR_PASS(progress, nir, midgard_nir_scale_trig);
481
482 do {
483 progress = false;
484
485 NIR_PASS(progress, nir, nir_opt_dce);
486 NIR_PASS(progress, nir, nir_opt_algebraic);
487 NIR_PASS(progress, nir, nir_opt_constant_folding);
488 NIR_PASS(progress, nir, nir_copy_prop);
489 } while (progress);
490
491 NIR_PASS(progress, nir, nir_opt_algebraic_late);
492 NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
493
494 /* We implement booleans as 32-bit 0/~0 */
495 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
496
497 /* Now that booleans are lowered, we can run out late opts */
498 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
499
500 /* Lower mods for float ops only. Integer ops don't support modifiers
501 * (saturate doesn't make sense on integers, neg/abs require dedicated
502 * instructions) */
503
504 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
505 NIR_PASS(progress, nir, nir_copy_prop);
506 NIR_PASS(progress, nir, nir_opt_dce);
507
508 /* Take us out of SSA */
509 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
510 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
511
512 /* We are a vector architecture; write combine where possible */
513 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
514 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
515
516 NIR_PASS(progress, nir, nir_opt_dce);
517 }
518
519 /* Do not actually emit a load; instead, cache the constant for inlining */
520
521 static void
522 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
523 {
524 nir_ssa_def def = instr->def;
525
526 midgard_constants *consts = rzalloc(NULL, midgard_constants);
527
528 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
529
530 #define RAW_CONST_COPY(bits) \
531 nir_const_value_to_array(consts->u##bits, instr->value, \
532 instr->def.num_components, u##bits)
533
534 switch (instr->def.bit_size) {
535 case 64:
536 RAW_CONST_COPY(64);
537 break;
538 case 32:
539 RAW_CONST_COPY(32);
540 break;
541 case 16:
542 RAW_CONST_COPY(16);
543 break;
544 case 8:
545 RAW_CONST_COPY(8);
546 break;
547 default:
548 unreachable("Invalid bit_size for load_const instruction\n");
549 }
550
551 /* Shifted for SSA, +1 for off-by-one */
552 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
553 }
554
555 /* Normally constants are embedded implicitly, but for I/O and such we have to
556 * explicitly emit a move with the constant source */
557
558 static void
559 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
560 {
561 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
562
563 if (constant_value) {
564 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
565 attach_constants(ctx, &ins, constant_value, node + 1);
566 emit_mir_instruction(ctx, ins);
567 }
568 }
569
570 static bool
571 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
572 {
573 unsigned comp = src->swizzle[0];
574
575 for (unsigned c = 1; c < nr_components; ++c) {
576 if (src->swizzle[c] != comp)
577 return true;
578 }
579
580 return false;
581 }
582
583 #define ALU_CASE(nir, _op) \
584 case nir_op_##nir: \
585 op = midgard_alu_op_##_op; \
586 assert(src_bitsize == dst_bitsize); \
587 break;
588
589 #define ALU_CASE_BCAST(nir, _op, count) \
590 case nir_op_##nir: \
591 op = midgard_alu_op_##_op; \
592 broadcast_swizzle = count; \
593 assert(src_bitsize == dst_bitsize); \
594 break;
595 static bool
596 nir_is_fzero_constant(nir_src src)
597 {
598 if (!nir_src_is_const(src))
599 return false;
600
601 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
602 if (nir_src_comp_as_float(src, c) != 0.0)
603 return false;
604 }
605
606 return true;
607 }
608
609 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
610 * special treatment override this anyway. */
611
612 static midgard_reg_mode
613 reg_mode_for_nir(nir_alu_instr *instr)
614 {
615 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
616
617 switch (src_bitsize) {
618 case 8:
619 return midgard_reg_mode_8;
620 case 16:
621 return midgard_reg_mode_16;
622 case 32:
623 return midgard_reg_mode_32;
624 case 64:
625 return midgard_reg_mode_64;
626 default:
627 unreachable("Invalid bit size");
628 }
629 }
630
631 static void
632 mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to)
633 {
634 unsigned bits = nir_src_bit_size(instr->src[i].src);
635
636 ins->src[to] = nir_src_index(NULL, &instr->src[i].src);
637 ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
638 }
639
640 static void
641 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
642 {
643 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
644 * is handled elsewhere */
645
646 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
647 midgard_emit_derivatives(ctx, instr);
648 return;
649 }
650
651 bool is_ssa = instr->dest.dest.is_ssa;
652
653 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
654 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
655 unsigned op = 0;
656
657 /* Number of components valid to check for the instruction (the rest
658 * will be forced to the last), or 0 to use as-is. Relevant as
659 * ball-type instructions have a channel count in NIR but are all vec4
660 * in Midgard */
661
662 unsigned broadcast_swizzle = 0;
663
664 /* What register mode should we operate in? */
665 midgard_reg_mode reg_mode =
666 reg_mode_for_nir(instr);
667
668 /* Do we need a destination override? Used for inline
669 * type conversion */
670
671 midgard_dest_override dest_override =
672 midgard_dest_override_none;
673
674 /* Should we use a smaller respective source and sign-extend? */
675
676 bool half_1 = false, sext_1 = false;
677 bool half_2 = false, sext_2 = false;
678
679 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
680 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
681
682 switch (instr->op) {
683 ALU_CASE(fadd, fadd);
684 ALU_CASE(fmul, fmul);
685 ALU_CASE(fmin, fmin);
686 ALU_CASE(fmax, fmax);
687 ALU_CASE(imin, imin);
688 ALU_CASE(imax, imax);
689 ALU_CASE(umin, umin);
690 ALU_CASE(umax, umax);
691 ALU_CASE(ffloor, ffloor);
692 ALU_CASE(fround_even, froundeven);
693 ALU_CASE(ftrunc, ftrunc);
694 ALU_CASE(fceil, fceil);
695 ALU_CASE(fdot3, fdot3);
696 ALU_CASE(fdot4, fdot4);
697 ALU_CASE(iadd, iadd);
698 ALU_CASE(isub, isub);
699 ALU_CASE(imul, imul);
700
701 /* Zero shoved as second-arg */
702 ALU_CASE(iabs, iabsdiff);
703
704 ALU_CASE(mov, imov);
705
706 ALU_CASE(feq32, feq);
707 ALU_CASE(fne32, fne);
708 ALU_CASE(flt32, flt);
709 ALU_CASE(ieq32, ieq);
710 ALU_CASE(ine32, ine);
711 ALU_CASE(ilt32, ilt);
712 ALU_CASE(ult32, ult);
713
714 /* We don't have a native b2f32 instruction. Instead, like many
715 * GPUs, we exploit booleans as 0/~0 for false/true, and
716 * correspondingly AND
717 * by 1.0 to do the type conversion. For the moment, prime us
718 * to emit:
719 *
720 * iand [whatever], #0
721 *
722 * At the end of emit_alu (as MIR), we'll fix-up the constant
723 */
724
725 ALU_CASE(b2f32, iand);
726 ALU_CASE(b2i32, iand);
727
728 /* Likewise, we don't have a dedicated f2b32 instruction, but
729 * we can do a "not equal to 0.0" test. */
730
731 ALU_CASE(f2b32, fne);
732 ALU_CASE(i2b32, ine);
733
734 ALU_CASE(frcp, frcp);
735 ALU_CASE(frsq, frsqrt);
736 ALU_CASE(fsqrt, fsqrt);
737 ALU_CASE(fexp2, fexp2);
738 ALU_CASE(flog2, flog2);
739
740 ALU_CASE(f2i64, f2i_rtz);
741 ALU_CASE(f2u64, f2u_rtz);
742 ALU_CASE(i2f64, i2f_rtz);
743 ALU_CASE(u2f64, u2f_rtz);
744
745 ALU_CASE(f2i32, f2i_rtz);
746 ALU_CASE(f2u32, f2u_rtz);
747 ALU_CASE(i2f32, i2f_rtz);
748 ALU_CASE(u2f32, u2f_rtz);
749
750 ALU_CASE(f2i16, f2i_rtz);
751 ALU_CASE(f2u16, f2u_rtz);
752 ALU_CASE(i2f16, i2f_rtz);
753 ALU_CASE(u2f16, u2f_rtz);
754
755 ALU_CASE(fsin, fsin);
756 ALU_CASE(fcos, fcos);
757
758 /* We'll set invert */
759 ALU_CASE(inot, imov);
760 ALU_CASE(iand, iand);
761 ALU_CASE(ior, ior);
762 ALU_CASE(ixor, ixor);
763 ALU_CASE(ishl, ishl);
764 ALU_CASE(ishr, iasr);
765 ALU_CASE(ushr, ilsr);
766
767 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
768 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
769 ALU_CASE(b32all_fequal4, fball_eq);
770
771 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
772 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
773 ALU_CASE(b32any_fnequal4, fbany_neq);
774
775 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
776 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
777 ALU_CASE(b32all_iequal4, iball_eq);
778
779 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
780 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
781 ALU_CASE(b32any_inequal4, ibany_neq);
782
783 /* Source mods will be shoved in later */
784 ALU_CASE(fabs, fmov);
785 ALU_CASE(fneg, fmov);
786 ALU_CASE(fsat, fmov);
787
788 /* For size conversion, we use a move. Ideally though we would squash
789 * these ops together; maybe that has to happen after in NIR as part of
790 * propagation...? An earlier algebraic pass ensured we step down by
791 * only / exactly one size. If stepping down, we use a dest override to
792 * reduce the size; if stepping up, we use a larger-sized move with a
793 * half source and a sign/zero-extension modifier */
794
795 case nir_op_i2i8:
796 case nir_op_i2i16:
797 case nir_op_i2i32:
798 case nir_op_i2i64:
799 /* If we end up upscale, we'll need a sign-extend on the
800 * operand (the second argument) */
801
802 sext_2 = true;
803 /* fallthrough */
804 case nir_op_u2u8:
805 case nir_op_u2u16:
806 case nir_op_u2u32:
807 case nir_op_u2u64:
808 case nir_op_f2f16:
809 case nir_op_f2f32:
810 case nir_op_f2f64: {
811 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
812 instr->op == nir_op_f2f64)
813 op = midgard_alu_op_fmov;
814 else
815 op = midgard_alu_op_imov;
816
817 if (dst_bitsize == (src_bitsize * 2)) {
818 /* Converting up */
819 half_2 = true;
820
821 /* Use a greater register mode */
822 reg_mode++;
823 } else if (src_bitsize == (dst_bitsize * 2)) {
824 /* Converting down */
825 dest_override = midgard_dest_override_lower;
826 }
827
828 break;
829 }
830
831 /* For greater-or-equal, we lower to less-or-equal and flip the
832 * arguments */
833
834 case nir_op_fge:
835 case nir_op_fge32:
836 case nir_op_ige32:
837 case nir_op_uge32: {
838 op =
839 instr->op == nir_op_fge ? midgard_alu_op_fle :
840 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
841 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
842 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
843 0;
844
845 /* Swap via temporary */
846 nir_alu_src temp = instr->src[1];
847 instr->src[1] = instr->src[0];
848 instr->src[0] = temp;
849
850 break;
851 }
852
853 case nir_op_b32csel: {
854 /* Midgard features both fcsel and icsel, depending on
855 * the type of the arguments/output. However, as long
856 * as we're careful we can _always_ use icsel and
857 * _never_ need fcsel, since the latter does additional
858 * floating-point-specific processing whereas the
859 * former just moves bits on the wire. It's not obvious
860 * why these are separate opcodes, save for the ability
861 * to do things like sat/pos/abs/neg for free */
862
863 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
864 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
865
866 /* The condition is the first argument; move the other
867 * arguments up one to be a binary instruction for
868 * Midgard with the condition last */
869
870 nir_alu_src temp = instr->src[2];
871
872 instr->src[2] = instr->src[0];
873 instr->src[0] = instr->src[1];
874 instr->src[1] = temp;
875
876 break;
877 }
878
879 default:
880 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
881 assert(0);
882 return;
883 }
884
885 /* Midgard can perform certain modifiers on output of an ALU op */
886 unsigned outmod;
887
888 if (midgard_is_integer_out_op(op)) {
889 outmod = midgard_outmod_int_wrap;
890 } else {
891 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
892 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
893 }
894
895 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
896
897 if (instr->op == nir_op_fmax) {
898 if (nir_is_fzero_constant(instr->src[0].src)) {
899 op = midgard_alu_op_fmov;
900 nr_inputs = 1;
901 outmod = midgard_outmod_pos;
902 instr->src[0] = instr->src[1];
903 } else if (nir_is_fzero_constant(instr->src[1].src)) {
904 op = midgard_alu_op_fmov;
905 nr_inputs = 1;
906 outmod = midgard_outmod_pos;
907 }
908 }
909
910 /* Fetch unit, quirks, etc information */
911 unsigned opcode_props = alu_opcode_props[op].props;
912 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
913
914 midgard_instruction ins = {
915 .type = TAG_ALU_4,
916 .dest = nir_dest_index(&instr->dest.dest),
917 .dest_type = nir_op_infos[instr->op].output_type
918 | nir_dest_bit_size(instr->dest.dest),
919 };
920
921 for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
922 ins.src[i] = ~0;
923
924 if (quirk_flipped_r24) {
925 ins.src[0] = ~0;
926 mir_copy_src(&ins, instr, 0, 1);
927 } else {
928 for (unsigned i = 0; i < nr_inputs; ++i)
929 mir_copy_src(&ins, instr, i, quirk_flipped_r24 ? 1 : i);
930 }
931
932 nir_alu_src *nirmods[3] = { NULL };
933
934 if (nr_inputs >= 2) {
935 nirmods[0] = &instr->src[0];
936 nirmods[1] = &instr->src[1];
937 } else if (nr_inputs == 1) {
938 nirmods[quirk_flipped_r24] = &instr->src[0];
939 } else {
940 assert(0);
941 }
942
943 if (nr_inputs == 3)
944 nirmods[2] = &instr->src[2];
945
946 /* These were lowered to a move, so apply the corresponding mod */
947
948 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
949 nir_alu_src *s = nirmods[quirk_flipped_r24];
950
951 if (instr->op == nir_op_fneg)
952 s->negate = !s->negate;
953
954 if (instr->op == nir_op_fabs)
955 s->abs = !s->abs;
956 }
957
958 bool is_int = midgard_is_integer_op(op);
959
960 ins.mask = mask_of(nr_components);
961
962 midgard_vector_alu alu = {
963 .op = op,
964 .reg_mode = reg_mode,
965 .dest_override = dest_override,
966 .outmod = outmod,
967
968 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
969 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
970 };
971
972 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
973
974 if (!is_ssa)
975 ins.mask &= instr->dest.write_mask;
976
977 for (unsigned m = 0; m < 3; ++m) {
978 if (!nirmods[m])
979 continue;
980
981 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
982 ins.swizzle[m][c] = nirmods[m]->swizzle[c];
983
984 /* Replicate. TODO: remove when vec16 lands */
985 for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
986 ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
987 }
988
989 if (nr_inputs == 3) {
990 /* Conditions can't have mods */
991 assert(!nirmods[2]->abs);
992 assert(!nirmods[2]->negate);
993 }
994
995 ins.alu = alu;
996
997 /* Late fixup for emulated instructions */
998
999 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1000 /* Presently, our second argument is an inline #0 constant.
1001 * Switch over to an embedded 1.0 constant (that can't fit
1002 * inline, since we're 32-bit, not 16-bit like the inline
1003 * constants) */
1004
1005 ins.has_inline_constant = false;
1006 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1007 ins.src_types[1] = nir_type_float32;
1008 ins.has_constants = true;
1009
1010 if (instr->op == nir_op_b2f32)
1011 ins.constants.f32[0] = 1.0f;
1012 else
1013 ins.constants.i32[0] = 1;
1014
1015 for (unsigned c = 0; c < 16; ++c)
1016 ins.swizzle[1][c] = 0;
1017 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1018 /* Lots of instructions need a 0 plonked in */
1019 ins.has_inline_constant = false;
1020 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1021 ins.src_types[1] = nir_type_uint32;
1022 ins.has_constants = true;
1023 ins.constants.u32[0] = 0;
1024
1025 for (unsigned c = 0; c < 16; ++c)
1026 ins.swizzle[1][c] = 0;
1027 } else if (instr->op == nir_op_inot) {
1028 ins.invert = true;
1029 }
1030
1031 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1032 /* To avoid duplicating the lookup tables (probably), true LUT
1033 * instructions can only operate as if they were scalars. Lower
1034 * them here by changing the component. */
1035
1036 unsigned orig_mask = ins.mask;
1037
1038 for (int i = 0; i < nr_components; ++i) {
1039 /* Mask the associated component, dropping the
1040 * instruction if needed */
1041
1042 ins.mask = 1 << i;
1043 ins.mask &= orig_mask;
1044
1045 if (!ins.mask)
1046 continue;
1047
1048 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1049 ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
1050
1051 emit_mir_instruction(ctx, ins);
1052 }
1053 } else {
1054 emit_mir_instruction(ctx, ins);
1055 }
1056 }
1057
1058 #undef ALU_CASE
1059
1060 static void
1061 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1062 {
1063 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1064 unsigned nir_mask = 0;
1065 unsigned dsize = 0;
1066
1067 if (is_read) {
1068 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1069 dsize = nir_dest_bit_size(intr->dest);
1070 } else {
1071 nir_mask = nir_intrinsic_write_mask(intr);
1072 dsize = 32;
1073 }
1074
1075 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1076 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1077 mir_set_bytemask(ins, bytemask);
1078
1079 if (dsize == 64)
1080 ins->load_64 = true;
1081 }
1082
1083 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1084 * optimized) versions of UBO #0 */
1085
1086 static midgard_instruction *
1087 emit_ubo_read(
1088 compiler_context *ctx,
1089 nir_instr *instr,
1090 unsigned dest,
1091 unsigned offset,
1092 nir_src *indirect_offset,
1093 unsigned indirect_shift,
1094 unsigned index)
1095 {
1096 /* TODO: half-floats */
1097
1098 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1099 ins.constants.u32[0] = offset;
1100
1101 if (instr->type == nir_instr_type_intrinsic)
1102 mir_set_intr_mask(instr, &ins, true);
1103
1104 if (indirect_offset) {
1105 ins.src[2] = nir_src_index(ctx, indirect_offset);
1106 ins.src_types[2] = nir_type_uint32;
1107 ins.load_store.arg_2 = (indirect_shift << 5);
1108 } else {
1109 ins.load_store.arg_2 = 0x1E;
1110 }
1111
1112 ins.load_store.arg_1 = index;
1113
1114 return emit_mir_instruction(ctx, ins);
1115 }
1116
1117 /* Globals are like UBOs if you squint. And shared memory is like globals if
1118 * you squint even harder */
1119
1120 static void
1121 emit_global(
1122 compiler_context *ctx,
1123 nir_instr *instr,
1124 bool is_read,
1125 unsigned srcdest,
1126 nir_src *offset,
1127 bool is_shared)
1128 {
1129 /* TODO: types */
1130
1131 midgard_instruction ins;
1132
1133 if (is_read)
1134 ins = m_ld_int4(srcdest, 0);
1135 else
1136 ins = m_st_int4(srcdest, 0);
1137
1138 mir_set_offset(ctx, &ins, offset, is_shared);
1139 mir_set_intr_mask(instr, &ins, is_read);
1140
1141 emit_mir_instruction(ctx, ins);
1142 }
1143
1144 static void
1145 emit_varying_read(
1146 compiler_context *ctx,
1147 unsigned dest, unsigned offset,
1148 unsigned nr_comp, unsigned component,
1149 nir_src *indirect_offset, nir_alu_type type, bool flat)
1150 {
1151 /* XXX: Half-floats? */
1152 /* TODO: swizzle, mask */
1153
1154 midgard_instruction ins = m_ld_vary_32(dest, offset);
1155 ins.mask = mask_of(nr_comp);
1156
1157 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1158 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1159
1160 midgard_varying_parameter p = {
1161 .is_varying = 1,
1162 .interpolation = midgard_interp_default,
1163 .flat = flat,
1164 };
1165
1166 unsigned u;
1167 memcpy(&u, &p, sizeof(p));
1168 ins.load_store.varying_parameters = u;
1169
1170 if (indirect_offset) {
1171 ins.src[2] = nir_src_index(ctx, indirect_offset);
1172 ins.src_types[2] = nir_type_uint32;
1173 } else
1174 ins.load_store.arg_2 = 0x1E;
1175
1176 ins.load_store.arg_1 = 0x9E;
1177
1178 /* Use the type appropriate load */
1179 switch (type) {
1180 case nir_type_uint:
1181 case nir_type_bool:
1182 ins.load_store.op = midgard_op_ld_vary_32u;
1183 break;
1184 case nir_type_int:
1185 ins.load_store.op = midgard_op_ld_vary_32i;
1186 break;
1187 case nir_type_float:
1188 ins.load_store.op = midgard_op_ld_vary_32;
1189 break;
1190 default:
1191 unreachable("Attempted to load unknown type");
1192 break;
1193 }
1194
1195 emit_mir_instruction(ctx, ins);
1196 }
1197
1198 static void
1199 emit_attr_read(
1200 compiler_context *ctx,
1201 unsigned dest, unsigned offset,
1202 unsigned nr_comp, nir_alu_type t)
1203 {
1204 midgard_instruction ins = m_ld_attr_32(dest, offset);
1205 ins.load_store.arg_1 = 0x1E;
1206 ins.load_store.arg_2 = 0x1E;
1207 ins.mask = mask_of(nr_comp);
1208
1209 /* Use the type appropriate load */
1210 switch (t) {
1211 case nir_type_uint:
1212 case nir_type_bool:
1213 ins.load_store.op = midgard_op_ld_attr_32u;
1214 break;
1215 case nir_type_int:
1216 ins.load_store.op = midgard_op_ld_attr_32i;
1217 break;
1218 case nir_type_float:
1219 ins.load_store.op = midgard_op_ld_attr_32;
1220 break;
1221 default:
1222 unreachable("Attempted to load unknown type");
1223 break;
1224 }
1225
1226 emit_mir_instruction(ctx, ins);
1227 }
1228
1229 static void
1230 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1231 unsigned nr_components, unsigned offset)
1232 {
1233 nir_dest nir_dest;
1234
1235 /* Figure out which uniform this is */
1236 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1237 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1238
1239 unsigned dest = nir_dest_index(&nir_dest);
1240
1241 /* Sysvals are prefix uniforms */
1242 unsigned uniform = ((uintptr_t) val) - 1;
1243
1244 /* Emit the read itself -- this is never indirect */
1245 midgard_instruction *ins =
1246 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1247
1248 ins->mask = mask_of(nr_components);
1249 }
1250
1251 static unsigned
1252 compute_builtin_arg(nir_op op)
1253 {
1254 switch (op) {
1255 case nir_intrinsic_load_work_group_id:
1256 return 0x14;
1257 case nir_intrinsic_load_local_invocation_id:
1258 return 0x10;
1259 default:
1260 unreachable("Invalid compute paramater loaded");
1261 }
1262 }
1263
1264 static void
1265 emit_fragment_store(compiler_context *ctx, unsigned src, enum midgard_rt_id rt)
1266 {
1267 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1268
1269 midgard_instruction *br = ctx->writeout_branch[rt];
1270
1271 assert(!br);
1272
1273 emit_explicit_constant(ctx, src, src);
1274
1275 struct midgard_instruction ins =
1276 v_branch(false, false);
1277
1278 ins.writeout = true;
1279
1280 /* Add dependencies */
1281 ins.src[0] = src;
1282 ins.src_types[0] = nir_type_uint32;
1283 ins.constants.u32[0] = rt == MIDGARD_ZS_RT ?
1284 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1285
1286 /* Emit the branch */
1287 br = emit_mir_instruction(ctx, ins);
1288 schedule_barrier(ctx);
1289 ctx->writeout_branch[rt] = br;
1290
1291 /* Push our current location = current block count - 1 = where we'll
1292 * jump to. Maybe a bit too clever for my own good */
1293
1294 br->branch.target_block = ctx->block_count - 1;
1295 }
1296
1297 static void
1298 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1299 {
1300 unsigned reg = nir_dest_index(&instr->dest);
1301 midgard_instruction ins = m_ld_compute_id(reg, 0);
1302 ins.mask = mask_of(3);
1303 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1304 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1305 emit_mir_instruction(ctx, ins);
1306 }
1307
1308 static unsigned
1309 vertex_builtin_arg(nir_op op)
1310 {
1311 switch (op) {
1312 case nir_intrinsic_load_vertex_id:
1313 return PAN_VERTEX_ID;
1314 case nir_intrinsic_load_instance_id:
1315 return PAN_INSTANCE_ID;
1316 default:
1317 unreachable("Invalid vertex builtin");
1318 }
1319 }
1320
1321 static void
1322 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1323 {
1324 unsigned reg = nir_dest_index(&instr->dest);
1325 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1326 }
1327
1328 static void
1329 emit_control_barrier(compiler_context *ctx)
1330 {
1331 midgard_instruction ins = {
1332 .type = TAG_TEXTURE_4,
1333 .src = { ~0, ~0, ~0, ~0 },
1334 .texture = {
1335 .op = TEXTURE_OP_BARRIER,
1336
1337 /* TODO: optimize */
1338 .barrier_buffer = 1,
1339 .barrier_shared = 1
1340 }
1341 };
1342
1343 emit_mir_instruction(ctx, ins);
1344 }
1345
1346 static const nir_variable *
1347 search_var(struct exec_list *vars, unsigned driver_loc)
1348 {
1349 nir_foreach_variable(var, vars) {
1350 if (var->data.driver_location == driver_loc)
1351 return var;
1352 }
1353
1354 return NULL;
1355 }
1356
1357 static void
1358 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1359 {
1360 unsigned offset = 0, reg;
1361
1362 switch (instr->intrinsic) {
1363 case nir_intrinsic_discard_if:
1364 case nir_intrinsic_discard: {
1365 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1366 struct midgard_instruction discard = v_branch(conditional, false);
1367 discard.branch.target_type = TARGET_DISCARD;
1368
1369 if (conditional) {
1370 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1371 discard.src_types[0] = nir_type_uint32;
1372 }
1373
1374 emit_mir_instruction(ctx, discard);
1375 schedule_barrier(ctx);
1376
1377 break;
1378 }
1379
1380 case nir_intrinsic_load_uniform:
1381 case nir_intrinsic_load_ubo:
1382 case nir_intrinsic_load_global:
1383 case nir_intrinsic_load_shared:
1384 case nir_intrinsic_load_input:
1385 case nir_intrinsic_load_interpolated_input: {
1386 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1387 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1388 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1389 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1390 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1391 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1392
1393 /* Get the base type of the intrinsic */
1394 /* TODO: Infer type? Does it matter? */
1395 nir_alu_type t =
1396 (is_ubo || is_global || is_shared) ? nir_type_uint :
1397 (is_interp) ? nir_type_float :
1398 nir_intrinsic_type(instr);
1399
1400 t = nir_alu_type_get_base_type(t);
1401
1402 if (!(is_ubo || is_global)) {
1403 offset = nir_intrinsic_base(instr);
1404 }
1405
1406 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1407
1408 nir_src *src_offset = nir_get_io_offset_src(instr);
1409
1410 bool direct = nir_src_is_const(*src_offset);
1411 nir_src *indirect_offset = direct ? NULL : src_offset;
1412
1413 if (direct)
1414 offset += nir_src_as_uint(*src_offset);
1415
1416 /* We may need to apply a fractional offset */
1417 int component = (is_flat || is_interp) ?
1418 nir_intrinsic_component(instr) : 0;
1419 reg = nir_dest_index(&instr->dest);
1420
1421 if (is_uniform && !ctx->is_blend) {
1422 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1423 } else if (is_ubo) {
1424 nir_src index = instr->src[0];
1425
1426 /* TODO: Is indirect block number possible? */
1427 assert(nir_src_is_const(index));
1428
1429 uint32_t uindex = nir_src_as_uint(index) + 1;
1430 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1431 } else if (is_global || is_shared) {
1432 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1433 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1434 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t, is_flat);
1435 } else if (ctx->is_blend) {
1436 /* For blend shaders, load the input color, which is
1437 * preloaded to r0 */
1438
1439 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1440 emit_mir_instruction(ctx, move);
1441 schedule_barrier(ctx);
1442 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1443 emit_attr_read(ctx, reg, offset, nr_comp, t);
1444 } else {
1445 DBG("Unknown load\n");
1446 assert(0);
1447 }
1448
1449 break;
1450 }
1451
1452 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1453 case nir_intrinsic_load_barycentric_pixel:
1454 case nir_intrinsic_load_barycentric_centroid:
1455 break;
1456
1457 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1458
1459 case nir_intrinsic_load_raw_output_pan:
1460 case nir_intrinsic_load_output_u8_as_fp16_pan:
1461 reg = nir_dest_index(&instr->dest);
1462 assert(ctx->is_blend);
1463
1464 /* T720 and below use different blend opcodes with slightly
1465 * different semantics than T760 and up */
1466
1467 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1468 bool old_blend = ctx->quirks & MIDGARD_OLD_BLEND;
1469
1470 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1471 ld.load_store.op = old_blend ?
1472 midgard_op_ld_color_buffer_u8_as_fp16_old :
1473 midgard_op_ld_color_buffer_u8_as_fp16;
1474
1475 if (old_blend) {
1476 ld.load_store.address = 1;
1477 ld.load_store.arg_2 = 0x1E;
1478 }
1479
1480 for (unsigned c = 2; c < 16; ++c)
1481 ld.swizzle[0][c] = 0;
1482 }
1483
1484 emit_mir_instruction(ctx, ld);
1485 break;
1486
1487 case nir_intrinsic_load_blend_const_color_rgba: {
1488 assert(ctx->is_blend);
1489 reg = nir_dest_index(&instr->dest);
1490
1491 /* Blend constants are embedded directly in the shader and
1492 * patched in, so we use some magic routing */
1493
1494 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1495 ins.has_constants = true;
1496 ins.has_blend_constant = true;
1497 emit_mir_instruction(ctx, ins);
1498 break;
1499 }
1500
1501 case nir_intrinsic_store_zs_output_pan: {
1502 assert(ctx->stage == MESA_SHADER_FRAGMENT);
1503 emit_fragment_store(ctx, nir_src_index(ctx, &instr->src[0]),
1504 MIDGARD_ZS_RT);
1505
1506 midgard_instruction *br = ctx->writeout_branch[MIDGARD_ZS_RT];
1507
1508 if (!nir_intrinsic_component(instr))
1509 br->writeout_depth = true;
1510 if (nir_intrinsic_component(instr) ||
1511 instr->num_components)
1512 br->writeout_stencil = true;
1513 assert(br->writeout_depth | br->writeout_stencil);
1514 break;
1515 }
1516
1517 case nir_intrinsic_store_output:
1518 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1519
1520 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1521
1522 reg = nir_src_index(ctx, &instr->src[0]);
1523
1524 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1525 const nir_variable *var;
1526 enum midgard_rt_id rt;
1527
1528 var = search_var(&ctx->nir->outputs,
1529 nir_intrinsic_base(instr));
1530 assert(var);
1531 if (var->data.location == FRAG_RESULT_COLOR)
1532 rt = MIDGARD_COLOR_RT0;
1533 else if (var->data.location >= FRAG_RESULT_DATA0)
1534 rt = MIDGARD_COLOR_RT0 + var->data.location -
1535 FRAG_RESULT_DATA0;
1536 else
1537 assert(0);
1538
1539 emit_fragment_store(ctx, reg, rt);
1540 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1541 /* We should have been vectorized, though we don't
1542 * currently check that st_vary is emitted only once
1543 * per slot (this is relevant, since there's not a mask
1544 * parameter available on the store [set to 0 by the
1545 * blob]). We do respect the component by adjusting the
1546 * swizzle. If this is a constant source, we'll need to
1547 * emit that explicitly. */
1548
1549 emit_explicit_constant(ctx, reg, reg);
1550
1551 unsigned dst_component = nir_intrinsic_component(instr);
1552 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1553
1554 midgard_instruction st = m_st_vary_32(reg, offset);
1555 st.load_store.arg_1 = 0x9E;
1556 st.load_store.arg_2 = 0x1E;
1557
1558 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1559 case nir_type_uint:
1560 case nir_type_bool:
1561 st.load_store.op = midgard_op_st_vary_32u;
1562 break;
1563 case nir_type_int:
1564 st.load_store.op = midgard_op_st_vary_32i;
1565 break;
1566 case nir_type_float:
1567 st.load_store.op = midgard_op_st_vary_32;
1568 break;
1569 default:
1570 unreachable("Attempted to store unknown type");
1571 break;
1572 }
1573
1574 /* nir_intrinsic_component(store_intr) encodes the
1575 * destination component start. Source component offset
1576 * adjustment is taken care of in
1577 * install_registers_instr(), when offset_swizzle() is
1578 * called.
1579 */
1580 unsigned src_component = COMPONENT_X;
1581
1582 assert(nr_comp > 0);
1583 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1584 st.swizzle[0][i] = src_component;
1585 if (i >= dst_component && i < dst_component + nr_comp - 1)
1586 src_component++;
1587 }
1588
1589 emit_mir_instruction(ctx, st);
1590 } else {
1591 DBG("Unknown store\n");
1592 assert(0);
1593 }
1594
1595 break;
1596
1597 /* Special case of store_output for lowered blend shaders */
1598 case nir_intrinsic_store_raw_output_pan:
1599 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1600 reg = nir_src_index(ctx, &instr->src[0]);
1601
1602 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1603 /* Suppose reg = qr0.xyzw. That means 4 8-bit ---> 1 32-bit. So
1604 * reg = r0.x. We want to splatter. So we can do a 32-bit move
1605 * of:
1606 *
1607 * imov r0.xyzw, r0.xxxx
1608 */
1609
1610 unsigned expanded = make_compiler_temp(ctx);
1611
1612 midgard_instruction splatter = v_mov(reg, expanded);
1613
1614 for (unsigned c = 0; c < 16; ++c)
1615 splatter.swizzle[1][c] = 0;
1616
1617 emit_mir_instruction(ctx, splatter);
1618 emit_fragment_store(ctx, expanded, ctx->blend_rt);
1619 } else
1620 emit_fragment_store(ctx, reg, ctx->blend_rt);
1621
1622 break;
1623
1624 case nir_intrinsic_store_global:
1625 case nir_intrinsic_store_shared:
1626 reg = nir_src_index(ctx, &instr->src[0]);
1627 emit_explicit_constant(ctx, reg, reg);
1628
1629 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
1630 break;
1631
1632 case nir_intrinsic_load_ssbo_address:
1633 emit_sysval_read(ctx, &instr->instr, 1, 0);
1634 break;
1635
1636 case nir_intrinsic_get_buffer_size:
1637 emit_sysval_read(ctx, &instr->instr, 1, 8);
1638 break;
1639
1640 case nir_intrinsic_load_viewport_scale:
1641 case nir_intrinsic_load_viewport_offset:
1642 case nir_intrinsic_load_num_work_groups:
1643 case nir_intrinsic_load_sampler_lod_parameters_pan:
1644 emit_sysval_read(ctx, &instr->instr, 3, 0);
1645 break;
1646
1647 case nir_intrinsic_load_work_group_id:
1648 case nir_intrinsic_load_local_invocation_id:
1649 emit_compute_builtin(ctx, instr);
1650 break;
1651
1652 case nir_intrinsic_load_vertex_id:
1653 case nir_intrinsic_load_instance_id:
1654 emit_vertex_builtin(ctx, instr);
1655 break;
1656
1657 case nir_intrinsic_memory_barrier_buffer:
1658 case nir_intrinsic_memory_barrier_shared:
1659 break;
1660
1661 case nir_intrinsic_control_barrier:
1662 schedule_barrier(ctx);
1663 emit_control_barrier(ctx);
1664 schedule_barrier(ctx);
1665 break;
1666
1667 default:
1668 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
1669 assert(0);
1670 break;
1671 }
1672 }
1673
1674 static unsigned
1675 midgard_tex_format(enum glsl_sampler_dim dim)
1676 {
1677 switch (dim) {
1678 case GLSL_SAMPLER_DIM_1D:
1679 case GLSL_SAMPLER_DIM_BUF:
1680 return MALI_TEX_1D;
1681
1682 case GLSL_SAMPLER_DIM_2D:
1683 case GLSL_SAMPLER_DIM_EXTERNAL:
1684 case GLSL_SAMPLER_DIM_RECT:
1685 return MALI_TEX_2D;
1686
1687 case GLSL_SAMPLER_DIM_3D:
1688 return MALI_TEX_3D;
1689
1690 case GLSL_SAMPLER_DIM_CUBE:
1691 return MALI_TEX_CUBE;
1692
1693 default:
1694 DBG("Unknown sampler dim type\n");
1695 assert(0);
1696 return 0;
1697 }
1698 }
1699
1700 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1701 * was successful */
1702
1703 static bool
1704 pan_attach_constant_bias(
1705 compiler_context *ctx,
1706 nir_src lod,
1707 midgard_texture_word *word)
1708 {
1709 /* To attach as constant, it has to *be* constant */
1710
1711 if (!nir_src_is_const(lod))
1712 return false;
1713
1714 float f = nir_src_as_float(lod);
1715
1716 /* Break into fixed-point */
1717 signed lod_int = f;
1718 float lod_frac = f - lod_int;
1719
1720 /* Carry over negative fractions */
1721 if (lod_frac < 0.0) {
1722 lod_int--;
1723 lod_frac += 1.0;
1724 }
1725
1726 /* Encode */
1727 word->bias = float_to_ubyte(lod_frac);
1728 word->bias_int = lod_int;
1729
1730 return true;
1731 }
1732
1733 static void
1734 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1735 unsigned midgard_texop)
1736 {
1737 /* TODO */
1738 //assert (!instr->sampler);
1739
1740 int texture_index = instr->texture_index;
1741 int sampler_index = texture_index;
1742
1743 nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
1744 nir_alu_type dest_type = dest_base | nir_dest_bit_size(instr->dest);
1745
1746 midgard_instruction ins = {
1747 .type = TAG_TEXTURE_4,
1748 .mask = 0xF,
1749 .dest = nir_dest_index(&instr->dest),
1750 .src = { ~0, ~0, ~0, ~0 },
1751 .dest_type = dest_type,
1752 .swizzle = SWIZZLE_IDENTITY_4,
1753 .texture = {
1754 .op = midgard_texop,
1755 .format = midgard_tex_format(instr->sampler_dim),
1756 .texture_handle = texture_index,
1757 .sampler_handle = sampler_index,
1758 .shadow = instr->is_shadow,
1759 }
1760 };
1761
1762 if (instr->is_shadow && !instr->is_new_style_shadow)
1763 for (int i = 0; i < 4; ++i)
1764 ins.swizzle[0][i] = COMPONENT_X;
1765
1766 /* We may need a temporary for the coordinate */
1767
1768 bool needs_temp_coord =
1769 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
1770 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
1771 (instr->is_shadow);
1772
1773 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
1774
1775 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1776 int index = nir_src_index(ctx, &instr->src[i].src);
1777 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1778 unsigned sz = nir_src_bit_size(instr->src[i].src);
1779 nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
1780
1781 switch (instr->src[i].src_type) {
1782 case nir_tex_src_coord: {
1783 emit_explicit_constant(ctx, index, index);
1784
1785 unsigned coord_mask = mask_of(instr->coord_components);
1786
1787 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
1788
1789 if (flip_zw)
1790 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
1791
1792 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1793 /* texelFetch is undefined on samplerCube */
1794 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1795
1796 /* For cubemaps, we use a special ld/st op to
1797 * select the face and copy the xy into the
1798 * texture register */
1799
1800 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
1801 ld.src[1] = index;
1802 ld.src_types[1] = T;
1803 ld.mask = 0x3; /* xy */
1804 ld.load_store.arg_1 = 0x20;
1805 ld.swizzle[1][3] = COMPONENT_X;
1806 emit_mir_instruction(ctx, ld);
1807
1808 /* xyzw -> xyxx */
1809 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1810 ins.swizzle[1][3] = COMPONENT_X;
1811 } else if (needs_temp_coord) {
1812 /* mov coord_temp, coords */
1813 midgard_instruction mov = v_mov(index, coords);
1814 mov.mask = coord_mask;
1815
1816 if (flip_zw)
1817 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
1818
1819 emit_mir_instruction(ctx, mov);
1820 } else {
1821 coords = index;
1822 }
1823
1824 ins.src[1] = coords;
1825 ins.src_types[1] = T;
1826
1827 /* Texelfetch coordinates uses all four elements
1828 * (xyz/index) regardless of texture dimensionality,
1829 * which means it's necessary to zero the unused
1830 * components to keep everything happy */
1831
1832 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1833 /* mov index.zw, #0, or generalized */
1834 midgard_instruction mov =
1835 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
1836 mov.has_constants = true;
1837 mov.mask = coord_mask ^ 0xF;
1838 emit_mir_instruction(ctx, mov);
1839 }
1840
1841 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1842 /* Array component in w but NIR wants it in z,
1843 * but if we have a temp coord we already fixed
1844 * that up */
1845
1846 if (nr_components == 3) {
1847 ins.swizzle[1][2] = COMPONENT_Z;
1848 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
1849 } else if (nr_components == 2) {
1850 ins.swizzle[1][2] =
1851 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1852 ins.swizzle[1][3] = COMPONENT_X;
1853 } else
1854 unreachable("Invalid texture 2D components");
1855 }
1856
1857 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1858 /* We zeroed */
1859 ins.swizzle[1][2] = COMPONENT_Z;
1860 ins.swizzle[1][3] = COMPONENT_W;
1861 }
1862
1863 break;
1864 }
1865
1866 case nir_tex_src_bias:
1867 case nir_tex_src_lod: {
1868 /* Try as a constant if we can */
1869
1870 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1871 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1872 break;
1873
1874 ins.texture.lod_register = true;
1875 ins.src[2] = index;
1876 ins.src_types[2] = T;
1877
1878 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1879 ins.swizzle[2][c] = COMPONENT_X;
1880
1881 emit_explicit_constant(ctx, index, index);
1882
1883 break;
1884 };
1885
1886 case nir_tex_src_offset: {
1887 ins.texture.offset_register = true;
1888 ins.src[3] = index;
1889 ins.src_types[3] = T;
1890
1891 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1892 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
1893
1894 emit_explicit_constant(ctx, index, index);
1895 break;
1896 };
1897
1898 case nir_tex_src_comparator: {
1899 unsigned comp = COMPONENT_Z;
1900
1901 /* mov coord_temp.foo, coords */
1902 midgard_instruction mov = v_mov(index, coords);
1903 mov.mask = 1 << comp;
1904
1905 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
1906 mov.swizzle[1][i] = COMPONENT_X;
1907
1908 emit_mir_instruction(ctx, mov);
1909 break;
1910 }
1911
1912 default: {
1913 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
1914 assert(0);
1915 }
1916 }
1917 }
1918
1919 emit_mir_instruction(ctx, ins);
1920 }
1921
1922 static void
1923 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1924 {
1925 switch (instr->op) {
1926 case nir_texop_tex:
1927 case nir_texop_txb:
1928 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1929 break;
1930 case nir_texop_txl:
1931 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1932 break;
1933 case nir_texop_txf:
1934 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1935 break;
1936 case nir_texop_txs:
1937 emit_sysval_read(ctx, &instr->instr, 4, 0);
1938 break;
1939 default: {
1940 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
1941 assert(0);
1942 }
1943 }
1944 }
1945
1946 static void
1947 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1948 {
1949 switch (instr->type) {
1950 case nir_jump_break: {
1951 /* Emit a branch out of the loop */
1952 struct midgard_instruction br = v_branch(false, false);
1953 br.branch.target_type = TARGET_BREAK;
1954 br.branch.target_break = ctx->current_loop_depth;
1955 emit_mir_instruction(ctx, br);
1956 break;
1957 }
1958
1959 default:
1960 DBG("Unknown jump type %d\n", instr->type);
1961 break;
1962 }
1963 }
1964
1965 static void
1966 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1967 {
1968 switch (instr->type) {
1969 case nir_instr_type_load_const:
1970 emit_load_const(ctx, nir_instr_as_load_const(instr));
1971 break;
1972
1973 case nir_instr_type_intrinsic:
1974 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1975 break;
1976
1977 case nir_instr_type_alu:
1978 emit_alu(ctx, nir_instr_as_alu(instr));
1979 break;
1980
1981 case nir_instr_type_tex:
1982 emit_tex(ctx, nir_instr_as_tex(instr));
1983 break;
1984
1985 case nir_instr_type_jump:
1986 emit_jump(ctx, nir_instr_as_jump(instr));
1987 break;
1988
1989 case nir_instr_type_ssa_undef:
1990 /* Spurious */
1991 break;
1992
1993 default:
1994 DBG("Unhandled instruction type\n");
1995 break;
1996 }
1997 }
1998
1999
2000 /* ALU instructions can inline or embed constants, which decreases register
2001 * pressure and saves space. */
2002
2003 #define CONDITIONAL_ATTACH(idx) { \
2004 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2005 \
2006 if (entry) { \
2007 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2008 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2009 } \
2010 }
2011
2012 static void
2013 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2014 {
2015 mir_foreach_instr_in_block(block, alu) {
2016 /* Other instructions cannot inline constants */
2017 if (alu->type != TAG_ALU_4) continue;
2018 if (alu->compact_branch) continue;
2019
2020 /* If there is already a constant here, we can do nothing */
2021 if (alu->has_constants) continue;
2022
2023 CONDITIONAL_ATTACH(0);
2024
2025 if (!alu->has_constants) {
2026 CONDITIONAL_ATTACH(1)
2027 } else if (!alu->inline_constant) {
2028 /* Corner case: _two_ vec4 constants, for instance with a
2029 * csel. For this case, we can only use a constant
2030 * register for one, we'll have to emit a move for the
2031 * other. */
2032
2033 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2034 unsigned scratch = make_compiler_temp(ctx);
2035
2036 if (entry) {
2037 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2038 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2039
2040 /* Set the source */
2041 alu->src[1] = scratch;
2042
2043 /* Inject us -before- the last instruction which set r31 */
2044 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2045 }
2046 }
2047 }
2048 }
2049
2050 /* Midgard supports two types of constants, embedded constants (128-bit) and
2051 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2052 * constants can be demoted to inline constants, for space savings and
2053 * sometimes a performance boost */
2054
2055 static void
2056 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2057 {
2058 mir_foreach_instr_in_block(block, ins) {
2059 if (!ins->has_constants) continue;
2060 if (ins->has_inline_constant) continue;
2061
2062 /* Blend constants must not be inlined by definition */
2063 if (ins->has_blend_constant) continue;
2064
2065 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2066 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2067 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2068
2069 if (!(is_16 || is_32))
2070 continue;
2071
2072 /* src1 cannot be an inline constant due to encoding
2073 * restrictions. So, if possible we try to flip the arguments
2074 * in that case */
2075
2076 int op = ins->alu.op;
2077
2078 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
2079 alu_opcode_props[op].props & OP_COMMUTES) {
2080 mir_flip(ins);
2081 }
2082
2083 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2084 /* Extract the source information */
2085
2086 midgard_vector_alu_src *src;
2087 int q = ins->alu.src2;
2088 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2089 src = m;
2090
2091 /* Component is from the swizzle. Take a nonzero component */
2092 assert(ins->mask);
2093 unsigned first_comp = ffs(ins->mask) - 1;
2094 unsigned component = ins->swizzle[1][first_comp];
2095
2096 /* Scale constant appropriately, if we can legally */
2097 uint16_t scaled_constant = 0;
2098
2099 if (is_16) {
2100 scaled_constant = ins->constants.u16[component];
2101 } else if (midgard_is_integer_op(op)) {
2102 scaled_constant = ins->constants.u32[component];
2103
2104 /* Constant overflow after resize */
2105 if (scaled_constant != ins->constants.u32[component])
2106 continue;
2107 } else {
2108 float original = ins->constants.f32[component];
2109 scaled_constant = _mesa_float_to_half(original);
2110
2111 /* Check for loss of precision. If this is
2112 * mediump, we don't care, but for a highp
2113 * shader, we need to pay attention. NIR
2114 * doesn't yet tell us which mode we're in!
2115 * Practically this prevents most constants
2116 * from being inlined, sadly. */
2117
2118 float fp32 = _mesa_half_to_float(scaled_constant);
2119
2120 if (fp32 != original)
2121 continue;
2122 }
2123
2124 /* We don't know how to handle these with a constant */
2125
2126 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2127 DBG("Bailing inline constant...\n");
2128 continue;
2129 }
2130
2131 /* Make sure that the constant is not itself a vector
2132 * by checking if all accessed values are the same. */
2133
2134 const midgard_constants *cons = &ins->constants;
2135 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2136
2137 bool is_vector = false;
2138 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2139
2140 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2141 /* We only care if this component is actually used */
2142 if (!(mask & (1 << c)))
2143 continue;
2144
2145 uint32_t test = is_16 ?
2146 cons->u16[ins->swizzle[1][c]] :
2147 cons->u32[ins->swizzle[1][c]];
2148
2149 if (test != value) {
2150 is_vector = true;
2151 break;
2152 }
2153 }
2154
2155 if (is_vector)
2156 continue;
2157
2158 /* Get rid of the embedded constant */
2159 ins->has_constants = false;
2160 ins->src[1] = ~0;
2161 ins->has_inline_constant = true;
2162 ins->inline_constant = scaled_constant;
2163 }
2164 }
2165 }
2166
2167 /* Dead code elimination for branches at the end of a block - only one branch
2168 * per block is legal semantically */
2169
2170 static void
2171 midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2172 {
2173 bool branched = false;
2174
2175 mir_foreach_instr_in_block_safe(block, ins) {
2176 if (!midgard_is_branch_unit(ins->unit)) continue;
2177
2178 if (branched)
2179 mir_remove_instruction(ins);
2180
2181 branched = true;
2182 }
2183 }
2184
2185 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2186 * the move can be propagated away entirely */
2187
2188 static bool
2189 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2190 {
2191 /* Nothing to do */
2192 if (comp == midgard_outmod_none)
2193 return true;
2194
2195 if (*outmod == midgard_outmod_none) {
2196 *outmod = comp;
2197 return true;
2198 }
2199
2200 /* TODO: Compose rules */
2201 return false;
2202 }
2203
2204 static bool
2205 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2206 {
2207 bool progress = false;
2208
2209 mir_foreach_instr_in_block_safe(block, ins) {
2210 if (ins->type != TAG_ALU_4) continue;
2211 if (ins->alu.op != midgard_alu_op_fmov) continue;
2212 if (ins->alu.outmod != midgard_outmod_pos) continue;
2213
2214 /* TODO: Registers? */
2215 unsigned src = ins->src[1];
2216 if (src & PAN_IS_REG) continue;
2217
2218 /* There might be a source modifier, too */
2219 if (mir_nontrivial_source2_mod(ins)) continue;
2220
2221 /* Backpropagate the modifier */
2222 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2223 if (v->type != TAG_ALU_4) continue;
2224 if (v->dest != src) continue;
2225
2226 /* Can we even take a float outmod? */
2227 if (midgard_is_integer_out_op(v->alu.op)) continue;
2228
2229 midgard_outmod_float temp = v->alu.outmod;
2230 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2231
2232 /* Throw in the towel.. */
2233 if (!progress) break;
2234
2235 /* Otherwise, transfer the modifier */
2236 v->alu.outmod = temp;
2237 ins->alu.outmod = midgard_outmod_none;
2238
2239 break;
2240 }
2241 }
2242
2243 return progress;
2244 }
2245
2246 static unsigned
2247 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2248 {
2249 /* Loop to ourselves */
2250 midgard_instruction *br = ctx->writeout_branch[rt];
2251 struct midgard_instruction ins = v_branch(false, false);
2252 ins.writeout = true;
2253 ins.writeout_depth = br->writeout_depth;
2254 ins.writeout_stencil = br->writeout_stencil;
2255 ins.branch.target_block = ctx->block_count - 1;
2256 ins.constants.u32[0] = br->constants.u32[0];
2257 emit_mir_instruction(ctx, ins);
2258
2259 ctx->current_block->epilogue = true;
2260 schedule_barrier(ctx);
2261 return ins.branch.target_block;
2262 }
2263
2264 static midgard_block *
2265 emit_block(compiler_context *ctx, nir_block *block)
2266 {
2267 midgard_block *this_block = ctx->after_block;
2268 ctx->after_block = NULL;
2269
2270 if (!this_block)
2271 this_block = create_empty_block(ctx);
2272
2273 list_addtail(&this_block->base.link, &ctx->blocks);
2274
2275 this_block->scheduled = false;
2276 ++ctx->block_count;
2277
2278 /* Set up current block */
2279 list_inithead(&this_block->base.instructions);
2280 ctx->current_block = this_block;
2281
2282 nir_foreach_instr(instr, block) {
2283 emit_instr(ctx, instr);
2284 ++ctx->instruction_count;
2285 }
2286
2287 return this_block;
2288 }
2289
2290 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2291
2292 static void
2293 emit_if(struct compiler_context *ctx, nir_if *nif)
2294 {
2295 midgard_block *before_block = ctx->current_block;
2296
2297 /* Speculatively emit the branch, but we can't fill it in until later */
2298 EMIT(branch, true, true);
2299 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2300 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2301 then_branch->src_types[0] = nir_type_uint32;
2302
2303 /* Emit the two subblocks. */
2304 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2305 midgard_block *end_then_block = ctx->current_block;
2306
2307 /* Emit a jump from the end of the then block to the end of the else */
2308 EMIT(branch, false, false);
2309 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2310
2311 /* Emit second block, and check if it's empty */
2312
2313 int else_idx = ctx->block_count;
2314 int count_in = ctx->instruction_count;
2315 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2316 midgard_block *end_else_block = ctx->current_block;
2317 int after_else_idx = ctx->block_count;
2318
2319 /* Now that we have the subblocks emitted, fix up the branches */
2320
2321 assert(then_block);
2322 assert(else_block);
2323
2324 if (ctx->instruction_count == count_in) {
2325 /* The else block is empty, so don't emit an exit jump */
2326 mir_remove_instruction(then_exit);
2327 then_branch->branch.target_block = after_else_idx;
2328 } else {
2329 then_branch->branch.target_block = else_idx;
2330 then_exit->branch.target_block = after_else_idx;
2331 }
2332
2333 /* Wire up the successors */
2334
2335 ctx->after_block = create_empty_block(ctx);
2336
2337 pan_block_add_successor(&before_block->base, &then_block->base);
2338 pan_block_add_successor(&before_block->base, &else_block->base);
2339
2340 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2341 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2342 }
2343
2344 static void
2345 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2346 {
2347 /* Remember where we are */
2348 midgard_block *start_block = ctx->current_block;
2349
2350 /* Allocate a loop number, growing the current inner loop depth */
2351 int loop_idx = ++ctx->current_loop_depth;
2352
2353 /* Get index from before the body so we can loop back later */
2354 int start_idx = ctx->block_count;
2355
2356 /* Emit the body itself */
2357 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2358
2359 /* Branch back to loop back */
2360 struct midgard_instruction br_back = v_branch(false, false);
2361 br_back.branch.target_block = start_idx;
2362 emit_mir_instruction(ctx, br_back);
2363
2364 /* Mark down that branch in the graph. */
2365 pan_block_add_successor(&start_block->base, &loop_block->base);
2366 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2367
2368 /* Find the index of the block about to follow us (note: we don't add
2369 * one; blocks are 0-indexed so we get a fencepost problem) */
2370 int break_block_idx = ctx->block_count;
2371
2372 /* Fix up the break statements we emitted to point to the right place,
2373 * now that we can allocate a block number for them */
2374 ctx->after_block = create_empty_block(ctx);
2375
2376 mir_foreach_block_from(ctx, start_block, _block) {
2377 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2378 if (ins->type != TAG_ALU_4) continue;
2379 if (!ins->compact_branch) continue;
2380
2381 /* We found a branch -- check the type to see if we need to do anything */
2382 if (ins->branch.target_type != TARGET_BREAK) continue;
2383
2384 /* It's a break! Check if it's our break */
2385 if (ins->branch.target_break != loop_idx) continue;
2386
2387 /* Okay, cool, we're breaking out of this loop.
2388 * Rewrite from a break to a goto */
2389
2390 ins->branch.target_type = TARGET_GOTO;
2391 ins->branch.target_block = break_block_idx;
2392
2393 pan_block_add_successor(_block, &ctx->after_block->base);
2394 }
2395 }
2396
2397 /* Now that we've finished emitting the loop, free up the depth again
2398 * so we play nice with recursion amid nested loops */
2399 --ctx->current_loop_depth;
2400
2401 /* Dump loop stats */
2402 ++ctx->loop_count;
2403 }
2404
2405 static midgard_block *
2406 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2407 {
2408 midgard_block *start_block = NULL;
2409
2410 foreach_list_typed(nir_cf_node, node, node, list) {
2411 switch (node->type) {
2412 case nir_cf_node_block: {
2413 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2414
2415 if (!start_block)
2416 start_block = block;
2417
2418 break;
2419 }
2420
2421 case nir_cf_node_if:
2422 emit_if(ctx, nir_cf_node_as_if(node));
2423 break;
2424
2425 case nir_cf_node_loop:
2426 emit_loop(ctx, nir_cf_node_as_loop(node));
2427 break;
2428
2429 case nir_cf_node_function:
2430 assert(0);
2431 break;
2432 }
2433 }
2434
2435 return start_block;
2436 }
2437
2438 /* Due to lookahead, we need to report the first tag executed in the command
2439 * stream and in branch targets. An initial block might be empty, so iterate
2440 * until we find one that 'works' */
2441
2442 static unsigned
2443 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2444 {
2445 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2446
2447 mir_foreach_block_from(ctx, initial_block, _v) {
2448 midgard_block *v = (midgard_block *) _v;
2449 if (v->quadword_count) {
2450 midgard_bundle *initial_bundle =
2451 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2452
2453 return initial_bundle->tag;
2454 }
2455 }
2456
2457 /* Default to a tag 1 which will break from the shader, in case we jump
2458 * to the exit block (i.e. `return` in a compute shader) */
2459
2460 return 1;
2461 }
2462
2463 /* For each fragment writeout instruction, generate a writeout loop to
2464 * associate with it */
2465
2466 static void
2467 mir_add_writeout_loops(compiler_context *ctx)
2468 {
2469 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2470 midgard_instruction *br = ctx->writeout_branch[rt];
2471 if (!br) continue;
2472
2473 unsigned popped = br->branch.target_block;
2474 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2475 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2476 br->branch.target_type = TARGET_GOTO;
2477
2478 /* If we have more RTs, we'll need to restore back after our
2479 * loop terminates */
2480
2481 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2482 midgard_instruction uncond = v_branch(false, false);
2483 uncond.branch.target_block = popped;
2484 uncond.branch.target_type = TARGET_GOTO;
2485 emit_mir_instruction(ctx, uncond);
2486 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2487 schedule_barrier(ctx);
2488 } else {
2489 /* We're last, so we can terminate here */
2490 br->last_writeout = true;
2491 }
2492 }
2493 }
2494
2495 int
2496 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
2497 {
2498 struct util_dynarray *compiled = &program->compiled;
2499
2500 midgard_debug = debug_get_option_midgard_debug();
2501
2502 /* TODO: Bound against what? */
2503 compiler_context *ctx = rzalloc(NULL, compiler_context);
2504
2505 ctx->nir = nir;
2506 ctx->stage = nir->info.stage;
2507 ctx->is_blend = is_blend;
2508 ctx->alpha_ref = program->alpha_ref;
2509 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2510 ctx->quirks = midgard_get_quirks(gpu_id);
2511
2512 /* Start off with a safe cutoff, allowing usage of all 16 work
2513 * registers. Later, we'll promote uniform reads to uniform registers
2514 * if we determine it is beneficial to do so */
2515 ctx->uniform_cutoff = 8;
2516
2517 /* Initialize at a global (not block) level hash tables */
2518
2519 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2520 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2521
2522 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2523 * (so we don't accidentally duplicate the epilogue since mesa/st has
2524 * messed with our I/O quite a bit already) */
2525
2526 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2527
2528 if (ctx->stage == MESA_SHADER_VERTEX) {
2529 NIR_PASS_V(nir, nir_lower_viewport_transform);
2530 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2531 }
2532
2533 NIR_PASS_V(nir, nir_lower_var_copies);
2534 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2535 NIR_PASS_V(nir, nir_split_var_copies);
2536 NIR_PASS_V(nir, nir_lower_var_copies);
2537 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2538 NIR_PASS_V(nir, nir_lower_var_copies);
2539 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2540
2541 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2542 NIR_PASS_V(nir, nir_lower_ssbo);
2543 NIR_PASS_V(nir, midgard_nir_lower_zs_store);
2544
2545 /* Optimisation passes */
2546
2547 optimise_nir(nir, ctx->quirks);
2548
2549 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2550 nir_print_shader(nir, stdout);
2551 }
2552
2553 /* Assign sysvals and counts, now that we're sure
2554 * (post-optimisation) */
2555
2556 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
2557 program->sysval_count = ctx->sysvals.sysval_count;
2558 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2559
2560 nir_foreach_function(func, nir) {
2561 if (!func->impl)
2562 continue;
2563
2564 list_inithead(&ctx->blocks);
2565 ctx->block_count = 0;
2566 ctx->func = func;
2567
2568 emit_cf_list(ctx, &func->impl->body);
2569 break; /* TODO: Multi-function shaders */
2570 }
2571
2572 util_dynarray_init(compiled, NULL);
2573
2574 /* Per-block lowering before opts */
2575
2576 mir_foreach_block(ctx, _block) {
2577 midgard_block *block = (midgard_block *) _block;
2578 inline_alu_constants(ctx, block);
2579 midgard_opt_promote_fmov(ctx, block);
2580 embedded_to_inline_constant(ctx, block);
2581 }
2582 /* MIR-level optimizations */
2583
2584 bool progress = false;
2585
2586 do {
2587 progress = false;
2588
2589 mir_foreach_block(ctx, _block) {
2590 midgard_block *block = (midgard_block *) _block;
2591 progress |= midgard_opt_pos_propagate(ctx, block);
2592 progress |= midgard_opt_copy_prop(ctx, block);
2593 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2594 progress |= midgard_opt_combine_projection(ctx, block);
2595 progress |= midgard_opt_varying_projection(ctx, block);
2596 progress |= midgard_opt_not_propagate(ctx, block);
2597 progress |= midgard_opt_fuse_src_invert(ctx, block);
2598 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2599 progress |= midgard_opt_csel_invert(ctx, block);
2600 progress |= midgard_opt_drop_cmp_invert(ctx, block);
2601 progress |= midgard_opt_invert_branch(ctx, block);
2602 }
2603 } while (progress);
2604
2605 mir_foreach_block(ctx, _block) {
2606 midgard_block *block = (midgard_block *) _block;
2607 midgard_lower_invert(ctx, block);
2608 midgard_lower_derivatives(ctx, block);
2609 }
2610
2611 /* Nested control-flow can result in dead branches at the end of the
2612 * block. This messes with our analysis and is just dead code, so cull
2613 * them */
2614 mir_foreach_block(ctx, _block) {
2615 midgard_block *block = (midgard_block *) _block;
2616 midgard_cull_dead_branch(ctx, block);
2617 }
2618
2619 /* Ensure we were lowered */
2620 mir_foreach_instr_global(ctx, ins) {
2621 assert(!ins->invert);
2622 }
2623
2624 if (ctx->stage == MESA_SHADER_FRAGMENT)
2625 mir_add_writeout_loops(ctx);
2626
2627 /* Analyze now that the code is known but before scheduling creates
2628 * pipeline registers which are harder to track */
2629 mir_analyze_helper_terminate(ctx);
2630 mir_analyze_helper_requirements(ctx);
2631
2632 /* Schedule! */
2633 midgard_schedule_program(ctx);
2634 mir_ra(ctx);
2635
2636 /* Now that all the bundles are scheduled and we can calculate block
2637 * sizes, emit actual branch instructions rather than placeholders */
2638
2639 int br_block_idx = 0;
2640
2641 mir_foreach_block(ctx, _block) {
2642 midgard_block *block = (midgard_block *) _block;
2643 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2644 for (int c = 0; c < bundle->instruction_count; ++c) {
2645 midgard_instruction *ins = bundle->instructions[c];
2646
2647 if (!midgard_is_branch_unit(ins->unit)) continue;
2648
2649 /* Parse some basic branch info */
2650 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2651 bool is_conditional = ins->branch.conditional;
2652 bool is_inverted = ins->branch.invert_conditional;
2653 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2654 bool is_writeout = ins->writeout;
2655
2656 /* Determine the block we're jumping to */
2657 int target_number = ins->branch.target_block;
2658
2659 /* Report the destination tag */
2660 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2661
2662 /* Count up the number of quadwords we're
2663 * jumping over = number of quadwords until
2664 * (br_block_idx, target_number) */
2665
2666 int quadword_offset = 0;
2667
2668 if (is_discard) {
2669 /* Ignored */
2670 } else if (target_number > br_block_idx) {
2671 /* Jump forward */
2672
2673 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2674 midgard_block *blk = mir_get_block(ctx, idx);
2675 assert(blk);
2676
2677 quadword_offset += blk->quadword_count;
2678 }
2679 } else {
2680 /* Jump backwards */
2681
2682 for (int idx = br_block_idx; idx >= target_number; --idx) {
2683 midgard_block *blk = mir_get_block(ctx, idx);
2684 assert(blk);
2685
2686 quadword_offset -= blk->quadword_count;
2687 }
2688 }
2689
2690 /* Unconditional extended branches (far jumps)
2691 * have issues, so we always use a conditional
2692 * branch, setting the condition to always for
2693 * unconditional. For compact unconditional
2694 * branches, cond isn't used so it doesn't
2695 * matter what we pick. */
2696
2697 midgard_condition cond =
2698 !is_conditional ? midgard_condition_always :
2699 is_inverted ? midgard_condition_false :
2700 midgard_condition_true;
2701
2702 midgard_jmp_writeout_op op =
2703 is_discard ? midgard_jmp_writeout_op_discard :
2704 is_writeout ? midgard_jmp_writeout_op_writeout :
2705 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2706 midgard_jmp_writeout_op_branch_cond;
2707
2708 if (!is_compact) {
2709 midgard_branch_extended branch =
2710 midgard_create_branch_extended(
2711 cond, op,
2712 dest_tag,
2713 quadword_offset);
2714
2715 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2716 } else if (is_conditional || is_discard) {
2717 midgard_branch_cond branch = {
2718 .op = op,
2719 .dest_tag = dest_tag,
2720 .offset = quadword_offset,
2721 .cond = cond
2722 };
2723
2724 assert(branch.offset == quadword_offset);
2725
2726 memcpy(&ins->br_compact, &branch, sizeof(branch));
2727 } else {
2728 assert(op == midgard_jmp_writeout_op_branch_uncond);
2729
2730 midgard_branch_uncond branch = {
2731 .op = op,
2732 .dest_tag = dest_tag,
2733 .offset = quadword_offset,
2734 .unknown = 1
2735 };
2736
2737 assert(branch.offset == quadword_offset);
2738
2739 memcpy(&ins->br_compact, &branch, sizeof(branch));
2740 }
2741 }
2742 }
2743
2744 ++br_block_idx;
2745 }
2746
2747 /* Emit flat binary from the instruction arrays. Iterate each block in
2748 * sequence. Save instruction boundaries such that lookahead tags can
2749 * be assigned easily */
2750
2751 /* Cache _all_ bundles in source order for lookahead across failed branches */
2752
2753 int bundle_count = 0;
2754 mir_foreach_block(ctx, _block) {
2755 midgard_block *block = (midgard_block *) _block;
2756 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2757 }
2758 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2759 int bundle_idx = 0;
2760 mir_foreach_block(ctx, _block) {
2761 midgard_block *block = (midgard_block *) _block;
2762 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2763 source_order_bundles[bundle_idx++] = bundle;
2764 }
2765 }
2766
2767 int current_bundle = 0;
2768
2769 /* Midgard prefetches instruction types, so during emission we
2770 * need to lookahead. Unless this is the last instruction, in
2771 * which we return 1. */
2772
2773 mir_foreach_block(ctx, _block) {
2774 midgard_block *block = (midgard_block *) _block;
2775 mir_foreach_bundle_in_block(block, bundle) {
2776 int lookahead = 1;
2777
2778 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
2779 lookahead = source_order_bundles[current_bundle + 1]->tag;
2780
2781 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2782 ++current_bundle;
2783 }
2784
2785 /* TODO: Free deeper */
2786 //util_dynarray_fini(&block->instructions);
2787 }
2788
2789 free(source_order_bundles);
2790
2791 /* Report the very first tag executed */
2792 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2793
2794 /* Deal with off-by-one related to the fencepost problem */
2795 program->work_register_count = ctx->work_registers + 1;
2796 program->uniform_cutoff = ctx->uniform_cutoff;
2797
2798 program->blend_patch_offset = ctx->blend_constant_offset;
2799 program->tls_size = ctx->tls_size;
2800
2801 if (midgard_debug & MIDGARD_DBG_SHADERS)
2802 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2803
2804 if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
2805 unsigned nr_bundles = 0, nr_ins = 0;
2806
2807 /* Count instructions and bundles */
2808
2809 mir_foreach_block(ctx, _block) {
2810 midgard_block *block = (midgard_block *) _block;
2811 nr_bundles += util_dynarray_num_elements(
2812 &block->bundles, midgard_bundle);
2813
2814 mir_foreach_bundle_in_block(block, bun)
2815 nr_ins += bun->instruction_count;
2816 }
2817
2818 /* Calculate thread count. There are certain cutoffs by
2819 * register count for thread count */
2820
2821 unsigned nr_registers = program->work_register_count;
2822
2823 unsigned nr_threads =
2824 (nr_registers <= 4) ? 4 :
2825 (nr_registers <= 8) ? 2 :
2826 1;
2827
2828 /* Dump stats */
2829
2830 fprintf(stderr, "shader%d - %s shader: "
2831 "%u inst, %u bundles, %u quadwords, "
2832 "%u registers, %u threads, %u loops, "
2833 "%u:%u spills:fills\n",
2834 SHADER_DB_COUNT++,
2835 gl_shader_stage_name(ctx->stage),
2836 nr_ins, nr_bundles, ctx->quadword_count,
2837 nr_registers, nr_threads,
2838 ctx->loop_count,
2839 ctx->spills, ctx->fills);
2840 }
2841
2842 ralloc_free(ctx);
2843
2844 return 0;
2845 }