pan/mdg: Streamline dest_override handling
[mesa.git] / src / panfrost / midgard / midgard_ra.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "midgard_quirks.h"
30
31 struct phys_reg {
32 /* Physical register: 0-31 */
33 unsigned reg;
34
35 /* Byte offset into the physical register: 0-15 */
36 unsigned offset;
37
38 /* Number of bytes in a component of this register */
39 unsigned size;
40 };
41
42 /* Shift up by reg_offset and horizontally by dst_offset. */
43
44 static void
45 offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcsize, unsigned dstsize, unsigned dst_offset)
46 {
47 unsigned out[MIR_VEC_COMPONENTS];
48
49 signed reg_comp = reg_offset / srcsize;
50 signed dst_comp = dst_offset / dstsize;
51
52 unsigned max_component = (16 / srcsize) - 1;
53
54 assert(reg_comp * srcsize == reg_offset);
55 assert(dst_comp * dstsize == dst_offset);
56
57 for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
58 signed comp = MAX2(c - dst_comp, 0);
59 out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
60 }
61
62 memcpy(swizzle, out, sizeof(out));
63 }
64
65 /* Helper to return the default phys_reg for a given register */
66
67 static struct phys_reg
68 default_phys_reg(int reg, unsigned size)
69 {
70 struct phys_reg r = {
71 .reg = reg,
72 .offset = 0,
73 .size = size
74 };
75
76 return r;
77 }
78
79 /* Determine which physical register, swizzle, and mask a virtual
80 * register corresponds to */
81
82 static struct phys_reg
83 index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned size)
84 {
85 /* Check for special cases */
86 if (reg == ~0)
87 return default_phys_reg(REGISTER_UNUSED, size);
88 else if (reg >= SSA_FIXED_MINIMUM)
89 return default_phys_reg(SSA_REG_FROM_FIXED(reg), size);
90 else if (!l)
91 return default_phys_reg(REGISTER_UNUSED, size);
92
93 struct phys_reg r = {
94 .reg = l->solutions[reg] / 16,
95 .offset = l->solutions[reg] & 0xF,
96 .size = size
97 };
98
99 /* Report that we actually use this register, and return it */
100
101 if (r.reg < 16)
102 ctx->work_registers = MAX2(ctx->work_registers, r.reg);
103
104 return r;
105 }
106
107 static void
108 set_class(unsigned *classes, unsigned node, unsigned class)
109 {
110 if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
111 assert(classes[node] == REG_CLASS_WORK);
112 classes[node] = class;
113 }
114 }
115
116 /* Special register classes impose special constraints on who can read their
117 * values, so check that */
118
119 static bool
120 check_read_class(unsigned *classes, unsigned tag, unsigned node)
121 {
122 /* Non-nodes are implicitly ok */
123 if (node >= SSA_FIXED_MINIMUM)
124 return true;
125
126 switch (classes[node]) {
127 case REG_CLASS_LDST:
128 return (tag == TAG_LOAD_STORE_4);
129 case REG_CLASS_TEXR:
130 return (tag == TAG_TEXTURE_4);
131 case REG_CLASS_TEXW:
132 return (tag != TAG_LOAD_STORE_4);
133 case REG_CLASS_WORK:
134 return IS_ALU(tag);
135 default:
136 unreachable("Invalid class");
137 }
138 }
139
140 static bool
141 check_write_class(unsigned *classes, unsigned tag, unsigned node)
142 {
143 /* Non-nodes are implicitly ok */
144 if (node >= SSA_FIXED_MINIMUM)
145 return true;
146
147 switch (classes[node]) {
148 case REG_CLASS_TEXR:
149 return true;
150 case REG_CLASS_TEXW:
151 return (tag == TAG_TEXTURE_4);
152 case REG_CLASS_LDST:
153 case REG_CLASS_WORK:
154 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
155 default:
156 unreachable("Invalid class");
157 }
158 }
159
160 /* Prepass before RA to ensure special class restrictions are met. The idea is
161 * to create a bit field of types of instructions that read a particular index.
162 * Later, we'll add moves as appropriate and rewrite to specialize by type. */
163
164 static void
165 mark_node_class (unsigned *bitfield, unsigned node)
166 {
167 if (node < SSA_FIXED_MINIMUM)
168 BITSET_SET(bitfield, node);
169 }
170
171 void
172 mir_lower_special_reads(compiler_context *ctx)
173 {
174 size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
175
176 /* Bitfields for the various types of registers we could have. aluw can
177 * be written by either ALU or load/store */
178
179 unsigned *alur = calloc(sz, 1);
180 unsigned *aluw = calloc(sz, 1);
181 unsigned *brar = calloc(sz, 1);
182 unsigned *ldst = calloc(sz, 1);
183 unsigned *texr = calloc(sz, 1);
184 unsigned *texw = calloc(sz, 1);
185
186 /* Pass #1 is analysis, a linear scan to fill out the bitfields */
187
188 mir_foreach_instr_global(ctx, ins) {
189 switch (ins->type) {
190 case TAG_ALU_4:
191 mark_node_class(aluw, ins->dest);
192 mark_node_class(alur, ins->src[0]);
193 mark_node_class(alur, ins->src[1]);
194 mark_node_class(alur, ins->src[2]);
195
196 if (ins->compact_branch && ins->writeout)
197 mark_node_class(brar, ins->src[0]);
198
199 break;
200
201 case TAG_LOAD_STORE_4:
202 mark_node_class(aluw, ins->dest);
203 mark_node_class(ldst, ins->src[0]);
204 mark_node_class(ldst, ins->src[1]);
205 mark_node_class(ldst, ins->src[2]);
206 break;
207
208 case TAG_TEXTURE_4:
209 mark_node_class(texr, ins->src[0]);
210 mark_node_class(texr, ins->src[1]);
211 mark_node_class(texr, ins->src[2]);
212 mark_node_class(texw, ins->dest);
213 break;
214 }
215 }
216
217 /* Pass #2 is lowering now that we've analyzed all the classes.
218 * Conceptually, if an index is only marked for a single type of use,
219 * there is nothing to lower. If it is marked for different uses, we
220 * split up based on the number of types of uses. To do so, we divide
221 * into N distinct classes of use (where N>1 by definition), emit N-1
222 * moves from the index to copies of the index, and finally rewrite N-1
223 * of the types of uses to use the corresponding move */
224
225 unsigned spill_idx = ctx->temp_count;
226
227 for (unsigned i = 0; i < ctx->temp_count; ++i) {
228 bool is_alur = BITSET_TEST(alur, i);
229 bool is_aluw = BITSET_TEST(aluw, i);
230 bool is_brar = BITSET_TEST(brar, i);
231 bool is_ldst = BITSET_TEST(ldst, i);
232 bool is_texr = BITSET_TEST(texr, i);
233 bool is_texw = BITSET_TEST(texw, i);
234
235 /* Analyse to check how many distinct uses there are. ALU ops
236 * (alur) can read the results of the texture pipeline (texw)
237 * but not ldst or texr. Load/store ops (ldst) cannot read
238 * anything but load/store inputs. Texture pipeline cannot read
239 * anything but texture inputs. TODO: Simplify. */
240
241 bool collision =
242 (is_alur && (is_ldst || is_texr)) ||
243 (is_ldst && (is_alur || is_texr || is_texw)) ||
244 (is_texr && (is_alur || is_ldst || is_texw)) ||
245 (is_texw && (is_aluw || is_ldst || is_texr)) ||
246 (is_brar && is_texw);
247
248 if (!collision)
249 continue;
250
251 /* Use the index as-is as the work copy. Emit copies for
252 * special uses */
253
254 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
255 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
256
257 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
258 if (!collisions[j]) continue;
259
260 /* When the hazard is from reading, we move and rewrite
261 * sources (typical case). When it's from writing, we
262 * flip the move and rewrite destinations (obscure,
263 * only from control flow -- impossible in SSA) */
264
265 bool hazard_write = (j == 2);
266
267 unsigned idx = spill_idx++;
268
269 midgard_instruction m = hazard_write ?
270 v_mov(idx, i) : v_mov(i, idx);
271
272 /* Insert move before each read/write, depending on the
273 * hazard we're trying to account for */
274
275 mir_foreach_instr_global_safe(ctx, pre_use) {
276 if (pre_use->type != classes[j])
277 continue;
278
279 if (hazard_write) {
280 if (pre_use->dest != i)
281 continue;
282 } else {
283 if (!mir_has_arg(pre_use, i))
284 continue;
285 }
286
287 if (hazard_write) {
288 midgard_instruction *use = mir_next_op(pre_use);
289 assert(use);
290 mir_insert_instruction_before(ctx, use, m);
291 mir_rewrite_index_dst_single(pre_use, i, idx);
292 } else {
293 idx = spill_idx++;
294 m = v_mov(i, idx);
295 m.mask = mir_from_bytemask(mir_bytemask_of_read_components(pre_use, i), 32);
296 mir_insert_instruction_before(ctx, pre_use, m);
297 mir_rewrite_index_src_single(pre_use, i, idx);
298 }
299 }
300 }
301 }
302
303 free(alur);
304 free(aluw);
305 free(brar);
306 free(ldst);
307 free(texr);
308 free(texw);
309 }
310
311 /* We register allocate after scheduling, so we need to ensure instructions
312 * executing in parallel within a segment of a bundle don't clobber each
313 * other's registers. This is mostly a non-issue thanks to scheduling, but
314 * there are edge cases. In particular, after a register is written in a
315 * segment, it interferes with anything reading. */
316
317 static void
318 mir_compute_segment_interference(
319 compiler_context *ctx,
320 struct lcra_state *l,
321 midgard_bundle *bun,
322 unsigned pivot,
323 unsigned i)
324 {
325 for (unsigned j = pivot; j < i; ++j) {
326 mir_foreach_src(bun->instructions[j], s) {
327 if (bun->instructions[j]->src[s] >= ctx->temp_count)
328 continue;
329
330 for (unsigned q = pivot; q < i; ++q) {
331 if (bun->instructions[q]->dest >= ctx->temp_count)
332 continue;
333
334 /* See dEQP-GLES2.functional.shaders.return.output_write_in_func_dynamic_fragment */
335
336 if (q >= j) {
337 if (!(bun->instructions[j]->unit == UNIT_SMUL && bun->instructions[q]->unit == UNIT_VLUT))
338 continue;
339 }
340
341 unsigned mask = mir_bytemask(bun->instructions[q]);
342 unsigned rmask = mir_bytemask_of_read_components(bun->instructions[j], bun->instructions[j]->src[s]);
343 lcra_add_node_interference(l, bun->instructions[q]->dest, mask, bun->instructions[j]->src[s], rmask);
344 }
345 }
346 }
347 }
348
349 static void
350 mir_compute_bundle_interference(
351 compiler_context *ctx,
352 struct lcra_state *l,
353 midgard_bundle *bun)
354 {
355 if (!IS_ALU(bun->tag))
356 return;
357
358 bool old = bun->instructions[0]->unit >= UNIT_VADD;
359 unsigned pivot = 0;
360
361 for (unsigned i = 1; i < bun->instruction_count; ++i) {
362 bool new = bun->instructions[i]->unit >= UNIT_VADD;
363
364 if (old != new) {
365 mir_compute_segment_interference(ctx, l, bun, 0, i);
366 pivot = i;
367 break;
368 }
369 }
370
371 mir_compute_segment_interference(ctx, l, bun, pivot, bun->instruction_count);
372 }
373
374 static void
375 mir_compute_interference(
376 compiler_context *ctx,
377 struct lcra_state *l)
378 {
379 /* First, we need liveness information to be computed per block */
380 mir_compute_liveness(ctx);
381
382 /* We need to force r1.w live throughout a blend shader */
383
384 if (ctx->is_blend) {
385 unsigned r1w = ~0;
386
387 mir_foreach_block(ctx, _block) {
388 midgard_block *block = (midgard_block *) _block;
389 mir_foreach_instr_in_block_rev(block, ins) {
390 if (ins->writeout)
391 r1w = ins->src[2];
392 }
393
394 if (r1w != ~0)
395 break;
396 }
397
398 mir_foreach_instr_global(ctx, ins) {
399 if (ins->dest < ctx->temp_count)
400 lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
401 }
402 }
403
404 /* Now that every block has live_in/live_out computed, we can determine
405 * interference by walking each block linearly. Take live_out at the
406 * end of each block and walk the block backwards. */
407
408 mir_foreach_block(ctx, _blk) {
409 midgard_block *blk = (midgard_block *) _blk;
410 uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
411
412 mir_foreach_instr_in_block_rev(blk, ins) {
413 /* Mark all registers live after the instruction as
414 * interfering with the destination */
415
416 unsigned dest = ins->dest;
417
418 if (dest < ctx->temp_count) {
419 for (unsigned i = 0; i < ctx->temp_count; ++i)
420 if (live[i]) {
421 unsigned mask = mir_bytemask(ins);
422 lcra_add_node_interference(l, dest, mask, i, live[i]);
423 }
424 }
425
426 /* Update live_in */
427 mir_liveness_ins_update(live, ins, ctx->temp_count);
428 }
429
430 mir_foreach_bundle_in_block(blk, bun)
431 mir_compute_bundle_interference(ctx, l, bun);
432
433 free(live);
434 }
435 }
436
437 /* This routine performs the actual register allocation. It should be succeeded
438 * by install_registers */
439
440 static struct lcra_state *
441 allocate_registers(compiler_context *ctx, bool *spilled)
442 {
443 /* The number of vec4 work registers available depends on when the
444 * uniforms start, so compute that first */
445 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
446
447 /* No register allocation to do with no SSA */
448
449 if (!ctx->temp_count)
450 return NULL;
451
452 struct lcra_state *l = lcra_alloc_equations(ctx->temp_count, 1, 8, 16, 5);
453
454 /* Starts of classes, in bytes */
455 l->class_start[REG_CLASS_WORK] = 16 * 0;
456 l->class_start[REG_CLASS_LDST] = 16 * 26;
457 l->class_start[REG_CLASS_TEXR] = 16 * 28;
458 l->class_start[REG_CLASS_TEXW] = 16 * 28;
459
460 l->class_size[REG_CLASS_WORK] = 16 * work_count;
461 l->class_size[REG_CLASS_LDST] = 16 * 2;
462 l->class_size[REG_CLASS_TEXR] = 16 * 2;
463 l->class_size[REG_CLASS_TEXW] = 16 * 2;
464
465 lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
466
467 /* To save space on T*20, we don't have real texture registers.
468 * Instead, tex inputs reuse the load/store pipeline registers, and
469 * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
470 * noting that this handles interferences and sizes correctly. */
471
472 if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
473 l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
474 l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
475 }
476
477 unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
478 unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
479
480 mir_foreach_instr_global(ctx, ins) {
481 /* Swizzles of 32-bit sources on 64-bit instructions need to be
482 * aligned to either bottom (xy) or top (zw). More general
483 * swizzle lowering should happen prior to scheduling (TODO),
484 * but once we get RA we shouldn't disrupt this further. Align
485 * sources of 64-bit instructions. */
486
487 if (ins->type == TAG_ALU_4 && ins->alu.reg_mode == midgard_reg_mode_64) {
488 mir_foreach_src(ins, v) {
489 unsigned s = ins->src[v];
490
491 if (s < ctx->temp_count)
492 min_alignment[s] = 3;
493 }
494 }
495
496 if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->load_store.op)) {
497 mir_foreach_src(ins, v) {
498 unsigned s = ins->src[v];
499 unsigned size = nir_alu_type_get_type_size(ins->src_types[v]);
500
501 if (s < ctx->temp_count)
502 min_alignment[s] = (size == 64) ? 3 : 2;
503 }
504 }
505
506 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
507
508 unsigned size = nir_alu_type_get_type_size(ins->dest_type);
509
510 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
511 int comps1 = util_logbase2(ins->mask);
512
513 int bytes = (comps1 + 1) * (size / 8);
514
515 /* Use the largest class if there's ambiguity, this
516 * handles partial writes */
517
518 int dest = ins->dest;
519 found_class[dest] = MAX2(found_class[dest], bytes);
520
521 /* XXX: Ensure swizzles align the right way with more LCRA constraints? */
522 if (ins->type == TAG_ALU_4 && size != 32)
523 min_alignment[dest] = 3; /* (1 << 3) = 8 */
524
525 if (ins->type == TAG_LOAD_STORE_4 && ins->load_64)
526 min_alignment[dest] = 3;
527
528 /* We don't have a swizzle for the conditional and we don't
529 * want to muck with the conditional itself, so just force
530 * alignment for now */
531
532 if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->alu.op))
533 min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
534
535 }
536
537 for (unsigned i = 0; i < ctx->temp_count; ++i) {
538 lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2);
539 lcra_restrict_range(l, i, found_class[i]);
540 }
541
542 free(found_class);
543 free(min_alignment);
544
545 /* Next, we'll determine semantic class. We default to zero (work).
546 * But, if we're used with a special operation, that will force us to a
547 * particular class. Each node must be assigned to exactly one class; a
548 * prepass before RA should have lowered what-would-have-been
549 * multiclass nodes into a series of moves to break it up into multiple
550 * nodes (TODO) */
551
552 mir_foreach_instr_global(ctx, ins) {
553 /* Check if this operation imposes any classes */
554
555 if (ins->type == TAG_LOAD_STORE_4) {
556 set_class(l->class, ins->src[0], REG_CLASS_LDST);
557 set_class(l->class, ins->src[1], REG_CLASS_LDST);
558 set_class(l->class, ins->src[2], REG_CLASS_LDST);
559
560 if (OP_IS_VEC4_ONLY(ins->load_store.op)) {
561 lcra_restrict_range(l, ins->dest, 16);
562 lcra_restrict_range(l, ins->src[0], 16);
563 lcra_restrict_range(l, ins->src[1], 16);
564 lcra_restrict_range(l, ins->src[2], 16);
565 }
566 } else if (ins->type == TAG_TEXTURE_4) {
567 set_class(l->class, ins->dest, REG_CLASS_TEXW);
568 set_class(l->class, ins->src[0], REG_CLASS_TEXR);
569 set_class(l->class, ins->src[1], REG_CLASS_TEXR);
570 set_class(l->class, ins->src[2], REG_CLASS_TEXR);
571 set_class(l->class, ins->src[3], REG_CLASS_TEXR);
572 }
573 }
574
575 /* Check that the semantics of the class are respected */
576 mir_foreach_instr_global(ctx, ins) {
577 assert(check_write_class(l->class, ins->type, ins->dest));
578 assert(check_read_class(l->class, ins->type, ins->src[0]));
579 assert(check_read_class(l->class, ins->type, ins->src[1]));
580 assert(check_read_class(l->class, ins->type, ins->src[2]));
581 }
582
583 /* Mark writeout to r0, render target to r1.z, unknown to r1.w */
584 mir_foreach_instr_global(ctx, ins) {
585 if (!(ins->compact_branch && ins->writeout)) continue;
586
587 if (ins->src[0] < ctx->temp_count) {
588 if (ins->writeout_depth)
589 l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_X * 4;
590 else if (ins->writeout_stencil)
591 l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_Y * 4;
592 else
593 l->solutions[ins->src[0]] = 0;
594 }
595
596 if (ins->src[1] < ctx->temp_count)
597 l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
598
599 if (ins->src[2] < ctx->temp_count)
600 l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_W * 4;
601 }
602
603 mir_compute_interference(ctx, l);
604
605 *spilled = !lcra_solve(l);
606 return l;
607 }
608
609
610 /* Once registers have been decided via register allocation
611 * (allocate_registers), we need to rewrite the MIR to use registers instead of
612 * indices */
613
614 static void
615 install_registers_instr(
616 compiler_context *ctx,
617 struct lcra_state *l,
618 midgard_instruction *ins)
619 {
620 unsigned src_size[MIR_SRC_COUNT];
621
622 for (unsigned i = 0; i < MIR_SRC_COUNT; ++i)
623 src_size[i] = MAX2(nir_alu_type_get_type_size(ins->src_types[i]) / 8, 1);
624
625 unsigned dest_size = MAX2(nir_alu_type_get_type_size(ins->dest_type) / 8, 1);
626
627 switch (ins->type) {
628 case TAG_ALU_4:
629 case TAG_ALU_8:
630 case TAG_ALU_12:
631 case TAG_ALU_16: {
632 if (ins->compact_branch)
633 return;
634
635 struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_size[0]);
636 struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_size[1]);
637 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_size);
638
639 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
640
641 unsigned dest_offset =
642 GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
643 dest.offset;
644
645 offset_swizzle(ins->swizzle[0], src1.offset, src1.size, dest.size, dest_offset);
646
647 ins->registers.src1_reg = src1.reg;
648
649 ins->registers.src2_imm = ins->has_inline_constant;
650
651 if (ins->has_inline_constant) {
652 /* Encode inline 16-bit constant. See disassembler for
653 * where the algorithm is from */
654
655 ins->registers.src2_reg = ins->inline_constant >> 11;
656
657 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
658 uint16_t imm = ((lower_11 >> 8) & 0x7) |
659 ((lower_11 & 0xFF) << 3);
660
661 ins->alu.src2 = imm << 2;
662 } else {
663 offset_swizzle(ins->swizzle[1], src2.offset, src2.size, dest.size, dest_offset);
664
665 ins->registers.src2_reg = src2.reg;
666 }
667
668 ins->registers.out_reg = dest.reg;
669 break;
670 }
671
672 case TAG_LOAD_STORE_4: {
673 /* Which physical register we read off depends on
674 * whether we are loading or storing -- think about the
675 * logical dataflow */
676
677 bool encodes_src = OP_IS_STORE(ins->load_store.op);
678
679 if (encodes_src) {
680 struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_size[0]);
681 assert(src.reg == 26 || src.reg == 27);
682
683 ins->load_store.reg = src.reg - 26;
684 offset_swizzle(ins->swizzle[0], src.offset, src.size, 1, 0);
685 } else {
686 struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_size);
687
688 ins->load_store.reg = dst.reg;
689 offset_swizzle(ins->swizzle[0], 0, 4, dst.size, dst.offset);
690 mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
691 }
692
693 /* We also follow up by actual arguments */
694
695 unsigned src2 = ins->src[1];
696 unsigned src3 = ins->src[2];
697
698 if (src2 != ~0) {
699 struct phys_reg src = index_to_reg(ctx, l, src2, 4);
700 unsigned component = src.offset / src.size;
701 assert(component * src.size == src.offset);
702 ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
703 }
704
705 if (src3 != ~0) {
706 struct phys_reg src = index_to_reg(ctx, l, src3, 4);
707 unsigned component = src.offset / src.size;
708 assert(component * src.size == src.offset);
709 ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
710 }
711
712 break;
713 }
714
715 case TAG_TEXTURE_4: {
716 if (ins->texture.op == TEXTURE_OP_BARRIER)
717 break;
718
719 /* Grab RA results */
720 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_size);
721 struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_size[1]);
722 struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_size[2]);
723 struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_size[3]);
724
725 /* First, install the texture coordinate */
726 ins->texture.in_reg_select = coord.reg & 1;
727 offset_swizzle(ins->swizzle[1], coord.offset, coord.size, dest.size, 0);
728
729 /* Next, install the destination */
730 ins->texture.out_reg_select = dest.reg & 1;
731 offset_swizzle(ins->swizzle[0], 0, 4, dest.size,
732 dest_size == 2 ? dest.offset % 8 :
733 dest.offset);
734 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
735
736 /* If there is a register LOD/bias, use it */
737 if (ins->src[2] != ~0) {
738 assert(!(lod.offset & 3));
739 midgard_tex_register_select sel = {
740 .select = lod.reg & 1,
741 .full = 1,
742 .component = lod.offset / 4
743 };
744
745 uint8_t packed;
746 memcpy(&packed, &sel, sizeof(packed));
747 ins->texture.bias = packed;
748 }
749
750 /* If there is an offset register, install it */
751 if (ins->src[3] != ~0) {
752 unsigned x = offset.offset / 4;
753 unsigned y = x + 1;
754 unsigned z = x + 2;
755
756 /* Check range, TODO: half-registers */
757 assert(z < 4);
758
759 ins->texture.offset =
760 (1) | /* full */
761 (offset.reg & 1) << 1 | /* select */
762 (0 << 2) | /* upper */
763 (x << 3) | /* swizzle */
764 (y << 5) | /* swizzle */
765 (z << 7); /* swizzle */
766 }
767
768 break;
769 }
770
771 default:
772 break;
773 }
774 }
775
776 static void
777 install_registers(compiler_context *ctx, struct lcra_state *l)
778 {
779 mir_foreach_instr_global(ctx, ins)
780 install_registers_instr(ctx, l, ins);
781 }
782
783
784 /* If register allocation fails, find the best spill node */
785
786 static signed
787 mir_choose_spill_node(
788 compiler_context *ctx,
789 struct lcra_state *l)
790 {
791 /* We can't spill a previously spilled value or an unspill */
792
793 mir_foreach_instr_global(ctx, ins) {
794 if (ins->no_spill & (1 << l->spill_class)) {
795 lcra_set_node_spill_cost(l, ins->dest, -1);
796
797 if (l->spill_class != REG_CLASS_WORK) {
798 mir_foreach_src(ins, s)
799 lcra_set_node_spill_cost(l, ins->src[s], -1);
800 }
801 }
802 }
803
804 return lcra_get_best_spill_node(l);
805 }
806
807 /* Once we've chosen a spill node, spill it */
808
809 static void
810 mir_spill_register(
811 compiler_context *ctx,
812 unsigned spill_node,
813 unsigned spill_class,
814 unsigned *spill_count)
815 {
816 unsigned spill_index = ctx->temp_count;
817
818 /* We have a spill node, so check the class. Work registers
819 * legitimately spill to TLS, but special registers just spill to work
820 * registers */
821
822 bool is_special = spill_class != REG_CLASS_WORK;
823 bool is_special_w = spill_class == REG_CLASS_TEXW;
824
825 /* Allocate TLS slot (maybe) */
826 unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
827
828 /* For TLS, replace all stores to the spilled node. For
829 * special reads, just keep as-is; the class will be demoted
830 * implicitly. For special writes, spill to a work register */
831
832 if (!is_special || is_special_w) {
833 if (is_special_w)
834 spill_slot = spill_index++;
835
836 mir_foreach_block(ctx, _block) {
837 midgard_block *block = (midgard_block *) _block;
838 mir_foreach_instr_in_block_safe(block, ins) {
839 if (ins->dest != spill_node) continue;
840
841 midgard_instruction st;
842
843 if (is_special_w) {
844 st = v_mov(spill_node, spill_slot);
845 st.no_spill |= (1 << spill_class);
846 } else {
847 ins->dest = spill_index++;
848 ins->no_spill |= (1 << spill_class);
849 st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
850 }
851
852 /* Hint: don't rewrite this node */
853 st.hint = true;
854
855 mir_insert_instruction_after_scheduled(ctx, block, ins, st);
856
857 if (!is_special)
858 ctx->spills++;
859 }
860 }
861 }
862
863 /* For special reads, figure out how many bytes we need */
864 unsigned read_bytemask = 0;
865
866 mir_foreach_instr_global_safe(ctx, ins) {
867 read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
868 }
869
870 /* Insert a load from TLS before the first consecutive
871 * use of the node, rewriting to use spilled indices to
872 * break up the live range. Or, for special, insert a
873 * move. Ironically the latter *increases* register
874 * pressure, but the two uses of the spilling mechanism
875 * are somewhat orthogonal. (special spilling is to use
876 * work registers to back special registers; TLS
877 * spilling is to use memory to back work registers) */
878
879 mir_foreach_block(ctx, _block) {
880 midgard_block *block = (midgard_block *) _block;
881 mir_foreach_instr_in_block(block, ins) {
882 /* We can't rewrite the moves used to spill in the
883 * first place. These moves are hinted. */
884 if (ins->hint) continue;
885
886 /* If we don't use the spilled value, nothing to do */
887 if (!mir_has_arg(ins, spill_node)) continue;
888
889 unsigned index = 0;
890
891 if (!is_special_w) {
892 index = ++spill_index;
893
894 midgard_instruction *before = ins;
895 midgard_instruction st;
896
897 if (is_special) {
898 /* Move */
899 st = v_mov(spill_node, index);
900 st.no_spill |= (1 << spill_class);
901 } else {
902 /* TLS load */
903 st = v_load_store_scratch(index, spill_slot, false, 0xF);
904 }
905
906 /* Mask the load based on the component count
907 * actually needed to prevent RA loops */
908
909 st.mask = mir_from_bytemask(read_bytemask, 32);
910
911 mir_insert_instruction_before_scheduled(ctx, block, before, st);
912 } else {
913 /* Special writes already have their move spilled in */
914 index = spill_slot;
915 }
916
917
918 /* Rewrite to use */
919 mir_rewrite_index_src_single(ins, spill_node, index);
920
921 if (!is_special)
922 ctx->fills++;
923 }
924 }
925
926 /* Reset hints */
927
928 mir_foreach_instr_global(ctx, ins) {
929 ins->hint = false;
930 }
931 }
932
933 /* Run register allocation in a loop, spilling until we succeed */
934
935 void
936 mir_ra(compiler_context *ctx)
937 {
938 struct lcra_state *l = NULL;
939 bool spilled = false;
940 int iter_count = 1000; /* max iterations */
941
942 /* Number of 128-bit slots in memory we've spilled into */
943 unsigned spill_count = 0;
944
945
946 mir_create_pipeline_registers(ctx);
947
948 do {
949 if (spilled) {
950 signed spill_node = mir_choose_spill_node(ctx, l);
951
952 if (spill_node == -1) {
953 fprintf(stderr, "ERROR: Failed to choose spill node\n");
954 return;
955 }
956
957 mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
958 }
959
960 mir_squeeze_index(ctx);
961 mir_invalidate_liveness(ctx);
962
963 if (l) {
964 lcra_free(l);
965 l = NULL;
966 }
967
968 l = allocate_registers(ctx, &spilled);
969 } while(spilled && ((iter_count--) > 0));
970
971 if (iter_count <= 0) {
972 fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
973 assert(0);
974 }
975
976 /* Report spilling information. spill_count is in 128-bit slots (vec4 x
977 * fp32), but tls_size is in bytes, so multiply by 16 */
978
979 ctx->tls_size = spill_count * 16;
980
981 install_registers(ctx, l);
982
983 lcra_free(l);
984 }