pan/midgard: Remove util/ra support
[mesa.git] / src / panfrost / midgard / midgard_ra.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "lcra.h"
30
31 struct phys_reg {
32 /* Physical register: 0-31 */
33 unsigned reg;
34
35 /* Byte offset into the physical register: 0-15 */
36 unsigned offset;
37
38 /* Number of bytes in a component of this register */
39 unsigned size;
40 };
41
42 /* Shift up by reg_offset and horizontally by dst_offset. */
43
44 static void
45 offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcsize, unsigned dst_offset)
46 {
47 unsigned out[MIR_VEC_COMPONENTS];
48
49 signed reg_comp = reg_offset / srcsize;
50 signed dst_comp = dst_offset / srcsize;
51
52 unsigned max_component = (16 / srcsize) - 1;
53
54 assert(reg_comp * srcsize == reg_offset);
55 assert(dst_comp * srcsize == dst_offset);
56
57 for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
58 signed comp = MAX2(c - dst_comp, 0);
59 out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
60 }
61
62 memcpy(swizzle, out, sizeof(out));
63 }
64
65 /* Helper to return the default phys_reg for a given register */
66
67 static struct phys_reg
68 default_phys_reg(int reg, midgard_reg_mode size)
69 {
70 struct phys_reg r = {
71 .reg = reg,
72 .offset = 0,
73 .size = mir_bytes_for_mode(size)
74 };
75
76 return r;
77 }
78
79 /* Determine which physical register, swizzle, and mask a virtual
80 * register corresponds to */
81
82 static struct phys_reg
83 index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, midgard_reg_mode size)
84 {
85 /* Check for special cases */
86 if (reg == ~0)
87 return default_phys_reg(REGISTER_UNUSED, size);
88 else if (reg >= SSA_FIXED_MINIMUM)
89 return default_phys_reg(SSA_REG_FROM_FIXED(reg), size);
90 else if (!l)
91 return default_phys_reg(REGISTER_UNUSED, size);
92
93 struct phys_reg r = {
94 .reg = l->solutions[reg] / 16,
95 .offset = l->solutions[reg] & 0xF,
96 .size = mir_bytes_for_mode(size)
97 };
98
99 /* Report that we actually use this register, and return it */
100
101 if (r.reg < 16)
102 ctx->work_registers = MAX2(ctx->work_registers, r.reg);
103
104 return r;
105 }
106
107 static void
108 set_class(unsigned *classes, unsigned node, unsigned class)
109 {
110 if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
111 assert(classes[node] == REG_CLASS_WORK);
112 classes[node] = class;
113 }
114 }
115
116 /* Special register classes impose special constraints on who can read their
117 * values, so check that */
118
119 static bool
120 check_read_class(unsigned *classes, unsigned tag, unsigned node)
121 {
122 /* Non-nodes are implicitly ok */
123 if (node >= SSA_FIXED_MINIMUM)
124 return true;
125
126 switch (classes[node]) {
127 case REG_CLASS_LDST:
128 return (tag == TAG_LOAD_STORE_4);
129 case REG_CLASS_TEXR:
130 return (tag == TAG_TEXTURE_4);
131 case REG_CLASS_TEXW:
132 return (tag != TAG_LOAD_STORE_4);
133 case REG_CLASS_WORK:
134 return IS_ALU(tag);
135 default:
136 unreachable("Invalid class");
137 }
138 }
139
140 static bool
141 check_write_class(unsigned *classes, unsigned tag, unsigned node)
142 {
143 /* Non-nodes are implicitly ok */
144 if (node >= SSA_FIXED_MINIMUM)
145 return true;
146
147 switch (classes[node]) {
148 case REG_CLASS_TEXR:
149 return true;
150 case REG_CLASS_TEXW:
151 return (tag == TAG_TEXTURE_4);
152 case REG_CLASS_LDST:
153 case REG_CLASS_WORK:
154 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
155 default:
156 unreachable("Invalid class");
157 }
158 }
159
160 /* Prepass before RA to ensure special class restrictions are met. The idea is
161 * to create a bit field of types of instructions that read a particular index.
162 * Later, we'll add moves as appropriate and rewrite to specialize by type. */
163
164 static void
165 mark_node_class (unsigned *bitfield, unsigned node)
166 {
167 if (node < SSA_FIXED_MINIMUM)
168 BITSET_SET(bitfield, node);
169 }
170
171 void
172 mir_lower_special_reads(compiler_context *ctx)
173 {
174 size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
175
176 /* Bitfields for the various types of registers we could have. aluw can
177 * be written by either ALU or load/store */
178
179 unsigned *alur = calloc(sz, 1);
180 unsigned *aluw = calloc(sz, 1);
181 unsigned *brar = calloc(sz, 1);
182 unsigned *ldst = calloc(sz, 1);
183 unsigned *texr = calloc(sz, 1);
184 unsigned *texw = calloc(sz, 1);
185
186 /* Pass #1 is analysis, a linear scan to fill out the bitfields */
187
188 mir_foreach_instr_global(ctx, ins) {
189 switch (ins->type) {
190 case TAG_ALU_4:
191 mark_node_class(aluw, ins->dest);
192 mark_node_class(alur, ins->src[0]);
193 mark_node_class(alur, ins->src[1]);
194 mark_node_class(alur, ins->src[2]);
195
196 if (ins->compact_branch && ins->writeout)
197 mark_node_class(brar, ins->src[0]);
198
199 break;
200
201 case TAG_LOAD_STORE_4:
202 mark_node_class(aluw, ins->dest);
203 mark_node_class(ldst, ins->src[0]);
204 mark_node_class(ldst, ins->src[1]);
205 mark_node_class(ldst, ins->src[2]);
206 break;
207
208 case TAG_TEXTURE_4:
209 mark_node_class(texr, ins->src[0]);
210 mark_node_class(texr, ins->src[1]);
211 mark_node_class(texr, ins->src[2]);
212 mark_node_class(texw, ins->dest);
213 break;
214 }
215 }
216
217 /* Pass #2 is lowering now that we've analyzed all the classes.
218 * Conceptually, if an index is only marked for a single type of use,
219 * there is nothing to lower. If it is marked for different uses, we
220 * split up based on the number of types of uses. To do so, we divide
221 * into N distinct classes of use (where N>1 by definition), emit N-1
222 * moves from the index to copies of the index, and finally rewrite N-1
223 * of the types of uses to use the corresponding move */
224
225 unsigned spill_idx = ctx->temp_count;
226
227 for (unsigned i = 0; i < ctx->temp_count; ++i) {
228 bool is_alur = BITSET_TEST(alur, i);
229 bool is_aluw = BITSET_TEST(aluw, i);
230 bool is_brar = BITSET_TEST(brar, i);
231 bool is_ldst = BITSET_TEST(ldst, i);
232 bool is_texr = BITSET_TEST(texr, i);
233 bool is_texw = BITSET_TEST(texw, i);
234
235 /* Analyse to check how many distinct uses there are. ALU ops
236 * (alur) can read the results of the texture pipeline (texw)
237 * but not ldst or texr. Load/store ops (ldst) cannot read
238 * anything but load/store inputs. Texture pipeline cannot read
239 * anything but texture inputs. TODO: Simplify. */
240
241 bool collision =
242 (is_alur && (is_ldst || is_texr)) ||
243 (is_ldst && (is_alur || is_texr || is_texw)) ||
244 (is_texr && (is_alur || is_ldst || is_texw)) ||
245 (is_texw && (is_aluw || is_ldst || is_texr)) ||
246 (is_brar && is_texw);
247
248 if (!collision)
249 continue;
250
251 /* Use the index as-is as the work copy. Emit copies for
252 * special uses */
253
254 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
255 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
256
257 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
258 if (!collisions[j]) continue;
259
260 /* When the hazard is from reading, we move and rewrite
261 * sources (typical case). When it's from writing, we
262 * flip the move and rewrite destinations (obscure,
263 * only from control flow -- impossible in SSA) */
264
265 bool hazard_write = (j == 2);
266
267 unsigned idx = spill_idx++;
268
269 midgard_instruction m = hazard_write ?
270 v_mov(idx, i) : v_mov(i, idx);
271
272 /* Insert move before each read/write, depending on the
273 * hazard we're trying to account for */
274
275 mir_foreach_instr_global_safe(ctx, pre_use) {
276 if (pre_use->type != classes[j])
277 continue;
278
279 if (hazard_write) {
280 if (pre_use->dest != i)
281 continue;
282 } else {
283 if (!mir_has_arg(pre_use, i))
284 continue;
285 }
286
287 if (hazard_write) {
288 midgard_instruction *use = mir_next_op(pre_use);
289 assert(use);
290 mir_insert_instruction_before(ctx, use, m);
291 mir_rewrite_index_dst_single(pre_use, i, idx);
292 } else {
293 idx = spill_idx++;
294 m = v_mov(i, idx);
295 m.mask = mir_from_bytemask(mir_bytemask_of_read_components(pre_use, i), midgard_reg_mode_32);
296 mir_insert_instruction_before(ctx, pre_use, m);
297 mir_rewrite_index_src_single(pre_use, i, idx);
298 }
299 }
300 }
301 }
302
303 free(alur);
304 free(aluw);
305 free(brar);
306 free(ldst);
307 free(texr);
308 free(texw);
309 }
310
311 /* We register allocate after scheduling, so we need to ensure instructions
312 * executing in parallel within a segment of a bundle don't clobber each
313 * other's registers. This is mostly a non-issue thanks to scheduling, but
314 * there are edge cases. In particular, after a register is written in a
315 * segment, it interferes with anything reading. */
316
317 static void
318 mir_compute_segment_interference(
319 compiler_context *ctx,
320 struct lcra_state *l,
321 midgard_bundle *bun,
322 unsigned pivot,
323 unsigned i)
324 {
325 for (unsigned j = pivot; j < i; ++j) {
326 mir_foreach_src(bun->instructions[j], s) {
327 if (bun->instructions[j]->src[s] >= ctx->temp_count)
328 continue;
329
330 for (unsigned q = pivot; q < i; ++q) {
331 if (bun->instructions[q]->dest >= ctx->temp_count)
332 continue;
333
334 /* See dEQP-GLES2.functional.shaders.return.output_write_in_func_dynamic_fragment */
335
336 if (q >= j) {
337 if (!(bun->instructions[j]->unit == UNIT_SMUL && bun->instructions[q]->unit == UNIT_VLUT))
338 continue;
339 }
340
341 unsigned mask = mir_bytemask(bun->instructions[q]);
342 unsigned rmask = mir_bytemask_of_read_components(bun->instructions[j], bun->instructions[j]->src[s]);
343 lcra_add_node_interference(l, bun->instructions[q]->dest, mask, bun->instructions[j]->src[s], rmask);
344 }
345 }
346 }
347 }
348
349 static void
350 mir_compute_bundle_interference(
351 compiler_context *ctx,
352 struct lcra_state *l,
353 midgard_bundle *bun)
354 {
355 if (!IS_ALU(bun->tag))
356 return;
357
358 bool old = bun->instructions[0]->unit >= UNIT_VADD;
359 unsigned pivot = 0;
360
361 for (unsigned i = 1; i < bun->instruction_count; ++i) {
362 bool new = bun->instructions[i]->unit >= UNIT_VADD;
363
364 if (old != new) {
365 mir_compute_segment_interference(ctx, l, bun, 0, i);
366 pivot = i;
367 break;
368 }
369 }
370
371 mir_compute_segment_interference(ctx, l, bun, pivot, bun->instruction_count);
372 }
373
374 static void
375 mir_compute_interference(
376 compiler_context *ctx,
377 struct lcra_state *l)
378 {
379 /* First, we need liveness information to be computed per block */
380 mir_compute_liveness(ctx);
381
382 /* Now that every block has live_in/live_out computed, we can determine
383 * interference by walking each block linearly. Take live_out at the
384 * end of each block and walk the block backwards. */
385
386 mir_foreach_block(ctx, blk) {
387 uint16_t *live = mem_dup(blk->live_out, ctx->temp_count * sizeof(uint16_t));
388
389 mir_foreach_instr_in_block_rev(blk, ins) {
390 /* Mark all registers live after the instruction as
391 * interfering with the destination */
392
393 unsigned dest = ins->dest;
394
395 if (dest < ctx->temp_count) {
396 for (unsigned i = 0; i < ctx->temp_count; ++i)
397 if (live[i]) {
398 unsigned mask = mir_bytemask(ins);
399 lcra_add_node_interference(l, dest, mask, i, live[i]);
400 }
401 }
402
403 /* Update live_in */
404 mir_liveness_ins_update(live, ins, ctx->temp_count);
405 }
406
407 mir_foreach_bundle_in_block(blk, bun)
408 mir_compute_bundle_interference(ctx, l, bun);
409
410 free(live);
411 }
412 }
413
414 /* This routine performs the actual register allocation. It should be succeeded
415 * by install_registers */
416
417 struct lcra_state *
418 allocate_registers(compiler_context *ctx, bool *spilled)
419 {
420 /* The number of vec4 work registers available depends on when the
421 * uniforms start, so compute that first */
422 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
423
424 /* No register allocation to do with no SSA */
425
426 if (!ctx->temp_count)
427 return NULL;
428
429 struct lcra_state *l = lcra_alloc_equations(ctx->temp_count, 1, 8, 16, 5);
430
431 /* Starts of classes, in bytes */
432 l->class_start[REG_CLASS_WORK] = 16 * 0;
433 l->class_start[REG_CLASS_LDST] = 16 * 26;
434 l->class_start[REG_CLASS_TEXR] = 16 * 28;
435 l->class_start[REG_CLASS_TEXW] = 16 * 28;
436
437 l->class_size[REG_CLASS_WORK] = 16 * work_count;
438 l->class_size[REG_CLASS_LDST] = 16 * 2;
439 l->class_size[REG_CLASS_TEXR] = 16 * 2;
440 l->class_size[REG_CLASS_TEXW] = 16 * 2;
441
442 lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
443
444 unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
445
446 mir_foreach_instr_global(ctx, ins) {
447 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
448
449 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
450 int class = util_logbase2(ins->mask);
451
452 /* Use the largest class if there's ambiguity, this
453 * handles partial writes */
454
455 int dest = ins->dest;
456 found_class[dest] = MAX2(found_class[dest], class);
457
458 lcra_set_alignment(l, dest, 2); /* (1 << 2) = 4 */
459
460 /* XXX: Ensure swizzles align the right way with more LCRA constraints? */
461 if (ins->type == TAG_ALU_4 && ins->alu.reg_mode != midgard_reg_mode_32)
462 lcra_set_alignment(l, dest, 3); /* (1 << 3) = 8 */
463 }
464
465 for (unsigned i = 0; i < ctx->temp_count; ++i)
466 lcra_restrict_range(l, i, (found_class[i] + 1) * 4);
467
468 free(found_class);
469
470 /* Next, we'll determine semantic class. We default to zero (work).
471 * But, if we're used with a special operation, that will force us to a
472 * particular class. Each node must be assigned to exactly one class; a
473 * prepass before RA should have lowered what-would-have-been
474 * multiclass nodes into a series of moves to break it up into multiple
475 * nodes (TODO) */
476
477 mir_foreach_instr_global(ctx, ins) {
478 /* Check if this operation imposes any classes */
479
480 if (ins->type == TAG_LOAD_STORE_4) {
481 set_class(l->class, ins->src[0], REG_CLASS_LDST);
482 set_class(l->class, ins->src[1], REG_CLASS_LDST);
483 set_class(l->class, ins->src[2], REG_CLASS_LDST);
484
485 if (OP_IS_VEC4_ONLY(ins->load_store.op))
486 lcra_restrict_range(l, ins->dest, 16);
487 } else if (ins->type == TAG_TEXTURE_4) {
488 set_class(l->class, ins->dest, REG_CLASS_TEXW);
489 set_class(l->class, ins->src[0], REG_CLASS_TEXR);
490 set_class(l->class, ins->src[1], REG_CLASS_TEXR);
491 set_class(l->class, ins->src[2], REG_CLASS_TEXR);
492 }
493 }
494
495 /* Check that the semantics of the class are respected */
496 mir_foreach_instr_global(ctx, ins) {
497 assert(check_write_class(l->class, ins->type, ins->dest));
498 assert(check_read_class(l->class, ins->type, ins->src[0]));
499 assert(check_read_class(l->class, ins->type, ins->src[1]));
500 assert(check_read_class(l->class, ins->type, ins->src[2]));
501 }
502
503 /* Mark writeout to r0 */
504 mir_foreach_instr_global(ctx, ins) {
505 if (ins->compact_branch && ins->writeout && ins->src[0] < ctx->temp_count)
506 l->solutions[ins->src[0]] = 0;
507 }
508
509 mir_compute_interference(ctx, l);
510
511 *spilled = !lcra_solve(l);
512 return l;
513 }
514
515 /* Once registers have been decided via register allocation
516 * (allocate_registers), we need to rewrite the MIR to use registers instead of
517 * indices */
518
519 static void
520 install_registers_instr(
521 compiler_context *ctx,
522 struct lcra_state *l,
523 midgard_instruction *ins)
524 {
525 switch (ins->type) {
526 case TAG_ALU_4:
527 case TAG_ALU_8:
528 case TAG_ALU_12:
529 case TAG_ALU_16: {
530 if (ins->compact_branch)
531 return;
532
533 struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
534 struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
535 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
536
537 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
538
539 unsigned dest_offset =
540 GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
541 dest.offset;
542
543 offset_swizzle(ins->swizzle[0], src1.offset, src1.size, dest_offset);
544
545 ins->registers.src1_reg = src1.reg;
546
547 ins->registers.src2_imm = ins->has_inline_constant;
548
549 if (ins->has_inline_constant) {
550 /* Encode inline 16-bit constant. See disassembler for
551 * where the algorithm is from */
552
553 ins->registers.src2_reg = ins->inline_constant >> 11;
554
555 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
556 uint16_t imm = ((lower_11 >> 8) & 0x7) |
557 ((lower_11 & 0xFF) << 3);
558
559 ins->alu.src2 = imm << 2;
560 } else {
561 midgard_vector_alu_src mod2 =
562 vector_alu_from_unsigned(ins->alu.src2);
563 offset_swizzle(ins->swizzle[1], src2.offset, src2.size, dest_offset);
564 ins->alu.src2 = vector_alu_srco_unsigned(mod2);
565
566 ins->registers.src2_reg = src2.reg;
567 }
568
569 ins->registers.out_reg = dest.reg;
570 break;
571 }
572
573 case TAG_LOAD_STORE_4: {
574 /* Which physical register we read off depends on
575 * whether we are loading or storing -- think about the
576 * logical dataflow */
577
578 bool encodes_src = OP_IS_STORE(ins->load_store.op);
579
580 if (encodes_src) {
581 struct phys_reg src = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
582 assert(src.reg == 26 || src.reg == 27);
583
584 ins->load_store.reg = src.reg - 26;
585 offset_swizzle(ins->swizzle[0], src.offset, src.size, 0);
586 } else {
587 struct phys_reg dst = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
588
589 ins->load_store.reg = dst.reg;
590 offset_swizzle(ins->swizzle[0], 0, 4, dst.offset);
591 mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
592 }
593
594 /* We also follow up by actual arguments */
595
596 unsigned src2 = ins->src[1];
597 unsigned src3 = ins->src[2];
598
599 if (src2 != ~0) {
600 struct phys_reg src = index_to_reg(ctx, l, src2, mir_srcsize(ins, 1));
601 unsigned component = src.offset / src.size;
602 assert(component * src.size == src.offset);
603 ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
604 }
605
606 if (src3 != ~0) {
607 struct phys_reg src = index_to_reg(ctx, l, src3, mir_srcsize(ins, 2));
608 unsigned component = src.offset / src.size;
609 assert(component * src.size == src.offset);
610 ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
611 }
612
613 break;
614 }
615
616 case TAG_TEXTURE_4: {
617 /* Grab RA results */
618 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
619 struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
620 struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], mir_srcsize(ins, 2));
621
622 assert(dest.reg == 28 || dest.reg == 29);
623 assert(coord.reg == 28 || coord.reg == 29);
624
625 /* First, install the texture coordinate */
626 ins->texture.in_reg_full = 1;
627 ins->texture.in_reg_upper = 0;
628 ins->texture.in_reg_select = coord.reg - 28;
629 offset_swizzle(ins->swizzle[1], coord.offset, coord.size, 0);
630
631 /* Next, install the destination */
632 ins->texture.out_full = 1;
633 ins->texture.out_upper = 0;
634 ins->texture.out_reg_select = dest.reg - 28;
635 offset_swizzle(ins->swizzle[0], 0, 4, dest.offset);
636 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
637
638 /* If there is a register LOD/bias, use it */
639 if (ins->src[2] != ~0) {
640 assert(!(lod.offset & 3));
641 midgard_tex_register_select sel = {
642 .select = lod.reg,
643 .full = 1,
644 .component = lod.offset / 4
645 };
646
647 uint8_t packed;
648 memcpy(&packed, &sel, sizeof(packed));
649 ins->texture.bias = packed;
650 }
651
652 break;
653 }
654
655 default:
656 break;
657 }
658 }
659
660 void
661 install_registers(compiler_context *ctx, struct lcra_state *l)
662 {
663 mir_foreach_instr_global(ctx, ins)
664 install_registers_instr(ctx, l, ins);
665 }