pan/mdg: Dual source blend input/writeout support
[mesa.git] / src / panfrost / midgard / midgard_ra.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "midgard_quirks.h"
30
31 struct phys_reg {
32 /* Physical register: 0-31 */
33 unsigned reg;
34
35 /* Byte offset into the physical register: 0-15 */
36 unsigned offset;
37
38 /* log2(bytes per component) for fast mul/div */
39 unsigned shift;
40 };
41
42 /* Shift up by reg_offset and horizontally by dst_offset. */
43
44 static void
45 offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcshift, unsigned dstshift, unsigned dst_offset)
46 {
47 unsigned out[MIR_VEC_COMPONENTS];
48
49 signed reg_comp = reg_offset >> srcshift;
50 signed dst_comp = dst_offset >> dstshift;
51
52 unsigned max_component = (16 >> srcshift) - 1;
53
54 assert(reg_comp << srcshift == reg_offset);
55 assert(dst_comp << dstshift == dst_offset);
56
57 for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
58 signed comp = MAX2(c - dst_comp, 0);
59 out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
60 }
61
62 memcpy(swizzle, out, sizeof(out));
63 }
64
65 /* Helper to return the default phys_reg for a given register */
66
67 static struct phys_reg
68 default_phys_reg(int reg, unsigned shift)
69 {
70 struct phys_reg r = {
71 .reg = reg,
72 .offset = 0,
73 .shift = shift
74 };
75
76 return r;
77 }
78
79 /* Determine which physical register, swizzle, and mask a virtual
80 * register corresponds to */
81
82 static struct phys_reg
83 index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned shift)
84 {
85 /* Check for special cases */
86 if (reg == ~0)
87 return default_phys_reg(REGISTER_UNUSED, shift);
88 else if (reg >= SSA_FIXED_MINIMUM)
89 return default_phys_reg(SSA_REG_FROM_FIXED(reg), shift);
90 else if (!l)
91 return default_phys_reg(REGISTER_UNUSED, shift);
92
93 struct phys_reg r = {
94 .reg = l->solutions[reg] / 16,
95 .offset = l->solutions[reg] & 0xF,
96 .shift = shift
97 };
98
99 /* Report that we actually use this register, and return it */
100
101 if (r.reg < 16)
102 ctx->work_registers = MAX2(ctx->work_registers, r.reg);
103
104 return r;
105 }
106
107 static void
108 set_class(unsigned *classes, unsigned node, unsigned class)
109 {
110 if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
111 assert(classes[node] == REG_CLASS_WORK);
112 classes[node] = class;
113 }
114 }
115
116 /* Special register classes impose special constraints on who can read their
117 * values, so check that */
118
119 static bool
120 check_read_class(unsigned *classes, unsigned tag, unsigned node)
121 {
122 /* Non-nodes are implicitly ok */
123 if (node >= SSA_FIXED_MINIMUM)
124 return true;
125
126 switch (classes[node]) {
127 case REG_CLASS_LDST:
128 return (tag == TAG_LOAD_STORE_4);
129 case REG_CLASS_TEXR:
130 return (tag == TAG_TEXTURE_4);
131 case REG_CLASS_TEXW:
132 return (tag != TAG_LOAD_STORE_4);
133 case REG_CLASS_WORK:
134 return IS_ALU(tag);
135 default:
136 unreachable("Invalid class");
137 }
138 }
139
140 static bool
141 check_write_class(unsigned *classes, unsigned tag, unsigned node)
142 {
143 /* Non-nodes are implicitly ok */
144 if (node >= SSA_FIXED_MINIMUM)
145 return true;
146
147 switch (classes[node]) {
148 case REG_CLASS_TEXR:
149 return true;
150 case REG_CLASS_TEXW:
151 return (tag == TAG_TEXTURE_4);
152 case REG_CLASS_LDST:
153 case REG_CLASS_WORK:
154 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
155 default:
156 unreachable("Invalid class");
157 }
158 }
159
160 /* Prepass before RA to ensure special class restrictions are met. The idea is
161 * to create a bit field of types of instructions that read a particular index.
162 * Later, we'll add moves as appropriate and rewrite to specialize by type. */
163
164 static void
165 mark_node_class (unsigned *bitfield, unsigned node)
166 {
167 if (node < SSA_FIXED_MINIMUM)
168 BITSET_SET(bitfield, node);
169 }
170
171 void
172 mir_lower_special_reads(compiler_context *ctx)
173 {
174 size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
175
176 /* Bitfields for the various types of registers we could have. aluw can
177 * be written by either ALU or load/store */
178
179 unsigned *alur = calloc(sz, 1);
180 unsigned *aluw = calloc(sz, 1);
181 unsigned *brar = calloc(sz, 1);
182 unsigned *ldst = calloc(sz, 1);
183 unsigned *texr = calloc(sz, 1);
184 unsigned *texw = calloc(sz, 1);
185
186 /* Pass #1 is analysis, a linear scan to fill out the bitfields */
187
188 mir_foreach_instr_global(ctx, ins) {
189 switch (ins->type) {
190 case TAG_ALU_4:
191 mark_node_class(aluw, ins->dest);
192 mark_node_class(alur, ins->src[0]);
193 mark_node_class(alur, ins->src[1]);
194 mark_node_class(alur, ins->src[2]);
195
196 if (ins->compact_branch && ins->writeout)
197 mark_node_class(brar, ins->src[0]);
198
199 break;
200
201 case TAG_LOAD_STORE_4:
202 mark_node_class(aluw, ins->dest);
203 mark_node_class(ldst, ins->src[0]);
204 mark_node_class(ldst, ins->src[1]);
205 mark_node_class(ldst, ins->src[2]);
206 break;
207
208 case TAG_TEXTURE_4:
209 mark_node_class(texr, ins->src[0]);
210 mark_node_class(texr, ins->src[1]);
211 mark_node_class(texr, ins->src[2]);
212 mark_node_class(texw, ins->dest);
213 break;
214 }
215 }
216
217 /* Pass #2 is lowering now that we've analyzed all the classes.
218 * Conceptually, if an index is only marked for a single type of use,
219 * there is nothing to lower. If it is marked for different uses, we
220 * split up based on the number of types of uses. To do so, we divide
221 * into N distinct classes of use (where N>1 by definition), emit N-1
222 * moves from the index to copies of the index, and finally rewrite N-1
223 * of the types of uses to use the corresponding move */
224
225 unsigned spill_idx = ctx->temp_count;
226
227 for (unsigned i = 0; i < ctx->temp_count; ++i) {
228 bool is_alur = BITSET_TEST(alur, i);
229 bool is_aluw = BITSET_TEST(aluw, i);
230 bool is_brar = BITSET_TEST(brar, i);
231 bool is_ldst = BITSET_TEST(ldst, i);
232 bool is_texr = BITSET_TEST(texr, i);
233 bool is_texw = BITSET_TEST(texw, i);
234
235 /* Analyse to check how many distinct uses there are. ALU ops
236 * (alur) can read the results of the texture pipeline (texw)
237 * but not ldst or texr. Load/store ops (ldst) cannot read
238 * anything but load/store inputs. Texture pipeline cannot read
239 * anything but texture inputs. TODO: Simplify. */
240
241 bool collision =
242 (is_alur && (is_ldst || is_texr)) ||
243 (is_ldst && (is_alur || is_texr || is_texw)) ||
244 (is_texr && (is_alur || is_ldst || is_texw)) ||
245 (is_texw && (is_aluw || is_ldst || is_texr)) ||
246 (is_brar && is_texw);
247
248 if (!collision)
249 continue;
250
251 /* Use the index as-is as the work copy. Emit copies for
252 * special uses */
253
254 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
255 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
256
257 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
258 if (!collisions[j]) continue;
259
260 /* When the hazard is from reading, we move and rewrite
261 * sources (typical case). When it's from writing, we
262 * flip the move and rewrite destinations (obscure,
263 * only from control flow -- impossible in SSA) */
264
265 bool hazard_write = (j == 2);
266
267 unsigned idx = spill_idx++;
268
269 /* Insert move before each read/write, depending on the
270 * hazard we're trying to account for */
271
272 mir_foreach_instr_global_safe(ctx, pre_use) {
273 if (pre_use->type != classes[j])
274 continue;
275
276 if (hazard_write) {
277 if (pre_use->dest != i)
278 continue;
279
280 midgard_instruction m = v_mov(idx, i);
281 m.dest_type = pre_use->dest_type;
282 m.src_types[1] = m.dest_type;
283 m.mask = pre_use->mask;
284
285 midgard_instruction *use = mir_next_op(pre_use);
286 assert(use);
287 mir_insert_instruction_before(ctx, use, m);
288 mir_rewrite_index_dst_single(pre_use, i, idx);
289 } else {
290 if (!mir_has_arg(pre_use, i))
291 continue;
292
293 idx = spill_idx++;
294
295 midgard_instruction m = v_mov(i, idx);
296 m.mask = mir_from_bytemask(mir_round_bytemask_up(
297 mir_bytemask_of_read_components(pre_use, i), 32), 32);
298 mir_insert_instruction_before(ctx, pre_use, m);
299 mir_rewrite_index_src_single(pre_use, i, idx);
300 }
301 }
302 }
303 }
304
305 free(alur);
306 free(aluw);
307 free(brar);
308 free(ldst);
309 free(texr);
310 free(texw);
311 }
312
313 static void
314 mir_compute_interference(
315 compiler_context *ctx,
316 struct lcra_state *l)
317 {
318 /* First, we need liveness information to be computed per block */
319 mir_compute_liveness(ctx);
320
321 /* We need to force r1.w live throughout a blend shader */
322
323 if (ctx->is_blend) {
324 unsigned r1w = ~0;
325
326 mir_foreach_block(ctx, _block) {
327 midgard_block *block = (midgard_block *) _block;
328 mir_foreach_instr_in_block_rev(block, ins) {
329 if (ins->writeout)
330 r1w = ins->dest;
331 }
332
333 if (r1w != ~0)
334 break;
335 }
336
337 mir_foreach_instr_global(ctx, ins) {
338 if (ins->dest < ctx->temp_count)
339 lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
340 }
341 }
342
343 /* Now that every block has live_in/live_out computed, we can determine
344 * interference by walking each block linearly. Take live_out at the
345 * end of each block and walk the block backwards. */
346
347 mir_foreach_block(ctx, _blk) {
348 midgard_block *blk = (midgard_block *) _blk;
349 uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
350
351 mir_foreach_instr_in_block_rev(blk, ins) {
352 /* Mark all registers live after the instruction as
353 * interfering with the destination */
354
355 unsigned dest = ins->dest;
356
357 if (dest < ctx->temp_count) {
358 for (unsigned i = 0; i < ctx->temp_count; ++i)
359 if (live[i]) {
360 unsigned mask = mir_bytemask(ins);
361 lcra_add_node_interference(l, dest, mask, i, live[i]);
362 }
363 }
364
365 /* Update live_in */
366 mir_liveness_ins_update(live, ins, ctx->temp_count);
367 }
368
369 free(live);
370 }
371 }
372
373 static bool
374 mir_is_64(midgard_instruction *ins)
375 {
376 if (nir_alu_type_get_type_size(ins->dest_type) == 64)
377 return true;
378
379 mir_foreach_src(ins, v) {
380 if (nir_alu_type_get_type_size(ins->src_types[v]) == 64)
381 return true;
382 }
383
384 return false;
385 }
386
387 /* This routine performs the actual register allocation. It should be succeeded
388 * by install_registers */
389
390 static struct lcra_state *
391 allocate_registers(compiler_context *ctx, bool *spilled)
392 {
393 /* The number of vec4 work registers available depends on when the
394 * uniforms start and the shader stage. By ABI we limit blend shaders
395 * to 8 registers, should be lower XXX */
396 int work_count = ctx->is_blend ? 8 :
397 16 - MAX2((ctx->uniform_cutoff - 8), 0);
398
399 /* No register allocation to do with no SSA */
400
401 if (!ctx->temp_count)
402 return NULL;
403
404 /* Initialize LCRA. Allocate an extra node at the end for a precoloured
405 * r1 for interference */
406
407 struct lcra_state *l = lcra_alloc_equations(ctx->temp_count + 1, 5);
408 unsigned node_r1 = ctx->temp_count;
409
410 /* Starts of classes, in bytes */
411 l->class_start[REG_CLASS_WORK] = 16 * 0;
412 l->class_start[REG_CLASS_LDST] = 16 * 26;
413 l->class_start[REG_CLASS_TEXR] = 16 * 28;
414 l->class_start[REG_CLASS_TEXW] = 16 * 28;
415
416 l->class_size[REG_CLASS_WORK] = 16 * work_count;
417 l->class_size[REG_CLASS_LDST] = 16 * 2;
418 l->class_size[REG_CLASS_TEXR] = 16 * 2;
419 l->class_size[REG_CLASS_TEXW] = 16 * 2;
420
421 lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
422
423 /* To save space on T*20, we don't have real texture registers.
424 * Instead, tex inputs reuse the load/store pipeline registers, and
425 * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
426 * noting that this handles interferences and sizes correctly. */
427
428 if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
429 l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
430 l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
431 }
432
433 unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
434 unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
435 unsigned *min_bound = calloc(sizeof(unsigned), ctx->temp_count);
436
437 mir_foreach_instr_global(ctx, ins) {
438 /* Swizzles of 32-bit sources on 64-bit instructions need to be
439 * aligned to either bottom (xy) or top (zw). More general
440 * swizzle lowering should happen prior to scheduling (TODO),
441 * but once we get RA we shouldn't disrupt this further. Align
442 * sources of 64-bit instructions. */
443
444 if (ins->type == TAG_ALU_4 && mir_is_64(ins)) {
445 mir_foreach_src(ins, v) {
446 unsigned s = ins->src[v];
447
448 if (s < ctx->temp_count)
449 min_alignment[s] = 3;
450 }
451 }
452
453 if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->load_store.op)) {
454 mir_foreach_src(ins, v) {
455 unsigned s = ins->src[v];
456 unsigned size = nir_alu_type_get_type_size(ins->src_types[v]);
457
458 if (s < ctx->temp_count)
459 min_alignment[s] = (size == 64) ? 3 : 2;
460 }
461 }
462
463 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
464
465 unsigned size = nir_alu_type_get_type_size(ins->dest_type);
466
467 if (ins->is_pack)
468 size = 32;
469
470 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
471 int comps1 = util_logbase2(ins->mask);
472
473 int bytes = (comps1 + 1) * (size / 8);
474
475 /* Use the largest class if there's ambiguity, this
476 * handles partial writes */
477
478 int dest = ins->dest;
479 found_class[dest] = MAX2(found_class[dest], bytes);
480
481 min_alignment[dest] =
482 (size == 16) ? 1 : /* (1 << 1) = 2-byte */
483 (size == 32) ? 2 : /* (1 << 2) = 4-byte */
484 (size == 64) ? 3 : /* (1 << 3) = 8-byte */
485 3; /* 8-bit todo */
486
487 /* We can't cross xy/zw boundaries. TODO: vec8 can */
488 if (size == 16)
489 min_bound[dest] = 8;
490
491 /* We don't have a swizzle for the conditional and we don't
492 * want to muck with the conditional itself, so just force
493 * alignment for now */
494
495 if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->alu.op)) {
496 min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
497
498 /* LCRA assumes bound >= alignment */
499 min_bound[dest] = 16;
500 }
501
502 /* Since ld/st swizzles and masks are 32-bit only, we need them
503 * aligned to enable final packing */
504 if (ins->type == TAG_LOAD_STORE_4)
505 min_alignment[dest] = MAX2(min_alignment[dest], 2);
506 }
507
508 for (unsigned i = 0; i < ctx->temp_count; ++i) {
509 lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2,
510 min_bound[i] ? min_bound[i] : 16);
511 lcra_restrict_range(l, i, found_class[i]);
512 }
513
514 free(found_class);
515 free(min_alignment);
516 free(min_bound);
517
518 /* Next, we'll determine semantic class. We default to zero (work).
519 * But, if we're used with a special operation, that will force us to a
520 * particular class. Each node must be assigned to exactly one class; a
521 * prepass before RA should have lowered what-would-have-been
522 * multiclass nodes into a series of moves to break it up into multiple
523 * nodes (TODO) */
524
525 mir_foreach_instr_global(ctx, ins) {
526 /* Check if this operation imposes any classes */
527
528 if (ins->type == TAG_LOAD_STORE_4) {
529 set_class(l->class, ins->src[0], REG_CLASS_LDST);
530 set_class(l->class, ins->src[1], REG_CLASS_LDST);
531 set_class(l->class, ins->src[2], REG_CLASS_LDST);
532
533 if (OP_IS_VEC4_ONLY(ins->load_store.op)) {
534 lcra_restrict_range(l, ins->dest, 16);
535 lcra_restrict_range(l, ins->src[0], 16);
536 lcra_restrict_range(l, ins->src[1], 16);
537 lcra_restrict_range(l, ins->src[2], 16);
538 }
539 } else if (ins->type == TAG_TEXTURE_4) {
540 set_class(l->class, ins->dest, REG_CLASS_TEXW);
541 set_class(l->class, ins->src[0], REG_CLASS_TEXR);
542 set_class(l->class, ins->src[1], REG_CLASS_TEXR);
543 set_class(l->class, ins->src[2], REG_CLASS_TEXR);
544 set_class(l->class, ins->src[3], REG_CLASS_TEXR);
545 }
546 }
547
548 /* Check that the semantics of the class are respected */
549 mir_foreach_instr_global(ctx, ins) {
550 assert(check_write_class(l->class, ins->type, ins->dest));
551 assert(check_read_class(l->class, ins->type, ins->src[0]));
552 assert(check_read_class(l->class, ins->type, ins->src[1]));
553 assert(check_read_class(l->class, ins->type, ins->src[2]));
554 }
555
556 /* Mark writeout to r0, depth to r1.x, stencil to r1.y,
557 * render target to r1.z, unknown to r1.w */
558 mir_foreach_instr_global(ctx, ins) {
559 if (!(ins->compact_branch && ins->writeout)) continue;
560
561 if (ins->src[0] < ctx->temp_count)
562 l->solutions[ins->src[0]] = 0;
563
564 if (ins->src[2] < ctx->temp_count)
565 l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_X * 4;
566
567 if (ins->src[3] < ctx->temp_count)
568 l->solutions[ins->src[3]] = (16 * 1) + COMPONENT_Y * 4;
569
570 if (ins->src[1] < ctx->temp_count)
571 l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
572
573 if (ins->dest < ctx->temp_count)
574 l->solutions[ins->dest] = (16 * 1) + COMPONENT_W * 4;
575 }
576
577 /* Destinations of instructions in a writeout block cannot be assigned
578 * to r1 unless they are actually used as r1 from the writeout itself,
579 * since the writes to r1 are special. A code sequence like:
580 *
581 * sadd.fmov r1.x, [...]
582 * vadd.fadd r0, r1, r2
583 * [writeout branch]
584 *
585 * will misbehave since the r1.x write will be interpreted as a
586 * gl_FragDepth write so it won't show up correctly when r1 is read in
587 * the following segment. We model this as interference.
588 */
589
590 l->solutions[node_r1] = (16 * 1);
591
592 mir_foreach_block(ctx, _blk) {
593 midgard_block *blk = (midgard_block *) _blk;
594
595 mir_foreach_bundle_in_block(blk, v) {
596 /* We need at least a writeout and nonwriteout instruction */
597 if (v->instruction_count < 2)
598 continue;
599
600 /* Branches always come at the end */
601 midgard_instruction *br = v->instructions[v->instruction_count - 1];
602
603 if (!br->writeout)
604 continue;
605
606 for (signed i = v->instruction_count - 2; i >= 0; --i) {
607 midgard_instruction *ins = v->instructions[i];
608
609 if (ins->dest >= ctx->temp_count)
610 continue;
611
612 bool used_as_r1 = (br->dest == ins->dest);
613
614 mir_foreach_src(br, s)
615 used_as_r1 |= (s > 0) && (br->src[s] == ins->dest);
616
617 if (!used_as_r1)
618 lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), node_r1, 0xFFFF);
619 }
620 }
621 }
622
623 /* Precolour blend input to r0. Note writeout is necessarily at the end
624 * and blend shaders are single-RT only so there is only a single
625 * writeout block, so this cannot conflict with the writeout r0 (there
626 * is no need to have an intermediate move) */
627
628 if (ctx->blend_input != ~0) {
629 assert(ctx->blend_input < ctx->temp_count);
630 l->solutions[ctx->blend_input] = 0;
631 }
632
633 /* Same for the dual-source blend input/output, except here we use r2,
634 * which is also set in the fragment shader. */
635
636 if (ctx->blend_src1 != ~0) {
637 assert(ctx->blend_src1 < ctx->temp_count);
638 l->solutions[ctx->blend_src1] = (16 * 2);
639 ctx->work_registers = MAX2(ctx->work_registers, 2);
640 }
641
642 mir_compute_interference(ctx, l);
643
644 *spilled = !lcra_solve(l);
645 return l;
646 }
647
648
649 /* Once registers have been decided via register allocation
650 * (allocate_registers), we need to rewrite the MIR to use registers instead of
651 * indices */
652
653 static void
654 install_registers_instr(
655 compiler_context *ctx,
656 struct lcra_state *l,
657 midgard_instruction *ins)
658 {
659 unsigned src_shift[MIR_SRC_COUNT];
660
661 for (unsigned i = 0; i < MIR_SRC_COUNT; ++i) {
662 src_shift[i] =
663 util_logbase2(nir_alu_type_get_type_size(ins->src_types[i]) / 8);
664 }
665
666 unsigned dest_shift =
667 util_logbase2(nir_alu_type_get_type_size(ins->dest_type) / 8);
668
669 switch (ins->type) {
670 case TAG_ALU_4:
671 case TAG_ALU_8:
672 case TAG_ALU_12:
673 case TAG_ALU_16: {
674 if (ins->compact_branch)
675 return;
676
677 struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
678 struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
679 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
680
681 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
682
683 unsigned dest_offset =
684 GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
685 dest.offset;
686
687 offset_swizzle(ins->swizzle[0], src1.offset, src1.shift, dest.shift, dest_offset);
688
689 ins->registers.src1_reg = src1.reg;
690
691 ins->registers.src2_imm = ins->has_inline_constant;
692
693 if (ins->has_inline_constant) {
694 /* Encode inline 16-bit constant. See disassembler for
695 * where the algorithm is from */
696
697 ins->registers.src2_reg = ins->inline_constant >> 11;
698
699 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
700 uint16_t imm = ((lower_11 >> 8) & 0x7) |
701 ((lower_11 & 0xFF) << 3);
702
703 ins->alu.src2 = imm << 2;
704 } else {
705 offset_swizzle(ins->swizzle[1], src2.offset, src2.shift, dest.shift, dest_offset);
706
707 ins->registers.src2_reg = src2.reg;
708 }
709
710 ins->registers.out_reg = dest.reg;
711 break;
712 }
713
714 case TAG_LOAD_STORE_4: {
715 /* Which physical register we read off depends on
716 * whether we are loading or storing -- think about the
717 * logical dataflow */
718
719 bool encodes_src = OP_IS_STORE(ins->load_store.op);
720
721 if (encodes_src) {
722 struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
723 assert(src.reg == 26 || src.reg == 27);
724
725 ins->load_store.reg = src.reg - 26;
726 offset_swizzle(ins->swizzle[0], src.offset, src.shift, 0, 0);
727 } else {
728 struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_shift);
729
730 ins->load_store.reg = dst.reg;
731 offset_swizzle(ins->swizzle[0], 0, 2, 2, dst.offset);
732 mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
733 }
734
735 /* We also follow up by actual arguments */
736
737 unsigned src2 = ins->src[1];
738 unsigned src3 = ins->src[2];
739
740 if (src2 != ~0) {
741 struct phys_reg src = index_to_reg(ctx, l, src2, 2);
742 unsigned component = src.offset >> src.shift;
743 assert(component << src.shift == src.offset);
744 ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
745 }
746
747 if (src3 != ~0) {
748 struct phys_reg src = index_to_reg(ctx, l, src3, 2);
749 unsigned component = src.offset >> src.shift;
750 assert(component << src.shift == src.offset);
751 ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
752 }
753
754 break;
755 }
756
757 case TAG_TEXTURE_4: {
758 if (ins->texture.op == TEXTURE_OP_BARRIER)
759 break;
760
761 /* Grab RA results */
762 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
763 struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
764 struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_shift[2]);
765 struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_shift[3]);
766
767 /* First, install the texture coordinate */
768 ins->texture.in_reg_select = coord.reg & 1;
769 offset_swizzle(ins->swizzle[1], coord.offset, coord.shift, dest.shift, 0);
770
771 /* Next, install the destination */
772 ins->texture.out_reg_select = dest.reg & 1;
773 offset_swizzle(ins->swizzle[0], 0, 2, dest.shift,
774 dest_shift == 1 ? dest.offset % 8 :
775 dest.offset);
776 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
777
778 /* If there is a register LOD/bias, use it */
779 if (ins->src[2] != ~0) {
780 assert(!(lod.offset & 3));
781 midgard_tex_register_select sel = {
782 .select = lod.reg & 1,
783 .full = 1,
784 .component = lod.offset / 4
785 };
786
787 uint8_t packed;
788 memcpy(&packed, &sel, sizeof(packed));
789 ins->texture.bias = packed;
790 }
791
792 /* If there is an offset register, install it */
793 if (ins->src[3] != ~0) {
794 unsigned x = offset.offset / 4;
795 unsigned y = x + 1;
796 unsigned z = x + 2;
797
798 /* Check range, TODO: half-registers */
799 assert(z < 4);
800
801 ins->texture.offset =
802 (1) | /* full */
803 (offset.reg & 1) << 1 | /* select */
804 (0 << 2) | /* upper */
805 (x << 3) | /* swizzle */
806 (y << 5) | /* swizzle */
807 (z << 7); /* swizzle */
808 }
809
810 break;
811 }
812
813 default:
814 break;
815 }
816 }
817
818 static void
819 install_registers(compiler_context *ctx, struct lcra_state *l)
820 {
821 mir_foreach_instr_global(ctx, ins)
822 install_registers_instr(ctx, l, ins);
823 }
824
825
826 /* If register allocation fails, find the best spill node */
827
828 static signed
829 mir_choose_spill_node(
830 compiler_context *ctx,
831 struct lcra_state *l)
832 {
833 /* We can't spill a previously spilled value or an unspill */
834
835 mir_foreach_instr_global(ctx, ins) {
836 if (ins->no_spill & (1 << l->spill_class)) {
837 lcra_set_node_spill_cost(l, ins->dest, -1);
838
839 if (l->spill_class != REG_CLASS_WORK) {
840 mir_foreach_src(ins, s)
841 lcra_set_node_spill_cost(l, ins->src[s], -1);
842 }
843 }
844 }
845
846 return lcra_get_best_spill_node(l);
847 }
848
849 /* Once we've chosen a spill node, spill it */
850
851 static void
852 mir_spill_register(
853 compiler_context *ctx,
854 unsigned spill_node,
855 unsigned spill_class,
856 unsigned *spill_count)
857 {
858 if (spill_class == REG_CLASS_WORK && ctx->is_blend)
859 unreachable("Blend shader spilling is currently unimplemented");
860
861 unsigned spill_index = ctx->temp_count;
862
863 /* We have a spill node, so check the class. Work registers
864 * legitimately spill to TLS, but special registers just spill to work
865 * registers */
866
867 bool is_special = spill_class != REG_CLASS_WORK;
868 bool is_special_w = spill_class == REG_CLASS_TEXW;
869
870 /* Allocate TLS slot (maybe) */
871 unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
872
873 /* For TLS, replace all stores to the spilled node. For
874 * special reads, just keep as-is; the class will be demoted
875 * implicitly. For special writes, spill to a work register */
876
877 if (!is_special || is_special_w) {
878 if (is_special_w)
879 spill_slot = spill_index++;
880
881 mir_foreach_block(ctx, _block) {
882 midgard_block *block = (midgard_block *) _block;
883 mir_foreach_instr_in_block_safe(block, ins) {
884 if (ins->dest != spill_node) continue;
885
886 midgard_instruction st;
887
888 if (is_special_w) {
889 st = v_mov(spill_node, spill_slot);
890 st.no_spill |= (1 << spill_class);
891 } else {
892 ins->dest = spill_index++;
893 ins->no_spill |= (1 << spill_class);
894 st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
895 }
896
897 /* Hint: don't rewrite this node */
898 st.hint = true;
899
900 mir_insert_instruction_after_scheduled(ctx, block, ins, st);
901
902 if (!is_special)
903 ctx->spills++;
904 }
905 }
906 }
907
908 /* For special reads, figure out how many bytes we need */
909 unsigned read_bytemask = 0;
910
911 mir_foreach_instr_global_safe(ctx, ins) {
912 read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
913 }
914
915 /* Insert a load from TLS before the first consecutive
916 * use of the node, rewriting to use spilled indices to
917 * break up the live range. Or, for special, insert a
918 * move. Ironically the latter *increases* register
919 * pressure, but the two uses of the spilling mechanism
920 * are somewhat orthogonal. (special spilling is to use
921 * work registers to back special registers; TLS
922 * spilling is to use memory to back work registers) */
923
924 mir_foreach_block(ctx, _block) {
925 midgard_block *block = (midgard_block *) _block;
926 mir_foreach_instr_in_block(block, ins) {
927 /* We can't rewrite the moves used to spill in the
928 * first place. These moves are hinted. */
929 if (ins->hint) continue;
930
931 /* If we don't use the spilled value, nothing to do */
932 if (!mir_has_arg(ins, spill_node)) continue;
933
934 unsigned index = 0;
935
936 if (!is_special_w) {
937 index = ++spill_index;
938
939 midgard_instruction *before = ins;
940 midgard_instruction st;
941
942 if (is_special) {
943 /* Move */
944 st = v_mov(spill_node, index);
945 st.no_spill |= (1 << spill_class);
946 } else {
947 /* TLS load */
948 st = v_load_store_scratch(index, spill_slot, false, 0xF);
949 }
950
951 /* Mask the load based on the component count
952 * actually needed to prevent RA loops */
953
954 st.mask = mir_from_bytemask(mir_round_bytemask_up(
955 read_bytemask, 32), 32);
956
957 mir_insert_instruction_before_scheduled(ctx, block, before, st);
958 } else {
959 /* Special writes already have their move spilled in */
960 index = spill_slot;
961 }
962
963
964 /* Rewrite to use */
965 mir_rewrite_index_src_single(ins, spill_node, index);
966
967 if (!is_special)
968 ctx->fills++;
969 }
970 }
971
972 /* Reset hints */
973
974 mir_foreach_instr_global(ctx, ins) {
975 ins->hint = false;
976 }
977 }
978
979 /* Run register allocation in a loop, spilling until we succeed */
980
981 void
982 mir_ra(compiler_context *ctx)
983 {
984 struct lcra_state *l = NULL;
985 bool spilled = false;
986 int iter_count = 1000; /* max iterations */
987
988 /* Number of 128-bit slots in memory we've spilled into */
989 unsigned spill_count = 0;
990
991
992 mir_create_pipeline_registers(ctx);
993
994 do {
995 if (spilled) {
996 signed spill_node = mir_choose_spill_node(ctx, l);
997
998 if (spill_node == -1) {
999 fprintf(stderr, "ERROR: Failed to choose spill node\n");
1000 return;
1001 }
1002
1003 mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
1004 }
1005
1006 mir_squeeze_index(ctx);
1007 mir_invalidate_liveness(ctx);
1008
1009 if (l) {
1010 lcra_free(l);
1011 l = NULL;
1012 }
1013
1014 l = allocate_registers(ctx, &spilled);
1015 } while(spilled && ((iter_count--) > 0));
1016
1017 if (iter_count <= 0) {
1018 fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
1019 assert(0);
1020 }
1021
1022 /* Report spilling information. spill_count is in 128-bit slots (vec4 x
1023 * fp32), but tls_size is in bytes, so multiply by 16 */
1024
1025 ctx->tls_size = spill_count * 16;
1026
1027 install_registers(ctx, l);
1028
1029 lcra_free(l);
1030 }