pan/midgard: Set r1.w magic
[mesa.git] / src / panfrost / midgard / midgard_ra.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "lcra.h"
30 #include "midgard_quirks.h"
31
32 struct phys_reg {
33 /* Physical register: 0-31 */
34 unsigned reg;
35
36 /* Byte offset into the physical register: 0-15 */
37 unsigned offset;
38
39 /* Number of bytes in a component of this register */
40 unsigned size;
41 };
42
43 /* Shift up by reg_offset and horizontally by dst_offset. */
44
45 static void
46 offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcsize, unsigned dst_offset)
47 {
48 unsigned out[MIR_VEC_COMPONENTS];
49
50 signed reg_comp = reg_offset / srcsize;
51 signed dst_comp = dst_offset / srcsize;
52
53 unsigned max_component = (16 / srcsize) - 1;
54
55 assert(reg_comp * srcsize == reg_offset);
56 assert(dst_comp * srcsize == dst_offset);
57
58 for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
59 signed comp = MAX2(c - dst_comp, 0);
60 out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
61 }
62
63 memcpy(swizzle, out, sizeof(out));
64 }
65
66 /* Helper to return the default phys_reg for a given register */
67
68 static struct phys_reg
69 default_phys_reg(int reg, midgard_reg_mode size)
70 {
71 struct phys_reg r = {
72 .reg = reg,
73 .offset = 0,
74 .size = mir_bytes_for_mode(size)
75 };
76
77 return r;
78 }
79
80 /* Determine which physical register, swizzle, and mask a virtual
81 * register corresponds to */
82
83 static struct phys_reg
84 index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, midgard_reg_mode size)
85 {
86 /* Check for special cases */
87 if (reg == ~0)
88 return default_phys_reg(REGISTER_UNUSED, size);
89 else if (reg >= SSA_FIXED_MINIMUM)
90 return default_phys_reg(SSA_REG_FROM_FIXED(reg), size);
91 else if (!l)
92 return default_phys_reg(REGISTER_UNUSED, size);
93
94 struct phys_reg r = {
95 .reg = l->solutions[reg] / 16,
96 .offset = l->solutions[reg] & 0xF,
97 .size = mir_bytes_for_mode(size)
98 };
99
100 /* Report that we actually use this register, and return it */
101
102 if (r.reg < 16)
103 ctx->work_registers = MAX2(ctx->work_registers, r.reg);
104
105 return r;
106 }
107
108 static void
109 set_class(unsigned *classes, unsigned node, unsigned class)
110 {
111 if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
112 assert(classes[node] == REG_CLASS_WORK);
113 classes[node] = class;
114 }
115 }
116
117 /* Special register classes impose special constraints on who can read their
118 * values, so check that */
119
120 static bool
121 check_read_class(unsigned *classes, unsigned tag, unsigned node)
122 {
123 /* Non-nodes are implicitly ok */
124 if (node >= SSA_FIXED_MINIMUM)
125 return true;
126
127 switch (classes[node]) {
128 case REG_CLASS_LDST:
129 return (tag == TAG_LOAD_STORE_4);
130 case REG_CLASS_TEXR:
131 return (tag == TAG_TEXTURE_4);
132 case REG_CLASS_TEXW:
133 return (tag != TAG_LOAD_STORE_4);
134 case REG_CLASS_WORK:
135 return IS_ALU(tag);
136 default:
137 unreachable("Invalid class");
138 }
139 }
140
141 static bool
142 check_write_class(unsigned *classes, unsigned tag, unsigned node)
143 {
144 /* Non-nodes are implicitly ok */
145 if (node >= SSA_FIXED_MINIMUM)
146 return true;
147
148 switch (classes[node]) {
149 case REG_CLASS_TEXR:
150 return true;
151 case REG_CLASS_TEXW:
152 return (tag == TAG_TEXTURE_4);
153 case REG_CLASS_LDST:
154 case REG_CLASS_WORK:
155 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
156 default:
157 unreachable("Invalid class");
158 }
159 }
160
161 /* Prepass before RA to ensure special class restrictions are met. The idea is
162 * to create a bit field of types of instructions that read a particular index.
163 * Later, we'll add moves as appropriate and rewrite to specialize by type. */
164
165 static void
166 mark_node_class (unsigned *bitfield, unsigned node)
167 {
168 if (node < SSA_FIXED_MINIMUM)
169 BITSET_SET(bitfield, node);
170 }
171
172 void
173 mir_lower_special_reads(compiler_context *ctx)
174 {
175 size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
176
177 /* Bitfields for the various types of registers we could have. aluw can
178 * be written by either ALU or load/store */
179
180 unsigned *alur = calloc(sz, 1);
181 unsigned *aluw = calloc(sz, 1);
182 unsigned *brar = calloc(sz, 1);
183 unsigned *ldst = calloc(sz, 1);
184 unsigned *texr = calloc(sz, 1);
185 unsigned *texw = calloc(sz, 1);
186
187 /* Pass #1 is analysis, a linear scan to fill out the bitfields */
188
189 mir_foreach_instr_global(ctx, ins) {
190 switch (ins->type) {
191 case TAG_ALU_4:
192 mark_node_class(aluw, ins->dest);
193 mark_node_class(alur, ins->src[0]);
194 mark_node_class(alur, ins->src[1]);
195 mark_node_class(alur, ins->src[2]);
196
197 if (ins->compact_branch && ins->writeout)
198 mark_node_class(brar, ins->src[0]);
199
200 break;
201
202 case TAG_LOAD_STORE_4:
203 mark_node_class(aluw, ins->dest);
204 mark_node_class(ldst, ins->src[0]);
205 mark_node_class(ldst, ins->src[1]);
206 mark_node_class(ldst, ins->src[2]);
207 break;
208
209 case TAG_TEXTURE_4:
210 mark_node_class(texr, ins->src[0]);
211 mark_node_class(texr, ins->src[1]);
212 mark_node_class(texr, ins->src[2]);
213 mark_node_class(texw, ins->dest);
214 break;
215 }
216 }
217
218 /* Pass #2 is lowering now that we've analyzed all the classes.
219 * Conceptually, if an index is only marked for a single type of use,
220 * there is nothing to lower. If it is marked for different uses, we
221 * split up based on the number of types of uses. To do so, we divide
222 * into N distinct classes of use (where N>1 by definition), emit N-1
223 * moves from the index to copies of the index, and finally rewrite N-1
224 * of the types of uses to use the corresponding move */
225
226 unsigned spill_idx = ctx->temp_count;
227
228 for (unsigned i = 0; i < ctx->temp_count; ++i) {
229 bool is_alur = BITSET_TEST(alur, i);
230 bool is_aluw = BITSET_TEST(aluw, i);
231 bool is_brar = BITSET_TEST(brar, i);
232 bool is_ldst = BITSET_TEST(ldst, i);
233 bool is_texr = BITSET_TEST(texr, i);
234 bool is_texw = BITSET_TEST(texw, i);
235
236 /* Analyse to check how many distinct uses there are. ALU ops
237 * (alur) can read the results of the texture pipeline (texw)
238 * but not ldst or texr. Load/store ops (ldst) cannot read
239 * anything but load/store inputs. Texture pipeline cannot read
240 * anything but texture inputs. TODO: Simplify. */
241
242 bool collision =
243 (is_alur && (is_ldst || is_texr)) ||
244 (is_ldst && (is_alur || is_texr || is_texw)) ||
245 (is_texr && (is_alur || is_ldst || is_texw)) ||
246 (is_texw && (is_aluw || is_ldst || is_texr)) ||
247 (is_brar && is_texw);
248
249 if (!collision)
250 continue;
251
252 /* Use the index as-is as the work copy. Emit copies for
253 * special uses */
254
255 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
256 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
257
258 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
259 if (!collisions[j]) continue;
260
261 /* When the hazard is from reading, we move and rewrite
262 * sources (typical case). When it's from writing, we
263 * flip the move and rewrite destinations (obscure,
264 * only from control flow -- impossible in SSA) */
265
266 bool hazard_write = (j == 2);
267
268 unsigned idx = spill_idx++;
269
270 midgard_instruction m = hazard_write ?
271 v_mov(idx, i) : v_mov(i, idx);
272
273 /* Insert move before each read/write, depending on the
274 * hazard we're trying to account for */
275
276 mir_foreach_instr_global_safe(ctx, pre_use) {
277 if (pre_use->type != classes[j])
278 continue;
279
280 if (hazard_write) {
281 if (pre_use->dest != i)
282 continue;
283 } else {
284 if (!mir_has_arg(pre_use, i))
285 continue;
286 }
287
288 if (hazard_write) {
289 midgard_instruction *use = mir_next_op(pre_use);
290 assert(use);
291 mir_insert_instruction_before(ctx, use, m);
292 mir_rewrite_index_dst_single(pre_use, i, idx);
293 } else {
294 idx = spill_idx++;
295 m = v_mov(i, idx);
296 m.mask = mir_from_bytemask(mir_bytemask_of_read_components(pre_use, i), midgard_reg_mode_32);
297 mir_insert_instruction_before(ctx, pre_use, m);
298 mir_rewrite_index_src_single(pre_use, i, idx);
299 }
300 }
301 }
302 }
303
304 free(alur);
305 free(aluw);
306 free(brar);
307 free(ldst);
308 free(texr);
309 free(texw);
310 }
311
312 /* We register allocate after scheduling, so we need to ensure instructions
313 * executing in parallel within a segment of a bundle don't clobber each
314 * other's registers. This is mostly a non-issue thanks to scheduling, but
315 * there are edge cases. In particular, after a register is written in a
316 * segment, it interferes with anything reading. */
317
318 static void
319 mir_compute_segment_interference(
320 compiler_context *ctx,
321 struct lcra_state *l,
322 midgard_bundle *bun,
323 unsigned pivot,
324 unsigned i)
325 {
326 for (unsigned j = pivot; j < i; ++j) {
327 mir_foreach_src(bun->instructions[j], s) {
328 if (bun->instructions[j]->src[s] >= ctx->temp_count)
329 continue;
330
331 for (unsigned q = pivot; q < i; ++q) {
332 if (bun->instructions[q]->dest >= ctx->temp_count)
333 continue;
334
335 /* See dEQP-GLES2.functional.shaders.return.output_write_in_func_dynamic_fragment */
336
337 if (q >= j) {
338 if (!(bun->instructions[j]->unit == UNIT_SMUL && bun->instructions[q]->unit == UNIT_VLUT))
339 continue;
340 }
341
342 unsigned mask = mir_bytemask(bun->instructions[q]);
343 unsigned rmask = mir_bytemask_of_read_components(bun->instructions[j], bun->instructions[j]->src[s]);
344 lcra_add_node_interference(l, bun->instructions[q]->dest, mask, bun->instructions[j]->src[s], rmask);
345 }
346 }
347 }
348 }
349
350 static void
351 mir_compute_bundle_interference(
352 compiler_context *ctx,
353 struct lcra_state *l,
354 midgard_bundle *bun)
355 {
356 if (!IS_ALU(bun->tag))
357 return;
358
359 bool old = bun->instructions[0]->unit >= UNIT_VADD;
360 unsigned pivot = 0;
361
362 for (unsigned i = 1; i < bun->instruction_count; ++i) {
363 bool new = bun->instructions[i]->unit >= UNIT_VADD;
364
365 if (old != new) {
366 mir_compute_segment_interference(ctx, l, bun, 0, i);
367 pivot = i;
368 break;
369 }
370 }
371
372 mir_compute_segment_interference(ctx, l, bun, pivot, bun->instruction_count);
373 }
374
375 static void
376 mir_compute_interference(
377 compiler_context *ctx,
378 struct lcra_state *l)
379 {
380 /* First, we need liveness information to be computed per block */
381 mir_compute_liveness(ctx);
382
383 /* Now that every block has live_in/live_out computed, we can determine
384 * interference by walking each block linearly. Take live_out at the
385 * end of each block and walk the block backwards. */
386
387 mir_foreach_block(ctx, blk) {
388 uint16_t *live = mem_dup(blk->live_out, ctx->temp_count * sizeof(uint16_t));
389
390 mir_foreach_instr_in_block_rev(blk, ins) {
391 /* Mark all registers live after the instruction as
392 * interfering with the destination */
393
394 unsigned dest = ins->dest;
395
396 if (dest < ctx->temp_count) {
397 for (unsigned i = 0; i < ctx->temp_count; ++i)
398 if (live[i]) {
399 unsigned mask = mir_bytemask(ins);
400 lcra_add_node_interference(l, dest, mask, i, live[i]);
401 }
402 }
403
404 /* Update live_in */
405 mir_liveness_ins_update(live, ins, ctx->temp_count);
406 }
407
408 mir_foreach_bundle_in_block(blk, bun)
409 mir_compute_bundle_interference(ctx, l, bun);
410
411 free(live);
412 }
413 }
414
415 /* This routine performs the actual register allocation. It should be succeeded
416 * by install_registers */
417
418 static struct lcra_state *
419 allocate_registers(compiler_context *ctx, bool *spilled)
420 {
421 /* The number of vec4 work registers available depends on when the
422 * uniforms start, so compute that first */
423 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
424
425 /* No register allocation to do with no SSA */
426
427 if (!ctx->temp_count)
428 return NULL;
429
430 struct lcra_state *l = lcra_alloc_equations(ctx->temp_count, 1, 8, 16, 5);
431
432 /* Starts of classes, in bytes */
433 l->class_start[REG_CLASS_WORK] = 16 * 0;
434 l->class_start[REG_CLASS_LDST] = 16 * 26;
435 l->class_start[REG_CLASS_TEXR] = 16 * 28;
436 l->class_start[REG_CLASS_TEXW] = 16 * 28;
437
438 l->class_size[REG_CLASS_WORK] = 16 * work_count;
439 l->class_size[REG_CLASS_LDST] = 16 * 2;
440 l->class_size[REG_CLASS_TEXR] = 16 * 2;
441 l->class_size[REG_CLASS_TEXW] = 16 * 2;
442
443 lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
444
445 /* To save space on T*20, we don't have real texture registers.
446 * Instead, tex inputs reuse the load/store pipeline registers, and
447 * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
448 * noting that this handles interferences and sizes correctly. */
449
450 if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
451 l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
452 l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
453 }
454
455 unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
456 unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
457
458 mir_foreach_instr_global(ctx, ins) {
459 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
460
461 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
462 int class = util_logbase2(ins->mask);
463
464 /* Use the largest class if there's ambiguity, this
465 * handles partial writes */
466
467 int dest = ins->dest;
468 found_class[dest] = MAX2(found_class[dest], class);
469
470 /* XXX: Ensure swizzles align the right way with more LCRA constraints? */
471 if (ins->type == TAG_ALU_4 && ins->alu.reg_mode != midgard_reg_mode_32)
472 min_alignment[dest] = 3; /* (1 << 3) = 8 */
473
474 if (ins->type == TAG_LOAD_STORE_4 && ins->load_64)
475 min_alignment[dest] = 3;
476
477 /* We don't have a swizzle for the conditional and we don't
478 * want to muck with the conditional itself, so just force
479 * alignment for now */
480
481 if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->alu.op))
482 min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
483
484 }
485
486 for (unsigned i = 0; i < ctx->temp_count; ++i) {
487 lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2);
488 lcra_restrict_range(l, i, (found_class[i] + 1) * 4);
489 }
490
491 free(found_class);
492 free(min_alignment);
493
494 /* Next, we'll determine semantic class. We default to zero (work).
495 * But, if we're used with a special operation, that will force us to a
496 * particular class. Each node must be assigned to exactly one class; a
497 * prepass before RA should have lowered what-would-have-been
498 * multiclass nodes into a series of moves to break it up into multiple
499 * nodes (TODO) */
500
501 mir_foreach_instr_global(ctx, ins) {
502 /* Check if this operation imposes any classes */
503
504 if (ins->type == TAG_LOAD_STORE_4) {
505 set_class(l->class, ins->src[0], REG_CLASS_LDST);
506 set_class(l->class, ins->src[1], REG_CLASS_LDST);
507 set_class(l->class, ins->src[2], REG_CLASS_LDST);
508
509 if (OP_IS_VEC4_ONLY(ins->load_store.op))
510 lcra_restrict_range(l, ins->dest, 16);
511 } else if (ins->type == TAG_TEXTURE_4) {
512 set_class(l->class, ins->dest, REG_CLASS_TEXW);
513 set_class(l->class, ins->src[0], REG_CLASS_TEXR);
514 set_class(l->class, ins->src[1], REG_CLASS_TEXR);
515 set_class(l->class, ins->src[2], REG_CLASS_TEXR);
516 }
517 }
518
519 /* Check that the semantics of the class are respected */
520 mir_foreach_instr_global(ctx, ins) {
521 assert(check_write_class(l->class, ins->type, ins->dest));
522 assert(check_read_class(l->class, ins->type, ins->src[0]));
523 assert(check_read_class(l->class, ins->type, ins->src[1]));
524 assert(check_read_class(l->class, ins->type, ins->src[2]));
525 }
526
527 /* Mark writeout to r0, render target to r1.z, unknown to r1.w */
528 mir_foreach_instr_global(ctx, ins) {
529 if (!(ins->compact_branch && ins->writeout)) continue;
530
531 if (ins->src[0] < ctx->temp_count)
532 l->solutions[ins->src[0]] = 0;
533
534 if (ins->src[1] < ctx->temp_count)
535 l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
536
537 if (ins->src[2] < ctx->temp_count)
538 l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_W * 4;
539 }
540
541 mir_compute_interference(ctx, l);
542
543 *spilled = !lcra_solve(l);
544 return l;
545 }
546
547 /* Once registers have been decided via register allocation
548 * (allocate_registers), we need to rewrite the MIR to use registers instead of
549 * indices */
550
551 static void
552 install_registers_instr(
553 compiler_context *ctx,
554 struct lcra_state *l,
555 midgard_instruction *ins)
556 {
557 switch (ins->type) {
558 case TAG_ALU_4:
559 case TAG_ALU_8:
560 case TAG_ALU_12:
561 case TAG_ALU_16: {
562 if (ins->compact_branch)
563 return;
564
565 struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
566 struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
567 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
568
569 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
570
571 unsigned dest_offset =
572 GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
573 dest.offset;
574
575 offset_swizzle(ins->swizzle[0], src1.offset, src1.size, dest_offset);
576
577 ins->registers.src1_reg = src1.reg;
578
579 ins->registers.src2_imm = ins->has_inline_constant;
580
581 if (ins->has_inline_constant) {
582 /* Encode inline 16-bit constant. See disassembler for
583 * where the algorithm is from */
584
585 ins->registers.src2_reg = ins->inline_constant >> 11;
586
587 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
588 uint16_t imm = ((lower_11 >> 8) & 0x7) |
589 ((lower_11 & 0xFF) << 3);
590
591 ins->alu.src2 = imm << 2;
592 } else {
593 midgard_vector_alu_src mod2 =
594 vector_alu_from_unsigned(ins->alu.src2);
595 offset_swizzle(ins->swizzle[1], src2.offset, src2.size, dest_offset);
596 ins->alu.src2 = vector_alu_srco_unsigned(mod2);
597
598 ins->registers.src2_reg = src2.reg;
599 }
600
601 ins->registers.out_reg = dest.reg;
602 break;
603 }
604
605 case TAG_LOAD_STORE_4: {
606 /* Which physical register we read off depends on
607 * whether we are loading or storing -- think about the
608 * logical dataflow */
609
610 bool encodes_src = OP_IS_STORE(ins->load_store.op);
611
612 if (encodes_src) {
613 struct phys_reg src = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
614 assert(src.reg == 26 || src.reg == 27);
615
616 ins->load_store.reg = src.reg - 26;
617 offset_swizzle(ins->swizzle[0], src.offset, src.size, 0);
618 } else {
619 struct phys_reg dst = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
620
621 ins->load_store.reg = dst.reg;
622 offset_swizzle(ins->swizzle[0], 0, 4, dst.offset);
623 mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
624 }
625
626 /* We also follow up by actual arguments */
627
628 unsigned src2 = ins->src[1];
629 unsigned src3 = ins->src[2];
630
631 if (src2 != ~0) {
632 struct phys_reg src = index_to_reg(ctx, l, src2, mir_srcsize(ins, 1));
633 unsigned component = src.offset / src.size;
634 assert(component * src.size == src.offset);
635 ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
636 }
637
638 if (src3 != ~0) {
639 struct phys_reg src = index_to_reg(ctx, l, src3, mir_srcsize(ins, 2));
640 unsigned component = src.offset / src.size;
641 assert(component * src.size == src.offset);
642 ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
643 }
644
645 break;
646 }
647
648 case TAG_TEXTURE_4: {
649 /* Grab RA results */
650 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
651 struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
652 struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], mir_srcsize(ins, 2));
653
654 /* First, install the texture coordinate */
655 ins->texture.in_reg_full = 1;
656 ins->texture.in_reg_upper = 0;
657 ins->texture.in_reg_select = coord.reg & 1;
658 offset_swizzle(ins->swizzle[1], coord.offset, coord.size, 0);
659
660 /* Next, install the destination */
661 ins->texture.out_full = 1;
662 ins->texture.out_upper = 0;
663 ins->texture.out_reg_select = dest.reg & 1;
664 offset_swizzle(ins->swizzle[0], 0, 4, dest.offset);
665 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
666
667 /* If there is a register LOD/bias, use it */
668 if (ins->src[2] != ~0) {
669 assert(!(lod.offset & 3));
670 midgard_tex_register_select sel = {
671 .select = lod.reg,
672 .full = 1,
673 .component = lod.offset / 4
674 };
675
676 uint8_t packed;
677 memcpy(&packed, &sel, sizeof(packed));
678 ins->texture.bias = packed;
679 }
680
681 break;
682 }
683
684 default:
685 break;
686 }
687 }
688
689 static void
690 install_registers(compiler_context *ctx, struct lcra_state *l)
691 {
692 mir_foreach_instr_global(ctx, ins)
693 install_registers_instr(ctx, l, ins);
694 }
695
696
697 /* If register allocation fails, find the best spill node */
698
699 static signed
700 mir_choose_spill_node(
701 compiler_context *ctx,
702 struct lcra_state *l)
703 {
704 /* We can't spill a previously spilled value or an unspill */
705
706 mir_foreach_instr_global(ctx, ins) {
707 if (ins->no_spill & (1 << l->spill_class)) {
708 lcra_set_node_spill_cost(l, ins->dest, -1);
709
710 if (l->spill_class != REG_CLASS_WORK) {
711 mir_foreach_src(ins, s)
712 lcra_set_node_spill_cost(l, ins->src[s], -1);
713 }
714 }
715 }
716
717 return lcra_get_best_spill_node(l);
718 }
719
720 /* Once we've chosen a spill node, spill it */
721
722 static void
723 mir_spill_register(
724 compiler_context *ctx,
725 unsigned spill_node,
726 unsigned spill_class,
727 unsigned *spill_count)
728 {
729 unsigned spill_index = ctx->temp_count;
730
731 /* We have a spill node, so check the class. Work registers
732 * legitimately spill to TLS, but special registers just spill to work
733 * registers */
734
735 bool is_special = spill_class != REG_CLASS_WORK;
736 bool is_special_w = spill_class == REG_CLASS_TEXW;
737
738 /* Allocate TLS slot (maybe) */
739 unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
740
741 /* For TLS, replace all stores to the spilled node. For
742 * special reads, just keep as-is; the class will be demoted
743 * implicitly. For special writes, spill to a work register */
744
745 if (!is_special || is_special_w) {
746 if (is_special_w)
747 spill_slot = spill_index++;
748
749 mir_foreach_block(ctx, block) {
750 mir_foreach_instr_in_block_safe(block, ins) {
751 if (ins->dest != spill_node) continue;
752
753 midgard_instruction st;
754
755 if (is_special_w) {
756 st = v_mov(spill_node, spill_slot);
757 st.no_spill |= (1 << spill_class);
758 } else {
759 ins->dest = spill_index++;
760 ins->no_spill |= (1 << spill_class);
761 st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
762 }
763
764 /* Hint: don't rewrite this node */
765 st.hint = true;
766
767 mir_insert_instruction_after_scheduled(ctx, block, ins, st);
768
769 if (!is_special)
770 ctx->spills++;
771 }
772 }
773 }
774
775 /* For special reads, figure out how many bytes we need */
776 unsigned read_bytemask = 0;
777
778 mir_foreach_instr_global_safe(ctx, ins) {
779 read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
780 }
781
782 /* Insert a load from TLS before the first consecutive
783 * use of the node, rewriting to use spilled indices to
784 * break up the live range. Or, for special, insert a
785 * move. Ironically the latter *increases* register
786 * pressure, but the two uses of the spilling mechanism
787 * are somewhat orthogonal. (special spilling is to use
788 * work registers to back special registers; TLS
789 * spilling is to use memory to back work registers) */
790
791 mir_foreach_block(ctx, block) {
792 mir_foreach_instr_in_block(block, ins) {
793 /* We can't rewrite the moves used to spill in the
794 * first place. These moves are hinted. */
795 if (ins->hint) continue;
796
797 /* If we don't use the spilled value, nothing to do */
798 if (!mir_has_arg(ins, spill_node)) continue;
799
800 unsigned index = 0;
801
802 if (!is_special_w) {
803 index = ++spill_index;
804
805 midgard_instruction *before = ins;
806 midgard_instruction st;
807
808 if (is_special) {
809 /* Move */
810 st = v_mov(spill_node, index);
811 st.no_spill |= (1 << spill_class);
812 } else {
813 /* TLS load */
814 st = v_load_store_scratch(index, spill_slot, false, 0xF);
815 }
816
817 /* Mask the load based on the component count
818 * actually needed to prevent RA loops */
819
820 st.mask = mir_from_bytemask(read_bytemask, midgard_reg_mode_32);
821
822 mir_insert_instruction_before_scheduled(ctx, block, before, st);
823 } else {
824 /* Special writes already have their move spilled in */
825 index = spill_slot;
826 }
827
828
829 /* Rewrite to use */
830 mir_rewrite_index_src_single(ins, spill_node, index);
831
832 if (!is_special)
833 ctx->fills++;
834 }
835 }
836
837 /* Reset hints */
838
839 mir_foreach_instr_global(ctx, ins) {
840 ins->hint = false;
841 }
842 }
843
844 /* Run register allocation in a loop, spilling until we succeed */
845
846 void
847 mir_ra(compiler_context *ctx)
848 {
849 struct lcra_state *l = NULL;
850 bool spilled = false;
851 int iter_count = 1000; /* max iterations */
852
853 /* Number of 128-bit slots in memory we've spilled into */
854 unsigned spill_count = 0;
855
856
857 mir_create_pipeline_registers(ctx);
858
859 do {
860 if (spilled) {
861 signed spill_node = mir_choose_spill_node(ctx, l);
862
863 if (spill_node == -1) {
864 fprintf(stderr, "ERROR: Failed to choose spill node\n");
865 return;
866 }
867
868 mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
869 }
870
871 mir_squeeze_index(ctx);
872 mir_invalidate_liveness(ctx);
873
874 if (l) {
875 lcra_free(l);
876 l = NULL;
877 }
878
879 l = allocate_registers(ctx, &spilled);
880 } while(spilled && ((iter_count--) > 0));
881
882 if (iter_count <= 0) {
883 fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
884 assert(0);
885 }
886
887 /* Report spilling information. spill_count is in 128-bit slots (vec4 x
888 * fp32), but tls_size is in bytes, so multiply by 16 */
889
890 ctx->tls_size = spill_count * 16;
891
892 install_registers(ctx, l);
893
894 lcra_free(l);
895 }