pan/midgard: Add a dummy source for loads
[mesa.git] / src / panfrost / midgard / midgard_ra.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/register_allocate.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30
31 /* For work registers, we can subdivide in various ways. So we create
32 * classes for the various sizes and conflict accordingly, keeping in
33 * mind that physical registers are divided along 128-bit boundaries.
34 * The important part is that 128-bit boundaries are not crossed.
35 *
36 * For each 128-bit register, we can subdivide to 32-bits 10 ways
37 *
38 * vec4: xyzw
39 * vec3: xyz, yzw
40 * vec2: xy, yz, zw,
41 * vec1: x, y, z, w
42 *
43 * For each 64-bit register, we can subdivide similarly to 16-bit
44 * (TODO: half-float RA, not that we support fp16 yet)
45 */
46
47 #define WORK_STRIDE 10
48
49 /* We have overlapping register classes for special registers, handled via
50 * shadows */
51
52 #define SHADOW_R0 17
53 #define SHADOW_R28 18
54 #define SHADOW_R29 19
55
56 /* Prepacked masks/swizzles for virtual register types */
57 static unsigned reg_type_to_mask[WORK_STRIDE] = {
58 0xF, /* xyzw */
59 0x7, 0x7 << 1, /* xyz */
60 0x3, 0x3 << 1, 0x3 << 2, /* xy */
61 0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
62 };
63
64 struct phys_reg {
65 /* Physical register: 0-31 */
66 unsigned reg;
67
68 /* Byte offset into the physical register: 0-15 */
69 unsigned offset;
70
71 /* Number of bytes in a component of this register */
72 unsigned size;
73 };
74
75 /* Shift each component up by reg_offset and shift all components horizontally
76 * by dst_offset. TODO: Generalize to !32-bit */
77
78 static unsigned
79 offset_swizzle(unsigned swizzle, unsigned reg_offset, unsigned srcsize, unsigned dst_offset, unsigned dstsize)
80 {
81 unsigned out = 0;
82
83 signed reg_comp = reg_offset / srcsize;
84 signed dst_comp = dst_offset / dstsize;
85
86 assert(reg_comp * srcsize == reg_offset);
87 assert(dst_comp * dstsize == dst_offset);
88
89 for (signed c = 0; c < 4; ++c) {
90 signed comp = MAX2(c - dst_comp, 0);
91 signed s = (swizzle >> (2*comp)) & 0x3;
92 out |= (MIN2(s + reg_comp, 3) << (2*c));
93 }
94
95 return out;
96 }
97
98 /* Helper to return the default phys_reg for a given register */
99
100 static struct phys_reg
101 default_phys_reg(int reg)
102 {
103 struct phys_reg r = {
104 .reg = reg,
105 .offset = 0,
106 .size = 4
107 };
108
109 return r;
110 }
111
112 /* Determine which physical register, swizzle, and mask a virtual
113 * register corresponds to */
114
115 static struct phys_reg
116 index_to_reg(compiler_context *ctx, struct ra_graph *g, unsigned reg, midgard_reg_mode size)
117 {
118 /* Check for special cases */
119 if (reg == ~0)
120 return default_phys_reg(REGISTER_UNUSED);
121 else if (reg >= SSA_FIXED_MINIMUM)
122 return default_phys_reg(SSA_REG_FROM_FIXED(reg));
123 else if (!g)
124 return default_phys_reg(REGISTER_UNUSED);
125
126 /* Special cases aside, we pick the underlying register */
127 int virt = ra_get_node_reg(g, reg);
128
129 /* Divide out the register and classification */
130 int phys = virt / WORK_STRIDE;
131 int type = virt % WORK_STRIDE;
132
133 /* Apply shadow registers */
134
135 if (phys >= SHADOW_R28 && phys <= SHADOW_R29)
136 phys += 28 - SHADOW_R28;
137 else if (phys == SHADOW_R0)
138 phys = 0;
139
140 unsigned bytes = mir_bytes_for_mode(size);
141
142 struct phys_reg r = {
143 .reg = phys,
144 .offset = __builtin_ctz(reg_type_to_mask[type]) * bytes,
145 .size = bytes
146 };
147
148 /* Report that we actually use this register, and return it */
149
150 if (phys < 16)
151 ctx->work_registers = MAX2(ctx->work_registers, phys);
152
153 return r;
154 }
155
156 /* This routine creates a register set. Should be called infrequently since
157 * it's slow and can be cached. For legibility, variables are named in terms of
158 * work registers, although it is also used to create the register set for
159 * special register allocation */
160
161 static void
162 add_shadow_conflicts (struct ra_regs *regs, unsigned base, unsigned shadow, unsigned shadow_count)
163 {
164 for (unsigned a = 0; a < WORK_STRIDE; ++a) {
165 unsigned reg_a = (WORK_STRIDE * base) + a;
166
167 for (unsigned b = 0; b < shadow_count; ++b) {
168 unsigned reg_b = (WORK_STRIDE * shadow) + b;
169
170 ra_add_reg_conflict(regs, reg_a, reg_b);
171 ra_add_reg_conflict(regs, reg_b, reg_a);
172 }
173 }
174 }
175
176 static struct ra_regs *
177 create_register_set(unsigned work_count, unsigned *classes)
178 {
179 int virtual_count = 32 * WORK_STRIDE;
180
181 /* First, initialize the RA */
182 struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
183
184 for (unsigned c = 0; c < (NR_REG_CLASSES - 1); ++c) {
185 int work_vec4 = ra_alloc_reg_class(regs);
186 int work_vec3 = ra_alloc_reg_class(regs);
187 int work_vec2 = ra_alloc_reg_class(regs);
188 int work_vec1 = ra_alloc_reg_class(regs);
189
190 classes[4*c + 0] = work_vec1;
191 classes[4*c + 1] = work_vec2;
192 classes[4*c + 2] = work_vec3;
193 classes[4*c + 3] = work_vec4;
194
195 /* Special register classes have other register counts */
196 unsigned count =
197 (c == REG_CLASS_WORK) ? work_count : 2;
198
199 unsigned first_reg =
200 (c == REG_CLASS_LDST) ? 26 :
201 (c == REG_CLASS_TEXR) ? 28 :
202 (c == REG_CLASS_TEXW) ? SHADOW_R28 :
203 0;
204
205 /* Add the full set of work registers */
206 for (unsigned i = first_reg; i < (first_reg + count); ++i) {
207 int base = WORK_STRIDE * i;
208
209 /* Build a full set of subdivisions */
210 ra_class_add_reg(regs, work_vec4, base);
211 ra_class_add_reg(regs, work_vec3, base + 1);
212 ra_class_add_reg(regs, work_vec3, base + 2);
213 ra_class_add_reg(regs, work_vec2, base + 3);
214 ra_class_add_reg(regs, work_vec2, base + 4);
215 ra_class_add_reg(regs, work_vec2, base + 5);
216 ra_class_add_reg(regs, work_vec1, base + 6);
217 ra_class_add_reg(regs, work_vec1, base + 7);
218 ra_class_add_reg(regs, work_vec1, base + 8);
219 ra_class_add_reg(regs, work_vec1, base + 9);
220
221 for (unsigned a = 0; a < 10; ++a) {
222 unsigned mask1 = reg_type_to_mask[a];
223
224 for (unsigned b = 0; b < 10; ++b) {
225 unsigned mask2 = reg_type_to_mask[b];
226
227 if (mask1 & mask2)
228 ra_add_reg_conflict(regs,
229 base + a, base + b);
230 }
231 }
232 }
233 }
234
235 int fragc = ra_alloc_reg_class(regs);
236
237 classes[4*REG_CLASS_FRAGC + 0] = fragc;
238 classes[4*REG_CLASS_FRAGC + 1] = fragc;
239 classes[4*REG_CLASS_FRAGC + 2] = fragc;
240 classes[4*REG_CLASS_FRAGC + 3] = fragc;
241 ra_class_add_reg(regs, fragc, WORK_STRIDE * SHADOW_R0);
242
243 /* We have duplicate classes */
244 add_shadow_conflicts(regs, 0, SHADOW_R0, 1);
245 add_shadow_conflicts(regs, 28, SHADOW_R28, WORK_STRIDE);
246 add_shadow_conflicts(regs, 29, SHADOW_R29, WORK_STRIDE);
247
248 /* We're done setting up */
249 ra_set_finalize(regs, NULL);
250
251 return regs;
252 }
253
254 /* This routine gets a precomputed register set off the screen if it's able, or
255 * otherwise it computes one on the fly */
256
257 static struct ra_regs *
258 get_register_set(struct midgard_screen *screen, unsigned work_count, unsigned **classes)
259 {
260 /* Bounds check */
261 assert(work_count >= 8);
262 assert(work_count <= 16);
263
264 /* Compute index */
265 unsigned index = work_count - 8;
266
267 /* Find the reg set */
268 struct ra_regs *cached = screen->regs[index];
269
270 if (cached) {
271 assert(screen->reg_classes[index]);
272 *classes = screen->reg_classes[index];
273 return cached;
274 }
275
276 /* Otherwise, create one */
277 struct ra_regs *created = create_register_set(work_count, screen->reg_classes[index]);
278
279 /* Cache it and use it */
280 screen->regs[index] = created;
281
282 *classes = screen->reg_classes[index];
283 return created;
284 }
285
286 /* Assign a (special) class, ensuring that it is compatible with whatever class
287 * was already set */
288
289 static void
290 set_class(unsigned *classes, unsigned node, unsigned class)
291 {
292 /* Check that we're even a node */
293 if (node >= SSA_FIXED_MINIMUM)
294 return;
295
296 /* First 4 are work, next 4 are load/store.. */
297 unsigned current_class = classes[node] >> 2;
298
299 /* Nothing to do */
300 if (class == current_class)
301 return;
302
303 /* If we're changing, we haven't assigned a special class */
304 assert(current_class == REG_CLASS_WORK);
305
306 classes[node] &= 0x3;
307 classes[node] |= (class << 2);
308 }
309
310 static void
311 force_vec4(unsigned *classes, unsigned node)
312 {
313 if (node >= SSA_FIXED_MINIMUM)
314 return;
315
316 /* Force vec4 = 3 */
317 classes[node] |= 0x3;
318 }
319
320 /* Special register classes impose special constraints on who can read their
321 * values, so check that */
322
323 static bool
324 check_read_class(unsigned *classes, unsigned tag, unsigned node)
325 {
326 /* Non-nodes are implicitly ok */
327 if (node >= SSA_FIXED_MINIMUM)
328 return true;
329
330 unsigned current_class = classes[node] >> 2;
331
332 switch (current_class) {
333 case REG_CLASS_LDST:
334 return (tag == TAG_LOAD_STORE_4);
335 case REG_CLASS_TEXR:
336 return (tag == TAG_TEXTURE_4);
337 case REG_CLASS_TEXW:
338 return (tag != TAG_LOAD_STORE_4);
339 case REG_CLASS_WORK:
340 return IS_ALU(tag);
341 default:
342 unreachable("Invalid class");
343 }
344 }
345
346 static bool
347 check_write_class(unsigned *classes, unsigned tag, unsigned node)
348 {
349 /* Non-nodes are implicitly ok */
350 if (node >= SSA_FIXED_MINIMUM)
351 return true;
352
353 unsigned current_class = classes[node] >> 2;
354
355 switch (current_class) {
356 case REG_CLASS_TEXR:
357 return true;
358 case REG_CLASS_TEXW:
359 return (tag == TAG_TEXTURE_4);
360 case REG_CLASS_LDST:
361 case REG_CLASS_WORK:
362 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
363 default:
364 unreachable("Invalid class");
365 }
366 }
367
368 /* Prepass before RA to ensure special class restrictions are met. The idea is
369 * to create a bit field of types of instructions that read a particular index.
370 * Later, we'll add moves as appropriate and rewrite to specialize by type. */
371
372 static void
373 mark_node_class (unsigned *bitfield, unsigned node)
374 {
375 if (node < SSA_FIXED_MINIMUM)
376 BITSET_SET(bitfield, node);
377 }
378
379 void
380 mir_lower_special_reads(compiler_context *ctx)
381 {
382 size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
383
384 /* Bitfields for the various types of registers we could have. aluw can
385 * be written by either ALU or load/store */
386
387 unsigned *alur = calloc(sz, 1);
388 unsigned *aluw = calloc(sz, 1);
389 unsigned *brar = calloc(sz, 1);
390 unsigned *ldst = calloc(sz, 1);
391 unsigned *texr = calloc(sz, 1);
392 unsigned *texw = calloc(sz, 1);
393
394 /* Pass #1 is analysis, a linear scan to fill out the bitfields */
395
396 mir_foreach_instr_global(ctx, ins) {
397 switch (ins->type) {
398 case TAG_ALU_4:
399 mark_node_class(aluw, ins->dest);
400 mark_node_class(alur, ins->src[0]);
401 mark_node_class(alur, ins->src[1]);
402 mark_node_class(alur, ins->src[2]);
403
404 if (ins->compact_branch && ins->writeout)
405 mark_node_class(brar, ins->src[0]);
406
407 break;
408
409 case TAG_LOAD_STORE_4:
410 mark_node_class(aluw, ins->dest);
411 mark_node_class(ldst, ins->src[0]);
412 mark_node_class(ldst, ins->src[1]);
413 mark_node_class(ldst, ins->src[2]);
414 break;
415
416 case TAG_TEXTURE_4:
417 mark_node_class(texr, ins->src[0]);
418 mark_node_class(texr, ins->src[1]);
419 mark_node_class(texr, ins->src[2]);
420 mark_node_class(texw, ins->dest);
421 break;
422 }
423 }
424
425 /* Pass #2 is lowering now that we've analyzed all the classes.
426 * Conceptually, if an index is only marked for a single type of use,
427 * there is nothing to lower. If it is marked for different uses, we
428 * split up based on the number of types of uses. To do so, we divide
429 * into N distinct classes of use (where N>1 by definition), emit N-1
430 * moves from the index to copies of the index, and finally rewrite N-1
431 * of the types of uses to use the corresponding move */
432
433 unsigned spill_idx = ctx->temp_count;
434
435 for (unsigned i = 0; i < ctx->temp_count; ++i) {
436 bool is_alur = BITSET_TEST(alur, i);
437 bool is_aluw = BITSET_TEST(aluw, i);
438 bool is_brar = BITSET_TEST(brar, i);
439 bool is_ldst = BITSET_TEST(ldst, i);
440 bool is_texr = BITSET_TEST(texr, i);
441 bool is_texw = BITSET_TEST(texw, i);
442
443 /* Analyse to check how many distinct uses there are. ALU ops
444 * (alur) can read the results of the texture pipeline (texw)
445 * but not ldst or texr. Load/store ops (ldst) cannot read
446 * anything but load/store inputs. Texture pipeline cannot read
447 * anything but texture inputs. TODO: Simplify. */
448
449 bool collision =
450 (is_alur && (is_ldst || is_texr)) ||
451 (is_ldst && (is_alur || is_texr || is_texw)) ||
452 (is_texr && (is_alur || is_ldst || is_texw)) ||
453 (is_texw && (is_aluw || is_ldst || is_texr)) ||
454 (is_brar && is_texw);
455
456 if (!collision)
457 continue;
458
459 /* Use the index as-is as the work copy. Emit copies for
460 * special uses */
461
462 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
463 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
464
465 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
466 if (!collisions[j]) continue;
467
468 /* When the hazard is from reading, we move and rewrite
469 * sources (typical case). When it's from writing, we
470 * flip the move and rewrite destinations (obscure,
471 * only from control flow -- impossible in SSA) */
472
473 bool hazard_write = (j == 2);
474
475 unsigned idx = spill_idx++;
476
477 midgard_instruction m = hazard_write ?
478 v_mov(idx, blank_alu_src, i) :
479 v_mov(i, blank_alu_src, idx);
480
481 /* Insert move before each read/write, depending on the
482 * hazard we're trying to account for */
483
484 mir_foreach_instr_global_safe(ctx, pre_use) {
485 if (pre_use->type != classes[j])
486 continue;
487
488 if (hazard_write) {
489 if (pre_use->dest != i)
490 continue;
491 } else {
492 if (!mir_has_arg(pre_use, i))
493 continue;
494 }
495
496 if (hazard_write) {
497 midgard_instruction *use = mir_next_op(pre_use);
498 assert(use);
499 mir_insert_instruction_before(ctx, use, m);
500 mir_rewrite_index_dst_single(pre_use, i, idx);
501 } else {
502 idx = spill_idx++;
503 m = v_mov(i, blank_alu_src, idx);
504 m.mask = mir_from_bytemask(mir_bytemask_of_read_components(pre_use, i), midgard_reg_mode_32);
505 mir_insert_instruction_before(ctx, pre_use, m);
506 mir_rewrite_index_src_single(pre_use, i, idx);
507 }
508 }
509 }
510 }
511
512 free(alur);
513 free(aluw);
514 free(brar);
515 free(ldst);
516 free(texr);
517 free(texw);
518 }
519
520 static void
521 mir_compute_interference(
522 compiler_context *ctx,
523 struct ra_graph *g)
524 {
525 /* First, we need liveness information to be computed per block */
526 mir_compute_liveness(ctx);
527
528 /* Now that every block has live_in/live_out computed, we can determine
529 * interference by walking each block linearly. Take live_out at the
530 * end of each block and walk the block backwards. */
531
532 mir_foreach_block(ctx, blk) {
533 uint16_t *live = mem_dup(blk->live_out, ctx->temp_count * sizeof(uint16_t));
534
535 mir_foreach_instr_in_block_rev(blk, ins) {
536 /* Mark all registers live after the instruction as
537 * interfering with the destination */
538
539 unsigned dest = ins->dest;
540
541 if (dest < ctx->temp_count) {
542 for (unsigned i = 0; i < ctx->temp_count; ++i)
543 if (live[i])
544 ra_add_node_interference(g, dest, i);
545 }
546
547 /* Update live_in */
548 mir_liveness_ins_update(live, ins, ctx->temp_count);
549 }
550
551 free(live);
552 }
553 }
554
555 /* This routine performs the actual register allocation. It should be succeeded
556 * by install_registers */
557
558 struct ra_graph *
559 allocate_registers(compiler_context *ctx, bool *spilled)
560 {
561 /* The number of vec4 work registers available depends on when the
562 * uniforms start, so compute that first */
563 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
564 unsigned *classes = NULL;
565 struct ra_regs *regs = get_register_set(ctx->screen, work_count, &classes);
566
567 assert(regs != NULL);
568 assert(classes != NULL);
569
570 /* No register allocation to do with no SSA */
571
572 if (!ctx->temp_count)
573 return NULL;
574
575 /* Let's actually do register allocation */
576 int nodes = ctx->temp_count;
577 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
578
579 /* Register class (as known to the Mesa register allocator) is actually
580 * the product of both semantic class (work, load/store, texture..) and
581 * size (vec2/vec3..). First, we'll go through and determine the
582 * minimum size needed to hold values */
583
584 unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
585
586 mir_foreach_instr_global(ctx, ins) {
587 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
588
589 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
590 int class = util_logbase2(ins->mask);
591
592 /* Use the largest class if there's ambiguity, this
593 * handles partial writes */
594
595 int dest = ins->dest;
596 found_class[dest] = MAX2(found_class[dest], class);
597 }
598
599 /* Next, we'll determine semantic class. We default to zero (work).
600 * But, if we're used with a special operation, that will force us to a
601 * particular class. Each node must be assigned to exactly one class; a
602 * prepass before RA should have lowered what-would-have-been
603 * multiclass nodes into a series of moves to break it up into multiple
604 * nodes (TODO) */
605
606 mir_foreach_instr_global(ctx, ins) {
607 /* Check if this operation imposes any classes */
608
609 if (ins->type == TAG_LOAD_STORE_4) {
610 bool force_vec4_only = OP_IS_VEC4_ONLY(ins->load_store.op);
611
612 set_class(found_class, ins->src[0], REG_CLASS_LDST);
613 set_class(found_class, ins->src[1], REG_CLASS_LDST);
614 set_class(found_class, ins->src[2], REG_CLASS_LDST);
615
616 if (force_vec4_only) {
617 force_vec4(found_class, ins->dest);
618 force_vec4(found_class, ins->src[0]);
619 force_vec4(found_class, ins->src[1]);
620 force_vec4(found_class, ins->src[2]);
621 }
622 } else if (ins->type == TAG_TEXTURE_4) {
623 set_class(found_class, ins->dest, REG_CLASS_TEXW);
624 set_class(found_class, ins->src[0], REG_CLASS_TEXR);
625 set_class(found_class, ins->src[1], REG_CLASS_TEXR);
626 set_class(found_class, ins->src[2], REG_CLASS_TEXR);
627 }
628 }
629
630 /* Check that the semantics of the class are respected */
631 mir_foreach_instr_global(ctx, ins) {
632 assert(check_write_class(found_class, ins->type, ins->dest));
633 assert(check_read_class(found_class, ins->type, ins->src[0]));
634 assert(check_read_class(found_class, ins->type, ins->src[1]));
635 assert(check_read_class(found_class, ins->type, ins->src[2]));
636 }
637
638 /* Mark writeout to r0 */
639 mir_foreach_instr_global(ctx, ins) {
640 if (ins->compact_branch && ins->writeout)
641 set_class(found_class, ins->src[0], REG_CLASS_FRAGC);
642 }
643
644 for (unsigned i = 0; i < ctx->temp_count; ++i) {
645 unsigned class = found_class[i];
646 ra_set_node_class(g, i, classes[class]);
647 }
648
649 mir_compute_interference(ctx, g);
650
651 if (!ra_allocate(g)) {
652 *spilled = true;
653 } else {
654 *spilled = false;
655 }
656
657 /* Whether we were successful or not, report the graph so we can
658 * compute spill nodes */
659
660 return g;
661 }
662
663 /* Once registers have been decided via register allocation
664 * (allocate_registers), we need to rewrite the MIR to use registers instead of
665 * indices */
666
667 static void
668 install_registers_instr(
669 compiler_context *ctx,
670 struct ra_graph *g,
671 midgard_instruction *ins)
672 {
673 switch (ins->type) {
674 case TAG_ALU_4:
675 case TAG_ALU_8:
676 case TAG_ALU_12:
677 case TAG_ALU_16: {
678 if (ins->compact_branch)
679 return;
680
681 struct phys_reg src1 = index_to_reg(ctx, g, ins->src[0], mir_srcsize(ins, 0));
682 struct phys_reg src2 = index_to_reg(ctx, g, ins->src[1], mir_srcsize(ins, 1));
683 struct phys_reg dest = index_to_reg(ctx, g, ins->dest, mir_typesize(ins));
684
685 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
686
687 unsigned dest_offset =
688 GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
689 dest.offset;
690
691 midgard_vector_alu_src mod1 =
692 vector_alu_from_unsigned(ins->alu.src1);
693 mod1.swizzle = offset_swizzle(mod1.swizzle, src1.offset, src1.size, dest_offset, dest.size);
694 ins->alu.src1 = vector_alu_srco_unsigned(mod1);
695
696 ins->registers.src1_reg = src1.reg;
697
698 ins->registers.src2_imm = ins->has_inline_constant;
699
700 if (ins->has_inline_constant) {
701 /* Encode inline 16-bit constant. See disassembler for
702 * where the algorithm is from */
703
704 ins->registers.src2_reg = ins->inline_constant >> 11;
705
706 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
707 uint16_t imm = ((lower_11 >> 8) & 0x7) |
708 ((lower_11 & 0xFF) << 3);
709
710 ins->alu.src2 = imm << 2;
711 } else {
712 midgard_vector_alu_src mod2 =
713 vector_alu_from_unsigned(ins->alu.src2);
714 mod2.swizzle = offset_swizzle(mod2.swizzle, src2.offset, src2.size, dest_offset, dest.size);
715 ins->alu.src2 = vector_alu_srco_unsigned(mod2);
716
717 ins->registers.src2_reg = src2.reg;
718 }
719
720 ins->registers.out_reg = dest.reg;
721 break;
722 }
723
724 case TAG_LOAD_STORE_4: {
725 /* Which physical register we read off depends on
726 * whether we are loading or storing -- think about the
727 * logical dataflow */
728
729 bool encodes_src = OP_IS_STORE(ins->load_store.op);
730
731 if (encodes_src) {
732 struct phys_reg src = index_to_reg(ctx, g, ins->src[0], mir_srcsize(ins, 0));
733 assert(src.reg == 26 || src.reg == 27);
734
735 ins->load_store.reg = src.reg - 26;
736 ins->load_store.swizzle = offset_swizzle(ins->load_store.swizzle, src.offset, src.size, 0, 4);
737 } else {
738 struct phys_reg dst = index_to_reg(ctx, g, ins->dest, mir_typesize(ins));
739
740 ins->load_store.reg = dst.reg;
741 ins->load_store.swizzle = offset_swizzle(ins->load_store.swizzle, 0, 4, dst.offset, dst.size);
742 mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
743 }
744
745 /* We also follow up by actual arguments */
746
747 unsigned src2 = ins->src[1];
748 unsigned src3 = ins->src[2];
749
750 if (src2 != ~0) {
751 struct phys_reg src = index_to_reg(ctx, g, src2, mir_srcsize(ins, 1));
752 unsigned component = src.offset / src.size;
753 assert(component * src.size == src.offset);
754 ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
755 }
756
757 if (src3 != ~0) {
758 struct phys_reg src = index_to_reg(ctx, g, src3, mir_srcsize(ins, 2));
759 unsigned component = src.offset / src.size;
760 assert(component * src.size == src.offset);
761 ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
762 }
763
764 break;
765 }
766
767 case TAG_TEXTURE_4: {
768 /* Grab RA results */
769 struct phys_reg dest = index_to_reg(ctx, g, ins->dest, mir_typesize(ins));
770 struct phys_reg coord = index_to_reg(ctx, g, ins->src[0], mir_srcsize(ins, 0));
771 struct phys_reg lod = index_to_reg(ctx, g, ins->src[1], mir_srcsize(ins, 1));
772
773 assert(dest.reg == 28 || dest.reg == 29);
774 assert(coord.reg == 28 || coord.reg == 29);
775
776 /* First, install the texture coordinate */
777 ins->texture.in_reg_full = 1;
778 ins->texture.in_reg_upper = 0;
779 ins->texture.in_reg_select = coord.reg - 28;
780 ins->texture.in_reg_swizzle =
781 offset_swizzle(ins->texture.in_reg_swizzle, coord.offset, coord.size, 0, 4);
782
783 /* Next, install the destination */
784 ins->texture.out_full = 1;
785 ins->texture.out_upper = 0;
786 ins->texture.out_reg_select = dest.reg - 28;
787 ins->texture.swizzle =
788 offset_swizzle(ins->texture.swizzle, 0, 4, dest.offset, coord.size);
789 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
790
791 /* If there is a register LOD/bias, use it */
792 if (ins->src[1] != ~0) {
793 assert(!(lod.offset & 3));
794 midgard_tex_register_select sel = {
795 .select = lod.reg,
796 .full = 1,
797 .component = lod.offset / 4
798 };
799
800 uint8_t packed;
801 memcpy(&packed, &sel, sizeof(packed));
802 ins->texture.bias = packed;
803 }
804
805 break;
806 }
807
808 default:
809 break;
810 }
811 }
812
813 void
814 install_registers(compiler_context *ctx, struct ra_graph *g)
815 {
816 mir_foreach_instr_global(ctx, ins)
817 install_registers_instr(ctx, g, ins);
818 }