util: add a timespec helper
[mesa.git] / src / util / disk_cache.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifdef ENABLE_SHADER_CACHE
25
26 #include <ctype.h>
27 #include <ftw.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <sys/file.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/mman.h>
35 #include <unistd.h>
36 #include <fcntl.h>
37 #include <pwd.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include <inttypes.h>
41 #include "zlib.h"
42
43 #include "util/crc32.h"
44 #include "util/debug.h"
45 #include "util/rand_xor.h"
46 #include "util/u_atomic.h"
47 #include "util/u_queue.h"
48 #include "util/mesa-sha1.h"
49 #include "util/ralloc.h"
50 #include "main/compiler.h"
51 #include "main/errors.h"
52
53 #include "disk_cache.h"
54
55 /* Number of bits to mask off from a cache key to get an index. */
56 #define CACHE_INDEX_KEY_BITS 16
57
58 /* Mask for computing an index from a key. */
59 #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
60
61 /* The number of keys that can be stored in the index. */
62 #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
63
64 /* The cache version should be bumped whenever a change is made to the
65 * structure of cache entries or the index. This will give any 3rd party
66 * applications reading the cache entries a chance to adjust to the changes.
67 *
68 * - The cache version is checked internally when reading a cache entry. If we
69 * ever have a mismatch we are in big trouble as this means we had a cache
70 * collision. In case of such an event please check the skys for giant
71 * asteroids and that the entire Mesa team hasn't been eaten by wolves.
72 *
73 * - There is no strict requirement that cache versions be backwards
74 * compatible but effort should be taken to limit disruption where possible.
75 */
76 #define CACHE_VERSION 1
77
78 struct disk_cache {
79 /* The path to the cache directory. */
80 char *path;
81 bool path_init_failed;
82
83 /* Thread queue for compressing and writing cache entries to disk */
84 struct util_queue cache_queue;
85
86 /* Seed for rand, which is used to pick a random directory */
87 uint64_t seed_xorshift128plus[2];
88
89 /* A pointer to the mmapped index file within the cache directory. */
90 uint8_t *index_mmap;
91 size_t index_mmap_size;
92
93 /* Pointer to total size of all objects in cache (within index_mmap) */
94 uint64_t *size;
95
96 /* Pointer to stored keys, (within index_mmap). */
97 uint8_t *stored_keys;
98
99 /* Maximum size of all cached objects (in bytes). */
100 uint64_t max_size;
101
102 /* Driver cache keys. */
103 uint8_t *driver_keys_blob;
104 size_t driver_keys_blob_size;
105
106 disk_cache_put_cb blob_put_cb;
107 disk_cache_get_cb blob_get_cb;
108 };
109
110 struct disk_cache_put_job {
111 struct util_queue_fence fence;
112
113 struct disk_cache *cache;
114
115 cache_key key;
116
117 /* Copy of cache data to be compressed and written. */
118 void *data;
119
120 /* Size of data to be compressed and written. */
121 size_t size;
122
123 struct cache_item_metadata cache_item_metadata;
124 };
125
126 /* Create a directory named 'path' if it does not already exist.
127 *
128 * Returns: 0 if path already exists as a directory or if created.
129 * -1 in all other cases.
130 */
131 static int
132 mkdir_if_needed(const char *path)
133 {
134 struct stat sb;
135
136 /* If the path exists already, then our work is done if it's a
137 * directory, but it's an error if it is not.
138 */
139 if (stat(path, &sb) == 0) {
140 if (S_ISDIR(sb.st_mode)) {
141 return 0;
142 } else {
143 fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
144 "---disabling.\n", path);
145 return -1;
146 }
147 }
148
149 int ret = mkdir(path, 0755);
150 if (ret == 0 || (ret == -1 && errno == EEXIST))
151 return 0;
152
153 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
154 path, strerror(errno));
155
156 return -1;
157 }
158
159 /* Concatenate an existing path and a new name to form a new path. If the new
160 * path does not exist as a directory, create it then return the resulting
161 * name of the new path (ralloc'ed off of 'ctx').
162 *
163 * Returns NULL on any error, such as:
164 *
165 * <path> does not exist or is not a directory
166 * <path>/<name> exists but is not a directory
167 * <path>/<name> cannot be created as a directory
168 */
169 static char *
170 concatenate_and_mkdir(void *ctx, const char *path, const char *name)
171 {
172 char *new_path;
173 struct stat sb;
174
175 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
176 return NULL;
177
178 new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
179
180 if (mkdir_if_needed(new_path) == 0)
181 return new_path;
182 else
183 return NULL;
184 }
185
186 #define DRV_KEY_CPY(_dst, _src, _src_size) \
187 do { \
188 memcpy(_dst, _src, _src_size); \
189 _dst += _src_size; \
190 } while (0);
191
192 struct disk_cache *
193 disk_cache_create(const char *gpu_name, const char *driver_id,
194 uint64_t driver_flags)
195 {
196 void *local;
197 struct disk_cache *cache = NULL;
198 char *path, *max_size_str;
199 uint64_t max_size;
200 int fd = -1;
201 struct stat sb;
202 size_t size;
203
204 uint8_t cache_version = CACHE_VERSION;
205 size_t cv_size = sizeof(cache_version);
206
207 /* If running as a users other than the real user disable cache */
208 if (geteuid() != getuid())
209 return NULL;
210
211 /* A ralloc context for transient data during this invocation. */
212 local = ralloc_context(NULL);
213 if (local == NULL)
214 goto fail;
215
216 /* At user request, disable shader cache entirely. */
217 if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
218 goto fail;
219
220 cache = rzalloc(NULL, struct disk_cache);
221 if (cache == NULL)
222 goto fail;
223
224 /* Assume failure. */
225 cache->path_init_failed = true;
226
227 /* Determine path for cache based on the first defined name as follows:
228 *
229 * $MESA_GLSL_CACHE_DIR
230 * $XDG_CACHE_HOME/mesa_shader_cache
231 * <pwd.pw_dir>/.cache/mesa_shader_cache
232 */
233 path = getenv("MESA_GLSL_CACHE_DIR");
234 if (path) {
235 if (mkdir_if_needed(path) == -1)
236 goto path_fail;
237
238 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
239 if (path == NULL)
240 goto path_fail;
241 }
242
243 if (path == NULL) {
244 char *xdg_cache_home = getenv("XDG_CACHE_HOME");
245
246 if (xdg_cache_home) {
247 if (mkdir_if_needed(xdg_cache_home) == -1)
248 goto path_fail;
249
250 path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME);
251 if (path == NULL)
252 goto path_fail;
253 }
254 }
255
256 if (path == NULL) {
257 char *buf;
258 size_t buf_size;
259 struct passwd pwd, *result;
260
261 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
262 if (buf_size == -1)
263 buf_size = 512;
264
265 /* Loop until buf_size is large enough to query the directory */
266 while (1) {
267 buf = ralloc_size(local, buf_size);
268
269 getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
270 if (result)
271 break;
272
273 if (errno == ERANGE) {
274 ralloc_free(buf);
275 buf = NULL;
276 buf_size *= 2;
277 } else {
278 goto path_fail;
279 }
280 }
281
282 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
283 if (path == NULL)
284 goto path_fail;
285
286 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
287 if (path == NULL)
288 goto path_fail;
289 }
290
291 cache->path = ralloc_strdup(cache, path);
292 if (cache->path == NULL)
293 goto path_fail;
294
295 path = ralloc_asprintf(local, "%s/index", cache->path);
296 if (path == NULL)
297 goto path_fail;
298
299 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
300 if (fd == -1)
301 goto path_fail;
302
303 if (fstat(fd, &sb) == -1)
304 goto path_fail;
305
306 /* Force the index file to be the expected size. */
307 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
308 if (sb.st_size != size) {
309 if (ftruncate(fd, size) == -1)
310 goto path_fail;
311 }
312
313 /* We map this shared so that other processes see updates that we
314 * make.
315 *
316 * Note: We do use atomic addition to ensure that multiple
317 * processes don't scramble the cache size recorded in the
318 * index. But we don't use any locking to prevent multiple
319 * processes from updating the same entry simultaneously. The idea
320 * is that if either result lands entirely in the index, then
321 * that's equivalent to a well-ordered write followed by an
322 * eviction and a write. On the other hand, if the simultaneous
323 * writes result in a corrupt entry, that's not really any
324 * different than both entries being evicted, (since within the
325 * guarantees of the cryptographic hash, a corrupt entry is
326 * unlikely to ever match a real cache key).
327 */
328 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
329 MAP_SHARED, fd, 0);
330 if (cache->index_mmap == MAP_FAILED)
331 goto path_fail;
332 cache->index_mmap_size = size;
333
334 cache->size = (uint64_t *) cache->index_mmap;
335 cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
336
337 max_size = 0;
338
339 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
340 if (max_size_str) {
341 char *end;
342 max_size = strtoul(max_size_str, &end, 10);
343 if (end == max_size_str) {
344 max_size = 0;
345 } else {
346 switch (*end) {
347 case 'K':
348 case 'k':
349 max_size *= 1024;
350 break;
351 case 'M':
352 case 'm':
353 max_size *= 1024*1024;
354 break;
355 case '\0':
356 case 'G':
357 case 'g':
358 default:
359 max_size *= 1024*1024*1024;
360 break;
361 }
362 }
363 }
364
365 /* Default to 1GB for maximum cache size. */
366 if (max_size == 0) {
367 max_size = 1024*1024*1024;
368 }
369
370 cache->max_size = max_size;
371
372 /* 1 thread was chosen because we don't really care about getting things
373 * to disk quickly just that it's not blocking other tasks.
374 *
375 * The queue will resize automatically when it's full, so adding new jobs
376 * doesn't stall.
377 */
378 util_queue_init(&cache->cache_queue, "disk$", 32, 1,
379 UTIL_QUEUE_INIT_RESIZE_IF_FULL |
380 UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
381 UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY);
382
383 cache->path_init_failed = false;
384
385 path_fail:
386
387 if (fd != -1)
388 close(fd);
389
390 cache->driver_keys_blob_size = cv_size;
391
392 /* Create driver id keys */
393 size_t id_size = strlen(driver_id) + 1;
394 size_t gpu_name_size = strlen(gpu_name) + 1;
395 cache->driver_keys_blob_size += id_size;
396 cache->driver_keys_blob_size += gpu_name_size;
397
398 /* We sometimes store entire structs that contains a pointers in the cache,
399 * use pointer size as a key to avoid hard to debug issues.
400 */
401 uint8_t ptr_size = sizeof(void *);
402 size_t ptr_size_size = sizeof(ptr_size);
403 cache->driver_keys_blob_size += ptr_size_size;
404
405 size_t driver_flags_size = sizeof(driver_flags);
406 cache->driver_keys_blob_size += driver_flags_size;
407
408 cache->driver_keys_blob =
409 ralloc_size(cache, cache->driver_keys_blob_size);
410 if (!cache->driver_keys_blob)
411 goto fail;
412
413 uint8_t *drv_key_blob = cache->driver_keys_blob;
414 DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
415 DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
416 DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
417 DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
418 DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
419
420 /* Seed our rand function */
421 s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
422
423 ralloc_free(local);
424
425 return cache;
426
427 fail:
428 if (cache)
429 ralloc_free(cache);
430 ralloc_free(local);
431
432 return NULL;
433 }
434
435 void
436 disk_cache_destroy(struct disk_cache *cache)
437 {
438 if (cache && !cache->path_init_failed) {
439 util_queue_destroy(&cache->cache_queue);
440 munmap(cache->index_mmap, cache->index_mmap_size);
441 }
442
443 ralloc_free(cache);
444 }
445
446 /* Return a filename within the cache's directory corresponding to 'key'. The
447 * returned filename is ralloced with 'cache' as the parent context.
448 *
449 * Returns NULL if out of memory.
450 */
451 static char *
452 get_cache_file(struct disk_cache *cache, const cache_key key)
453 {
454 char buf[41];
455 char *filename;
456
457 if (cache->path_init_failed)
458 return NULL;
459
460 _mesa_sha1_format(buf, key);
461 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
462 buf[1], buf + 2) == -1)
463 return NULL;
464
465 return filename;
466 }
467
468 /* Create the directory that will be needed for the cache file for \key.
469 *
470 * Obviously, the implementation here must closely match
471 * _get_cache_file above.
472 */
473 static void
474 make_cache_file_directory(struct disk_cache *cache, const cache_key key)
475 {
476 char *dir;
477 char buf[41];
478
479 _mesa_sha1_format(buf, key);
480 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
481 return;
482
483 mkdir_if_needed(dir);
484 free(dir);
485 }
486
487 /* Given a directory path and predicate function, find the entry with
488 * the oldest access time in that directory for which the predicate
489 * returns true.
490 *
491 * Returns: A malloc'ed string for the path to the chosen file, (or
492 * NULL on any error). The caller should free the string when
493 * finished.
494 */
495 static char *
496 choose_lru_file_matching(const char *dir_path,
497 bool (*predicate)(const char *dir_path,
498 const struct stat *,
499 const char *, const size_t))
500 {
501 DIR *dir;
502 struct dirent *entry;
503 char *filename;
504 char *lru_name = NULL;
505 time_t lru_atime = 0;
506
507 dir = opendir(dir_path);
508 if (dir == NULL)
509 return NULL;
510
511 while (1) {
512 entry = readdir(dir);
513 if (entry == NULL)
514 break;
515
516 struct stat sb;
517 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
518 if (!lru_atime || (sb.st_atime < lru_atime)) {
519 size_t len = strlen(entry->d_name);
520
521 if (!predicate(dir_path, &sb, entry->d_name, len))
522 continue;
523
524 char *tmp = realloc(lru_name, len + 1);
525 if (tmp) {
526 lru_name = tmp;
527 memcpy(lru_name, entry->d_name, len + 1);
528 lru_atime = sb.st_atime;
529 }
530 }
531 }
532 }
533
534 if (lru_name == NULL) {
535 closedir(dir);
536 return NULL;
537 }
538
539 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
540 filename = NULL;
541
542 free(lru_name);
543 closedir(dir);
544
545 return filename;
546 }
547
548 /* Is entry a regular file, and not having a name with a trailing
549 * ".tmp"
550 */
551 static bool
552 is_regular_non_tmp_file(const char *path, const struct stat *sb,
553 const char *d_name, const size_t len)
554 {
555 if (!S_ISREG(sb->st_mode))
556 return false;
557
558 if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
559 return false;
560
561 return true;
562 }
563
564 /* Returns the size of the deleted file, (or 0 on any error). */
565 static size_t
566 unlink_lru_file_from_directory(const char *path)
567 {
568 struct stat sb;
569 char *filename;
570
571 filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
572 if (filename == NULL)
573 return 0;
574
575 if (stat(filename, &sb) == -1) {
576 free (filename);
577 return 0;
578 }
579
580 unlink(filename);
581 free (filename);
582
583 return sb.st_blocks * 512;
584 }
585
586 /* Is entry a directory with a two-character name, (and not the
587 * special name of ".."). We also return false if the dir is empty.
588 */
589 static bool
590 is_two_character_sub_directory(const char *path, const struct stat *sb,
591 const char *d_name, const size_t len)
592 {
593 if (!S_ISDIR(sb->st_mode))
594 return false;
595
596 if (len != 2)
597 return false;
598
599 if (strcmp(d_name, "..") == 0)
600 return false;
601
602 char *subdir;
603 if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
604 return false;
605 DIR *dir = opendir(subdir);
606 free(subdir);
607
608 if (dir == NULL)
609 return false;
610
611 unsigned subdir_entries = 0;
612 struct dirent *d;
613 while ((d = readdir(dir)) != NULL) {
614 if(++subdir_entries > 2)
615 break;
616 }
617 closedir(dir);
618
619 /* If dir only contains '.' and '..' it must be empty */
620 if (subdir_entries <= 2)
621 return false;
622
623 return true;
624 }
625
626 static void
627 evict_lru_item(struct disk_cache *cache)
628 {
629 char *dir_path;
630
631 /* With a reasonably-sized, full cache, (and with keys generated
632 * from a cryptographic hash), we can choose two random hex digits
633 * and reasonably expect the directory to exist with a file in it.
634 * Provides pseudo-LRU eviction to reduce checking all cache files.
635 */
636 uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
637 if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
638 return;
639
640 size_t size = unlink_lru_file_from_directory(dir_path);
641
642 free(dir_path);
643
644 if (size) {
645 p_atomic_add(cache->size, - (uint64_t)size);
646 return;
647 }
648
649 /* In the case where the random choice of directory didn't find
650 * something, we choose the least recently accessed from the
651 * existing directories.
652 *
653 * Really, the only reason this code exists is to allow the unit
654 * tests to work, (which use an artificially-small cache to be able
655 * to force a single cached item to be evicted).
656 */
657 dir_path = choose_lru_file_matching(cache->path,
658 is_two_character_sub_directory);
659 if (dir_path == NULL)
660 return;
661
662 size = unlink_lru_file_from_directory(dir_path);
663
664 free(dir_path);
665
666 if (size)
667 p_atomic_add(cache->size, - (uint64_t)size);
668 }
669
670 void
671 disk_cache_remove(struct disk_cache *cache, const cache_key key)
672 {
673 struct stat sb;
674
675 char *filename = get_cache_file(cache, key);
676 if (filename == NULL) {
677 return;
678 }
679
680 if (stat(filename, &sb) == -1) {
681 free(filename);
682 return;
683 }
684
685 unlink(filename);
686 free(filename);
687
688 if (sb.st_blocks)
689 p_atomic_add(cache->size, - (uint64_t)sb.st_blocks * 512);
690 }
691
692 static ssize_t
693 read_all(int fd, void *buf, size_t count)
694 {
695 char *in = buf;
696 ssize_t read_ret;
697 size_t done;
698
699 for (done = 0; done < count; done += read_ret) {
700 read_ret = read(fd, in + done, count - done);
701 if (read_ret == -1 || read_ret == 0)
702 return -1;
703 }
704 return done;
705 }
706
707 static ssize_t
708 write_all(int fd, const void *buf, size_t count)
709 {
710 const char *out = buf;
711 ssize_t written;
712 size_t done;
713
714 for (done = 0; done < count; done += written) {
715 written = write(fd, out + done, count - done);
716 if (written == -1)
717 return -1;
718 }
719 return done;
720 }
721
722 /* From the zlib docs:
723 * "If the memory is available, buffers sizes on the order of 128K or 256K
724 * bytes should be used."
725 */
726 #define BUFSIZE 256 * 1024
727
728 /**
729 * Compresses cache entry in memory and writes it to disk. Returns the size
730 * of the data written to disk.
731 */
732 static size_t
733 deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
734 const char *filename)
735 {
736 unsigned char *out;
737
738 /* allocate deflate state */
739 z_stream strm;
740 strm.zalloc = Z_NULL;
741 strm.zfree = Z_NULL;
742 strm.opaque = Z_NULL;
743 strm.next_in = (uint8_t *) in_data;
744 strm.avail_in = in_data_size;
745
746 int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
747 if (ret != Z_OK)
748 return 0;
749
750 /* compress until end of in_data */
751 size_t compressed_size = 0;
752 int flush;
753
754 out = malloc(BUFSIZE * sizeof(unsigned char));
755 if (out == NULL)
756 return 0;
757
758 do {
759 int remaining = in_data_size - BUFSIZE;
760 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
761 in_data_size -= BUFSIZE;
762
763 /* Run deflate() on input until the output buffer is not full (which
764 * means there is no more data to deflate).
765 */
766 do {
767 strm.avail_out = BUFSIZE;
768 strm.next_out = out;
769
770 ret = deflate(&strm, flush); /* no bad return value */
771 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
772
773 size_t have = BUFSIZE - strm.avail_out;
774 compressed_size += have;
775
776 ssize_t written = write_all(dest, out, have);
777 if (written == -1) {
778 (void)deflateEnd(&strm);
779 free(out);
780 return 0;
781 }
782 } while (strm.avail_out == 0);
783
784 /* all input should be used */
785 assert(strm.avail_in == 0);
786
787 } while (flush != Z_FINISH);
788
789 /* stream should be complete */
790 assert(ret == Z_STREAM_END);
791
792 /* clean up and return */
793 (void)deflateEnd(&strm);
794 free(out);
795 return compressed_size;
796 }
797
798 static struct disk_cache_put_job *
799 create_put_job(struct disk_cache *cache, const cache_key key,
800 const void *data, size_t size,
801 struct cache_item_metadata *cache_item_metadata)
802 {
803 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
804 malloc(sizeof(struct disk_cache_put_job) + size);
805
806 if (dc_job) {
807 dc_job->cache = cache;
808 memcpy(dc_job->key, key, sizeof(cache_key));
809 dc_job->data = dc_job + 1;
810 memcpy(dc_job->data, data, size);
811 dc_job->size = size;
812
813 /* Copy the cache item metadata */
814 if (cache_item_metadata) {
815 dc_job->cache_item_metadata.type = cache_item_metadata->type;
816 if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
817 dc_job->cache_item_metadata.num_keys =
818 cache_item_metadata->num_keys;
819 dc_job->cache_item_metadata.keys = (cache_key *)
820 malloc(cache_item_metadata->num_keys * sizeof(cache_key));
821
822 if (!dc_job->cache_item_metadata.keys)
823 goto fail;
824
825 memcpy(dc_job->cache_item_metadata.keys,
826 cache_item_metadata->keys,
827 sizeof(cache_key) * cache_item_metadata->num_keys);
828 }
829 } else {
830 dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
831 dc_job->cache_item_metadata.keys = NULL;
832 }
833 }
834
835 return dc_job;
836
837 fail:
838 free(dc_job);
839
840 return NULL;
841 }
842
843 static void
844 destroy_put_job(void *job, int thread_index)
845 {
846 if (job) {
847 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
848 free(dc_job->cache_item_metadata.keys);
849
850 free(job);
851 }
852 }
853
854 struct cache_entry_file_data {
855 uint32_t crc32;
856 uint32_t uncompressed_size;
857 };
858
859 static void
860 cache_put(void *job, int thread_index)
861 {
862 assert(job);
863
864 int fd = -1, fd_final = -1, err, ret;
865 unsigned i = 0;
866 char *filename = NULL, *filename_tmp = NULL;
867 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
868
869 filename = get_cache_file(dc_job->cache, dc_job->key);
870 if (filename == NULL)
871 goto done;
872
873 /* If the cache is too large, evict something else first. */
874 while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
875 i < 8) {
876 evict_lru_item(dc_job->cache);
877 i++;
878 }
879
880 /* Write to a temporary file to allow for an atomic rename to the
881 * final destination filename, (to prevent any readers from seeing
882 * a partially written file).
883 */
884 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
885 goto done;
886
887 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
888
889 /* Make the two-character subdirectory within the cache as needed. */
890 if (fd == -1) {
891 if (errno != ENOENT)
892 goto done;
893
894 make_cache_file_directory(dc_job->cache, dc_job->key);
895
896 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
897 if (fd == -1)
898 goto done;
899 }
900
901 /* With the temporary file open, we take an exclusive flock on
902 * it. If the flock fails, then another process still has the file
903 * open with the flock held. So just let that file be responsible
904 * for writing the file.
905 */
906 err = flock(fd, LOCK_EX | LOCK_NB);
907 if (err == -1)
908 goto done;
909
910 /* Now that we have the lock on the open temporary file, we can
911 * check to see if the destination file already exists. If so,
912 * another process won the race between when we saw that the file
913 * didn't exist and now. In this case, we don't do anything more,
914 * (to ensure the size accounting of the cache doesn't get off).
915 */
916 fd_final = open(filename, O_RDONLY | O_CLOEXEC);
917 if (fd_final != -1) {
918 unlink(filename_tmp);
919 goto done;
920 }
921
922 /* OK, we're now on the hook to write out a file that we know is
923 * not in the cache, and is also not being written out to the cache
924 * by some other process.
925 */
926
927 /* Write the driver_keys_blob, this can be used find information about the
928 * mesa version that produced the entry or deal with hash collisions,
929 * should that ever become a real problem.
930 */
931 ret = write_all(fd, dc_job->cache->driver_keys_blob,
932 dc_job->cache->driver_keys_blob_size);
933 if (ret == -1) {
934 unlink(filename_tmp);
935 goto done;
936 }
937
938 /* Write the cache item metadata. This data can be used to deal with
939 * hash collisions, as well as providing useful information to 3rd party
940 * tools reading the cache files.
941 */
942 ret = write_all(fd, &dc_job->cache_item_metadata.type,
943 sizeof(uint32_t));
944 if (ret == -1) {
945 unlink(filename_tmp);
946 goto done;
947 }
948
949 if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
950 ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
951 sizeof(uint32_t));
952 if (ret == -1) {
953 unlink(filename_tmp);
954 goto done;
955 }
956
957 ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
958 dc_job->cache_item_metadata.num_keys *
959 sizeof(cache_key));
960 if (ret == -1) {
961 unlink(filename_tmp);
962 goto done;
963 }
964 }
965
966 /* Create CRC of the data. We will read this when restoring the cache and
967 * use it to check for corruption.
968 */
969 struct cache_entry_file_data cf_data;
970 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
971 cf_data.uncompressed_size = dc_job->size;
972
973 size_t cf_data_size = sizeof(cf_data);
974 ret = write_all(fd, &cf_data, cf_data_size);
975 if (ret == -1) {
976 unlink(filename_tmp);
977 goto done;
978 }
979
980 /* Now, finally, write out the contents to the temporary file, then
981 * rename them atomically to the destination filename, and also
982 * perform an atomic increment of the total cache size.
983 */
984 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
985 fd, filename_tmp);
986 if (file_size == 0) {
987 unlink(filename_tmp);
988 goto done;
989 }
990 ret = rename(filename_tmp, filename);
991 if (ret == -1) {
992 unlink(filename_tmp);
993 goto done;
994 }
995
996 struct stat sb;
997 if (stat(filename, &sb) == -1) {
998 /* Something went wrong remove the file */
999 unlink(filename);
1000 goto done;
1001 }
1002
1003 p_atomic_add(dc_job->cache->size, sb.st_blocks * 512);
1004
1005 done:
1006 if (fd_final != -1)
1007 close(fd_final);
1008 /* This close finally releases the flock, (now that the final file
1009 * has been renamed into place and the size has been added).
1010 */
1011 if (fd != -1)
1012 close(fd);
1013 free(filename_tmp);
1014 free(filename);
1015 }
1016
1017 void
1018 disk_cache_put(struct disk_cache *cache, const cache_key key,
1019 const void *data, size_t size,
1020 struct cache_item_metadata *cache_item_metadata)
1021 {
1022 if (cache->blob_put_cb) {
1023 cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size);
1024 return;
1025 }
1026
1027 if (cache->path_init_failed)
1028 return;
1029
1030 struct disk_cache_put_job *dc_job =
1031 create_put_job(cache, key, data, size, cache_item_metadata);
1032
1033 if (dc_job) {
1034 util_queue_fence_init(&dc_job->fence);
1035 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
1036 cache_put, destroy_put_job);
1037 }
1038 }
1039
1040 /**
1041 * Decompresses cache entry, returns true if successful.
1042 */
1043 static bool
1044 inflate_cache_data(uint8_t *in_data, size_t in_data_size,
1045 uint8_t *out_data, size_t out_data_size)
1046 {
1047 z_stream strm;
1048
1049 /* allocate inflate state */
1050 strm.zalloc = Z_NULL;
1051 strm.zfree = Z_NULL;
1052 strm.opaque = Z_NULL;
1053 strm.next_in = in_data;
1054 strm.avail_in = in_data_size;
1055 strm.next_out = out_data;
1056 strm.avail_out = out_data_size;
1057
1058 int ret = inflateInit(&strm);
1059 if (ret != Z_OK)
1060 return false;
1061
1062 ret = inflate(&strm, Z_NO_FLUSH);
1063 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
1064
1065 /* Unless there was an error we should have decompressed everything in one
1066 * go as we know the uncompressed file size.
1067 */
1068 if (ret != Z_STREAM_END) {
1069 (void)inflateEnd(&strm);
1070 return false;
1071 }
1072 assert(strm.avail_out == 0);
1073
1074 /* clean up and return */
1075 (void)inflateEnd(&strm);
1076 return true;
1077 }
1078
1079 void *
1080 disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
1081 {
1082 int fd = -1, ret;
1083 struct stat sb;
1084 char *filename = NULL;
1085 uint8_t *data = NULL;
1086 uint8_t *uncompressed_data = NULL;
1087 uint8_t *file_header = NULL;
1088
1089 if (size)
1090 *size = 0;
1091
1092 if (cache->blob_get_cb) {
1093 /* This is what Android EGL defines as the maxValueSize in egl_cache_t
1094 * class implementation.
1095 */
1096 const signed long max_blob_size = 64 * 1024;
1097 void *blob = malloc(max_blob_size);
1098 if (!blob)
1099 return NULL;
1100
1101 signed long bytes =
1102 cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size);
1103
1104 if (!bytes) {
1105 free(blob);
1106 return NULL;
1107 }
1108
1109 if (size)
1110 *size = bytes;
1111 return blob;
1112 }
1113
1114 filename = get_cache_file(cache, key);
1115 if (filename == NULL)
1116 goto fail;
1117
1118 fd = open(filename, O_RDONLY | O_CLOEXEC);
1119 if (fd == -1)
1120 goto fail;
1121
1122 if (fstat(fd, &sb) == -1)
1123 goto fail;
1124
1125 data = malloc(sb.st_size);
1126 if (data == NULL)
1127 goto fail;
1128
1129 size_t ck_size = cache->driver_keys_blob_size;
1130 file_header = malloc(ck_size);
1131 if (!file_header)
1132 goto fail;
1133
1134 if (sb.st_size < ck_size)
1135 goto fail;
1136
1137 ret = read_all(fd, file_header, ck_size);
1138 if (ret == -1)
1139 goto fail;
1140
1141 /* Check for extremely unlikely hash collisions */
1142 if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) {
1143 assert(!"Mesa cache keys mismatch!");
1144 goto fail;
1145 }
1146
1147 size_t cache_item_md_size = sizeof(uint32_t);
1148 uint32_t md_type;
1149 ret = read_all(fd, &md_type, cache_item_md_size);
1150 if (ret == -1)
1151 goto fail;
1152
1153 if (md_type == CACHE_ITEM_TYPE_GLSL) {
1154 uint32_t num_keys;
1155 cache_item_md_size += sizeof(uint32_t);
1156 ret = read_all(fd, &num_keys, sizeof(uint32_t));
1157 if (ret == -1)
1158 goto fail;
1159
1160 /* The cache item metadata is currently just used for distributing
1161 * precompiled shaders, they are not used by Mesa so just skip them for
1162 * now.
1163 * TODO: pass the metadata back to the caller and do some basic
1164 * validation.
1165 */
1166 cache_item_md_size += num_keys * sizeof(cache_key);
1167 ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR);
1168 if (ret == -1)
1169 goto fail;
1170 }
1171
1172 /* Load the CRC that was created when the file was written. */
1173 struct cache_entry_file_data cf_data;
1174 size_t cf_data_size = sizeof(cf_data);
1175 ret = read_all(fd, &cf_data, cf_data_size);
1176 if (ret == -1)
1177 goto fail;
1178
1179 /* Load the actual cache data. */
1180 size_t cache_data_size =
1181 sb.st_size - cf_data_size - ck_size - cache_item_md_size;
1182 ret = read_all(fd, data, cache_data_size);
1183 if (ret == -1)
1184 goto fail;
1185
1186 /* Uncompress the cache data */
1187 uncompressed_data = malloc(cf_data.uncompressed_size);
1188 if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1189 cf_data.uncompressed_size))
1190 goto fail;
1191
1192 /* Check the data for corruption */
1193 if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1194 cf_data.uncompressed_size))
1195 goto fail;
1196
1197 free(data);
1198 free(filename);
1199 free(file_header);
1200 close(fd);
1201
1202 if (size)
1203 *size = cf_data.uncompressed_size;
1204
1205 return uncompressed_data;
1206
1207 fail:
1208 if (data)
1209 free(data);
1210 if (uncompressed_data)
1211 free(uncompressed_data);
1212 if (filename)
1213 free(filename);
1214 if (file_header)
1215 free(file_header);
1216 if (fd != -1)
1217 close(fd);
1218
1219 return NULL;
1220 }
1221
1222 void
1223 disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1224 {
1225 const uint32_t *key_chunk = (const uint32_t *) key;
1226 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1227 unsigned char *entry;
1228
1229 if (cache->blob_put_cb) {
1230 cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
1231 return;
1232 }
1233
1234 if (cache->path_init_failed)
1235 return;
1236
1237 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1238
1239 memcpy(entry, key, CACHE_KEY_SIZE);
1240 }
1241
1242 /* This function lets us test whether a given key was previously
1243 * stored in the cache with disk_cache_put_key(). The implement is
1244 * efficient by not using syscalls or hitting the disk. It's not
1245 * race-free, but the races are benign. If we race with someone else
1246 * calling disk_cache_put_key, then that's just an extra cache miss and an
1247 * extra recompile.
1248 */
1249 bool
1250 disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1251 {
1252 const uint32_t *key_chunk = (const uint32_t *) key;
1253 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1254 unsigned char *entry;
1255
1256 if (cache->blob_get_cb) {
1257 uint32_t blob;
1258 return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
1259 }
1260
1261 if (cache->path_init_failed)
1262 return false;
1263
1264 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1265
1266 return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1267 }
1268
1269 void
1270 disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
1271 cache_key key)
1272 {
1273 struct mesa_sha1 ctx;
1274
1275 _mesa_sha1_init(&ctx);
1276 _mesa_sha1_update(&ctx, cache->driver_keys_blob,
1277 cache->driver_keys_blob_size);
1278 _mesa_sha1_update(&ctx, data, size);
1279 _mesa_sha1_final(&ctx, key);
1280 }
1281
1282 void
1283 disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
1284 disk_cache_get_cb get)
1285 {
1286 cache->blob_put_cb = put;
1287 cache->blob_get_cb = get;
1288 }
1289
1290 #endif /* ENABLE_SHADER_CACHE */