util/disk_cache: actually enforce cache size
[mesa.git] / src / util / disk_cache.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifdef ENABLE_SHADER_CACHE
25
26 #include <ctype.h>
27 #include <ftw.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <sys/file.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/mman.h>
35 #include <unistd.h>
36 #include <fcntl.h>
37 #include <pwd.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include "zlib.h"
41
42 #include "util/crc32.h"
43 #include "util/u_atomic.h"
44 #include "util/u_queue.h"
45 #include "util/mesa-sha1.h"
46 #include "util/ralloc.h"
47 #include "main/errors.h"
48
49 #include "disk_cache.h"
50
51 /* Number of bits to mask off from a cache key to get an index. */
52 #define CACHE_INDEX_KEY_BITS 16
53
54 /* Mask for computing an index from a key. */
55 #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
56
57 /* The number of keys that can be stored in the index. */
58 #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
59
60 struct disk_cache {
61 /* The path to the cache directory. */
62 char *path;
63
64 /* Thread queue for compressing and writing cache entries to disk */
65 struct util_queue cache_queue;
66
67 /* A pointer to the mmapped index file within the cache directory. */
68 uint8_t *index_mmap;
69 size_t index_mmap_size;
70
71 /* Pointer to total size of all objects in cache (within index_mmap) */
72 uint64_t *size;
73
74 /* Pointer to stored keys, (within index_mmap). */
75 uint8_t *stored_keys;
76
77 /* Maximum size of all cached objects (in bytes). */
78 uint64_t max_size;
79 };
80
81 struct disk_cache_put_job {
82 struct util_queue_fence fence;
83
84 struct disk_cache *cache;
85
86 cache_key key;
87
88 /* Copy of cache data to be compressed and written. */
89 void *data;
90
91 /* Size of data to be compressed and written. */
92 size_t size;
93 };
94
95 /* Create a directory named 'path' if it does not already exist.
96 *
97 * Returns: 0 if path already exists as a directory or if created.
98 * -1 in all other cases.
99 */
100 static int
101 mkdir_if_needed(const char *path)
102 {
103 struct stat sb;
104
105 /* If the path exists already, then our work is done if it's a
106 * directory, but it's an error if it is not.
107 */
108 if (stat(path, &sb) == 0) {
109 if (S_ISDIR(sb.st_mode)) {
110 return 0;
111 } else {
112 fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
113 "---disabling.\n", path);
114 return -1;
115 }
116 }
117
118 int ret = mkdir(path, 0755);
119 if (ret == 0 || (ret == -1 && errno == EEXIST))
120 return 0;
121
122 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
123 path, strerror(errno));
124
125 return -1;
126 }
127
128 /* Concatenate an existing path and a new name to form a new path. If the new
129 * path does not exist as a directory, create it then return the resulting
130 * name of the new path (ralloc'ed off of 'ctx').
131 *
132 * Returns NULL on any error, such as:
133 *
134 * <path> does not exist or is not a directory
135 * <path>/<name> exists but is not a directory
136 * <path>/<name> cannot be created as a directory
137 */
138 static char *
139 concatenate_and_mkdir(void *ctx, const char *path, const char *name)
140 {
141 char *new_path;
142 struct stat sb;
143
144 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
145 return NULL;
146
147 new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
148
149 if (mkdir_if_needed(new_path) == 0)
150 return new_path;
151 else
152 return NULL;
153 }
154
155 static int
156 remove_dir(const char *fpath, const struct stat *sb,
157 int typeflag, struct FTW *ftwbuf)
158 {
159 if (S_ISREG(sb->st_mode))
160 unlink(fpath);
161 else if (S_ISDIR(sb->st_mode))
162 rmdir(fpath);
163
164 return 0;
165 }
166
167 static void
168 remove_old_cache_directories(void *mem_ctx, const char *path,
169 const char *timestamp)
170 {
171 DIR *dir = opendir(path);
172
173 struct dirent* d_entry;
174 while((d_entry = readdir(dir)) != NULL)
175 {
176 char *full_path =
177 ralloc_asprintf(mem_ctx, "%s/%s", path, d_entry->d_name);
178
179 struct stat sb;
180 if (stat(full_path, &sb) == 0 && S_ISDIR(sb.st_mode) &&
181 strcmp(d_entry->d_name, timestamp) != 0 &&
182 strcmp(d_entry->d_name, "..") != 0 &&
183 strcmp(d_entry->d_name, ".") != 0) {
184 nftw(full_path, remove_dir, 20, FTW_DEPTH);
185 }
186 }
187
188 closedir(dir);
189 }
190
191 static char *
192 create_mesa_cache_dir(void *mem_ctx, const char *path, const char *timestamp,
193 const char *gpu_name)
194 {
195 char *new_path = concatenate_and_mkdir(mem_ctx, path, "mesa");
196 if (new_path == NULL)
197 return NULL;
198
199 /* Create a parent architecture directory so that we don't remove cache
200 * files for other architectures. In theory we could share the cache
201 * between architectures but we have no way of knowing if they were created
202 * by a compatible Mesa version.
203 */
204 new_path = concatenate_and_mkdir(mem_ctx, new_path, get_arch_bitness_str());
205 if (new_path == NULL)
206 return NULL;
207
208 /* Remove cache directories for old Mesa versions */
209 remove_old_cache_directories(mem_ctx, new_path, timestamp);
210
211 new_path = concatenate_and_mkdir(mem_ctx, new_path, timestamp);
212 if (new_path == NULL)
213 return NULL;
214
215 new_path = concatenate_and_mkdir(mem_ctx, new_path, gpu_name);
216 if (new_path == NULL)
217 return NULL;
218
219 return new_path;
220 }
221
222 struct disk_cache *
223 disk_cache_create(const char *gpu_name, const char *timestamp)
224 {
225 void *local;
226 struct disk_cache *cache = NULL;
227 char *path, *max_size_str;
228 uint64_t max_size;
229 int fd = -1;
230 struct stat sb;
231 size_t size;
232
233 /* If running as a users other than the real user disable cache */
234 if (geteuid() != getuid())
235 return NULL;
236
237 /* A ralloc context for transient data during this invocation. */
238 local = ralloc_context(NULL);
239 if (local == NULL)
240 goto fail;
241
242 /* At user request, disable shader cache entirely. */
243 if (getenv("MESA_GLSL_CACHE_DISABLE"))
244 goto fail;
245
246 /* Determine path for cache based on the first defined name as follows:
247 *
248 * $MESA_GLSL_CACHE_DIR
249 * $XDG_CACHE_HOME/mesa
250 * <pwd.pw_dir>/.cache/mesa
251 */
252 path = getenv("MESA_GLSL_CACHE_DIR");
253 if (path) {
254 if (mkdir_if_needed(path) == -1)
255 goto fail;
256
257 path = create_mesa_cache_dir(local, path, timestamp,
258 gpu_name);
259 if (path == NULL)
260 goto fail;
261 }
262
263 if (path == NULL) {
264 char *xdg_cache_home = getenv("XDG_CACHE_HOME");
265
266 if (xdg_cache_home) {
267 if (mkdir_if_needed(xdg_cache_home) == -1)
268 goto fail;
269
270 path = create_mesa_cache_dir(local, xdg_cache_home, timestamp,
271 gpu_name);
272 if (path == NULL)
273 goto fail;
274 }
275 }
276
277 if (path == NULL) {
278 char *buf;
279 size_t buf_size;
280 struct passwd pwd, *result;
281
282 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
283 if (buf_size == -1)
284 buf_size = 512;
285
286 /* Loop until buf_size is large enough to query the directory */
287 while (1) {
288 buf = ralloc_size(local, buf_size);
289
290 getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
291 if (result)
292 break;
293
294 if (errno == ERANGE) {
295 ralloc_free(buf);
296 buf = NULL;
297 buf_size *= 2;
298 } else {
299 goto fail;
300 }
301 }
302
303 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
304 if (path == NULL)
305 goto fail;
306
307 path = create_mesa_cache_dir(local, path, timestamp, gpu_name);
308 if (path == NULL)
309 goto fail;
310 }
311
312 cache = ralloc(NULL, struct disk_cache);
313 if (cache == NULL)
314 goto fail;
315
316 cache->path = ralloc_strdup(cache, path);
317 if (cache->path == NULL)
318 goto fail;
319
320 path = ralloc_asprintf(local, "%s/index", cache->path);
321 if (path == NULL)
322 goto fail;
323
324 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
325 if (fd == -1)
326 goto fail;
327
328 if (fstat(fd, &sb) == -1)
329 goto fail;
330
331 /* Force the index file to be the expected size. */
332 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
333 if (sb.st_size != size) {
334 if (ftruncate(fd, size) == -1)
335 goto fail;
336 }
337
338 /* We map this shared so that other processes see updates that we
339 * make.
340 *
341 * Note: We do use atomic addition to ensure that multiple
342 * processes don't scramble the cache size recorded in the
343 * index. But we don't use any locking to prevent multiple
344 * processes from updating the same entry simultaneously. The idea
345 * is that if either result lands entirely in the index, then
346 * that's equivalent to a well-ordered write followed by an
347 * eviction and a write. On the other hand, if the simultaneous
348 * writes result in a corrupt entry, that's not really any
349 * different than both entries being evicted, (since within the
350 * guarantees of the cryptographic hash, a corrupt entry is
351 * unlikely to ever match a real cache key).
352 */
353 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
354 MAP_SHARED, fd, 0);
355 if (cache->index_mmap == MAP_FAILED)
356 goto fail;
357 cache->index_mmap_size = size;
358
359 close(fd);
360
361 cache->size = (uint64_t *) cache->index_mmap;
362 cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
363
364 max_size = 0;
365
366 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
367 if (max_size_str) {
368 char *end;
369 max_size = strtoul(max_size_str, &end, 10);
370 if (end == max_size_str) {
371 max_size = 0;
372 } else {
373 switch (*end) {
374 case 'K':
375 case 'k':
376 max_size *= 1024;
377 break;
378 case 'M':
379 case 'm':
380 max_size *= 1024*1024;
381 break;
382 case '\0':
383 case 'G':
384 case 'g':
385 default:
386 max_size *= 1024*1024*1024;
387 break;
388 }
389 }
390 }
391
392 /* Default to 1GB for maximum cache size. */
393 if (max_size == 0)
394 max_size = 1024*1024*1024;
395
396 cache->max_size = max_size;
397
398 /* A limit of 32 jobs was choosen as observations of Deus Ex start-up times
399 * showed that we reached at most 11 jobs on an Intel i5-6400 CPU@2.70GHz
400 * (a fairly modest desktop CPU). 1 thread was chosen because we don't
401 * really care about getting things to disk quickly just that it's not
402 * blocking other tasks.
403 */
404 util_queue_init(&cache->cache_queue, "disk_cache", 32, 1);
405
406 ralloc_free(local);
407
408 return cache;
409
410 fail:
411 if (fd != -1)
412 close(fd);
413 if (cache)
414 ralloc_free(cache);
415 ralloc_free(local);
416
417 return NULL;
418 }
419
420 void
421 disk_cache_destroy(struct disk_cache *cache)
422 {
423 if (cache) {
424 util_queue_destroy(&cache->cache_queue);
425 munmap(cache->index_mmap, cache->index_mmap_size);
426 }
427
428 ralloc_free(cache);
429 }
430
431 /* Return a filename within the cache's directory corresponding to 'key'. The
432 * returned filename is ralloced with 'cache' as the parent context.
433 *
434 * Returns NULL if out of memory.
435 */
436 static char *
437 get_cache_file(struct disk_cache *cache, const cache_key key)
438 {
439 char buf[41];
440 char *filename;
441
442 _mesa_sha1_format(buf, key);
443 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
444 buf[1], buf + 2) == -1)
445 return NULL;
446
447 return filename;
448 }
449
450 /* Create the directory that will be needed for the cache file for \key.
451 *
452 * Obviously, the implementation here must closely match
453 * _get_cache_file above.
454 */
455 static void
456 make_cache_file_directory(struct disk_cache *cache, const cache_key key)
457 {
458 char *dir;
459 char buf[41];
460
461 _mesa_sha1_format(buf, key);
462 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
463 return;
464
465 mkdir_if_needed(dir);
466 free(dir);
467 }
468
469 /* Given a directory path and predicate function, find the entry with
470 * the oldest access time in that directory for which the predicate
471 * returns true.
472 *
473 * Returns: A malloc'ed string for the path to the chosen file, (or
474 * NULL on any error). The caller should free the string when
475 * finished.
476 */
477 static char *
478 choose_lru_file_matching(const char *dir_path,
479 bool (*predicate)(const struct dirent *,
480 const char *dir_path))
481 {
482 DIR *dir;
483 struct dirent *entry;
484 char *filename;
485 char *lru_name = NULL;
486 time_t lru_atime = 0;
487
488 dir = opendir(dir_path);
489 if (dir == NULL)
490 return NULL;
491
492 while (1) {
493 entry = readdir(dir);
494 if (entry == NULL)
495 break;
496 if (!predicate(entry, dir_path))
497 continue;
498
499 struct stat sb;
500 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
501 if (!lru_atime || (sb.st_atime < lru_atime)) {
502 size_t len = strlen(entry->d_name) + 1;
503 char *tmp = realloc(lru_name, len);
504 if (tmp) {
505 lru_name = tmp;
506 memcpy(lru_name, entry->d_name, len);
507 lru_atime = sb.st_atime;
508 }
509 }
510 }
511 }
512
513 if (lru_name == NULL) {
514 closedir(dir);
515 return NULL;
516 }
517
518 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
519 filename = NULL;
520
521 free(lru_name);
522 closedir(dir);
523
524 return filename;
525 }
526
527 /* Is entry a regular file, and not having a name with a trailing
528 * ".tmp"
529 */
530 static bool
531 is_regular_non_tmp_file(const struct dirent *entry, const char *path)
532 {
533 char *filename;
534 if (asprintf(&filename, "%s/%s", path, entry->d_name) == -1)
535 return false;
536
537 struct stat sb;
538 int res = stat(filename, &sb);
539 free(filename);
540
541 if (res == -1 || !S_ISREG(sb.st_mode))
542 return false;
543
544 size_t len = strlen (entry->d_name);
545 if (len >= 4 && strcmp(&entry->d_name[len-4], ".tmp") == 0)
546 return false;
547
548 return true;
549 }
550
551 /* Returns the size of the deleted file, (or 0 on any error). */
552 static size_t
553 unlink_lru_file_from_directory(const char *path)
554 {
555 struct stat sb;
556 char *filename;
557
558 filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
559 if (filename == NULL)
560 return 0;
561
562 if (stat(filename, &sb) == -1) {
563 free (filename);
564 return 0;
565 }
566
567 unlink(filename);
568 free (filename);
569
570 return sb.st_size;
571 }
572
573 /* Is entry a directory with a two-character name, (and not the
574 * special name of ".."). We also return false if the dir is empty.
575 */
576 static bool
577 is_two_character_sub_directory(const struct dirent *entry, const char *path)
578 {
579 char *subdir;
580 if (asprintf(&subdir, "%s/%s", path, entry->d_name) == -1)
581 return false;
582
583 struct stat sb;
584 int res = stat(subdir, &sb);
585 if (res == -1 || !S_ISDIR(sb.st_mode)) {
586 free(subdir);
587 return false;
588 }
589
590 if (strlen(entry->d_name) != 2) {
591 free(subdir);
592 return false;
593 }
594
595 if (strcmp(entry->d_name, "..") == 0) {
596 free(subdir);
597 return false;
598 }
599
600 DIR *dir = opendir(subdir);
601 free(subdir);
602
603 if (dir == NULL)
604 return false;
605
606 unsigned subdir_entries = 0;
607 struct dirent *d;
608 while ((d = readdir(dir)) != NULL) {
609 if(++subdir_entries > 2)
610 break;
611 }
612 closedir(dir);
613
614 /* If dir only contains '.' and '..' it must be empty */
615 if (subdir_entries <= 2)
616 return false;
617
618 return true;
619 }
620
621 static void
622 evict_lru_item(struct disk_cache *cache)
623 {
624 const char hex[] = "0123456789abcde";
625 char *dir_path;
626 int a, b;
627 size_t size;
628
629 /* With a reasonably-sized, full cache, (and with keys generated
630 * from a cryptographic hash), we can choose two random hex digits
631 * and reasonably expect the directory to exist with a file in it.
632 * Provides pseudo-LRU eviction to reduce checking all cache files.
633 */
634 a = rand() % 16;
635 b = rand() % 16;
636
637 if (asprintf(&dir_path, "%s/%c%c", cache->path, hex[a], hex[b]) < 0)
638 return;
639
640 size = unlink_lru_file_from_directory(dir_path);
641
642 free(dir_path);
643
644 if (size) {
645 p_atomic_add(cache->size, - (uint64_t)size);
646 return;
647 }
648
649 /* In the case where the random choice of directory didn't find
650 * something, we choose the least recently accessed from the
651 * existing directories.
652 *
653 * Really, the only reason this code exists is to allow the unit
654 * tests to work, (which use an artificially-small cache to be able
655 * to force a single cached item to be evicted).
656 */
657 dir_path = choose_lru_file_matching(cache->path,
658 is_two_character_sub_directory);
659 if (dir_path == NULL)
660 return;
661
662 size = unlink_lru_file_from_directory(dir_path);
663
664 free(dir_path);
665
666 if (size)
667 p_atomic_add(cache->size, - (uint64_t)size);
668 }
669
670 void
671 disk_cache_remove(struct disk_cache *cache, const cache_key key)
672 {
673 struct stat sb;
674
675 char *filename = get_cache_file(cache, key);
676 if (filename == NULL) {
677 return;
678 }
679
680 if (stat(filename, &sb) == -1) {
681 free(filename);
682 return;
683 }
684
685 unlink(filename);
686 free(filename);
687
688 if (sb.st_size)
689 p_atomic_add(cache->size, - (uint64_t)sb.st_size);
690 }
691
692 /* From the zlib docs:
693 * "If the memory is available, buffers sizes on the order of 128K or 256K
694 * bytes should be used."
695 */
696 #define BUFSIZE 256 * 1024
697
698 /**
699 * Compresses cache entry in memory and writes it to disk. Returns the size
700 * of the data written to disk.
701 */
702 static size_t
703 deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
704 const char *filename)
705 {
706 unsigned char out[BUFSIZE];
707
708 /* allocate deflate state */
709 z_stream strm;
710 strm.zalloc = Z_NULL;
711 strm.zfree = Z_NULL;
712 strm.opaque = Z_NULL;
713 strm.next_in = (uint8_t *) in_data;
714 strm.avail_in = in_data_size;
715
716 int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
717 if (ret != Z_OK)
718 return 0;
719
720 /* compress until end of in_data */
721 size_t compressed_size = 0;
722 int flush;
723 do {
724 int remaining = in_data_size - BUFSIZE;
725 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
726 in_data_size -= BUFSIZE;
727
728 /* Run deflate() on input until the output buffer is not full (which
729 * means there is no more data to deflate).
730 */
731 do {
732 strm.avail_out = BUFSIZE;
733 strm.next_out = out;
734
735 ret = deflate(&strm, flush); /* no bad return value */
736 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
737
738 size_t have = BUFSIZE - strm.avail_out;
739 compressed_size += have;
740
741 size_t written = 0;
742 for (size_t len = 0; len < have; len += written) {
743 written = write(dest, out + len, have - len);
744 if (written == -1) {
745 (void)deflateEnd(&strm);
746 return 0;
747 }
748 }
749 } while (strm.avail_out == 0);
750
751 /* all input should be used */
752 assert(strm.avail_in == 0);
753
754 } while (flush != Z_FINISH);
755
756 /* stream should be complete */
757 assert(ret == Z_STREAM_END);
758
759 /* clean up and return */
760 (void)deflateEnd(&strm);
761 return compressed_size;
762 }
763
764 static struct disk_cache_put_job *
765 create_put_job(struct disk_cache *cache, const cache_key key,
766 const void *data, size_t size)
767 {
768 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
769 malloc(sizeof(struct disk_cache_put_job) + size);
770
771 if (dc_job) {
772 dc_job->cache = cache;
773 memcpy(dc_job->key, key, sizeof(cache_key));
774 dc_job->data = dc_job + 1;
775 memcpy(dc_job->data, data, size);
776 dc_job->size = size;
777 }
778
779 return dc_job;
780 }
781
782 static void
783 destroy_put_job(void *job, int thread_index)
784 {
785 if (job) {
786 free(job);
787 }
788 }
789
790 struct cache_entry_file_data {
791 uint32_t crc32;
792 uint32_t uncompressed_size;
793 };
794
795 static void
796 cache_put(void *job, int thread_index)
797 {
798 assert(job);
799
800 int fd = -1, fd_final = -1, err, ret;
801 unsigned i = 0;
802 size_t len;
803 char *filename = NULL, *filename_tmp = NULL;
804 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
805
806 filename = get_cache_file(dc_job->cache, dc_job->key);
807 if (filename == NULL)
808 goto done;
809
810 /* Write to a temporary file to allow for an atomic rename to the
811 * final destination filename, (to prevent any readers from seeing
812 * a partially written file).
813 */
814 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
815 goto done;
816
817 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
818
819 /* Make the two-character subdirectory within the cache as needed. */
820 if (fd == -1) {
821 if (errno != ENOENT)
822 goto done;
823
824 make_cache_file_directory(dc_job->cache, dc_job->key);
825
826 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
827 if (fd == -1)
828 goto done;
829 }
830
831 /* With the temporary file open, we take an exclusive flock on
832 * it. If the flock fails, then another process still has the file
833 * open with the flock held. So just let that file be responsible
834 * for writing the file.
835 */
836 err = flock(fd, LOCK_EX | LOCK_NB);
837 if (err == -1)
838 goto done;
839
840 /* Now that we have the lock on the open temporary file, we can
841 * check to see if the destination file already exists. If so,
842 * another process won the race between when we saw that the file
843 * didn't exist and now. In this case, we don't do anything more,
844 * (to ensure the size accounting of the cache doesn't get off).
845 */
846 fd_final = open(filename, O_RDONLY | O_CLOEXEC);
847 if (fd_final != -1)
848 goto done;
849
850 /* OK, we're now on the hook to write out a file that we know is
851 * not in the cache, and is also not being written out to the cache
852 * by some other process.
853 *
854 * Before we do that, if the cache is too large, evict something
855 * else first.
856 */
857 while ((*dc_job->cache->size + dc_job->size > dc_job->cache->max_size) &&
858 i < 8) {
859 evict_lru_item(dc_job->cache);
860 i++;
861 }
862
863 /* Create CRC of the data and store at the start of the file. We will
864 * read this when restoring the cache and use it to check for corruption.
865 */
866 struct cache_entry_file_data cf_data;
867 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
868 cf_data.uncompressed_size = dc_job->size;
869
870 size_t cf_data_size = sizeof(cf_data);
871 for (len = 0; len < cf_data_size; len += ret) {
872 ret = write(fd, ((uint8_t *) &cf_data) + len, cf_data_size - len);
873 if (ret == -1) {
874 unlink(filename_tmp);
875 goto done;
876 }
877 }
878
879 /* Now, finally, write out the contents to the temporary file, then
880 * rename them atomically to the destination filename, and also
881 * perform an atomic increment of the total cache size.
882 */
883 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
884 fd, filename_tmp);
885 if (file_size == 0) {
886 unlink(filename_tmp);
887 goto done;
888 }
889 rename(filename_tmp, filename);
890
891 file_size += cf_data_size;
892 p_atomic_add(dc_job->cache->size, file_size);
893
894 done:
895 if (fd_final != -1)
896 close(fd_final);
897 /* This close finally releases the flock, (now that the final dile
898 * has been renamed into place and the size has been added).
899 */
900 if (fd != -1)
901 close(fd);
902 if (filename_tmp)
903 free(filename_tmp);
904 if (filename)
905 free(filename);
906 }
907
908 void
909 disk_cache_put(struct disk_cache *cache, const cache_key key,
910 const void *data, size_t size)
911 {
912 struct disk_cache_put_job *dc_job =
913 create_put_job(cache, key, data, size);
914
915 if (dc_job) {
916 util_queue_fence_init(&dc_job->fence);
917 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
918 cache_put, destroy_put_job);
919 }
920 }
921
922 /**
923 * Decompresses cache entry, returns true if successful.
924 */
925 static bool
926 inflate_cache_data(uint8_t *in_data, size_t in_data_size,
927 uint8_t *out_data, size_t out_data_size)
928 {
929 z_stream strm;
930
931 /* allocate inflate state */
932 strm.zalloc = Z_NULL;
933 strm.zfree = Z_NULL;
934 strm.opaque = Z_NULL;
935 strm.next_in = in_data;
936 strm.avail_in = in_data_size;
937 strm.next_out = out_data;
938 strm.avail_out = out_data_size;
939
940 int ret = inflateInit(&strm);
941 if (ret != Z_OK)
942 return false;
943
944 ret = inflate(&strm, Z_NO_FLUSH);
945 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
946
947 /* Unless there was an error we should have decompressed everything in one
948 * go as we know the uncompressed file size.
949 */
950 if (ret != Z_STREAM_END) {
951 (void)inflateEnd(&strm);
952 return false;
953 }
954 assert(strm.avail_out == 0);
955
956 /* clean up and return */
957 (void)inflateEnd(&strm);
958 return true;
959 }
960
961 void *
962 disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
963 {
964 int fd = -1, ret, len;
965 struct stat sb;
966 char *filename = NULL;
967 uint8_t *data = NULL;
968 uint8_t *uncompressed_data = NULL;
969
970 if (size)
971 *size = 0;
972
973 filename = get_cache_file(cache, key);
974 if (filename == NULL)
975 goto fail;
976
977 fd = open(filename, O_RDONLY | O_CLOEXEC);
978 if (fd == -1)
979 goto fail;
980
981 if (fstat(fd, &sb) == -1)
982 goto fail;
983
984 data = malloc(sb.st_size);
985 if (data == NULL)
986 goto fail;
987
988 /* Load the CRC that was created when the file was written. */
989 struct cache_entry_file_data cf_data;
990 size_t cf_data_size = sizeof(cf_data);
991 assert(sb.st_size > cf_data_size);
992 for (len = 0; len < cf_data_size; len += ret) {
993 ret = read(fd, ((uint8_t *) &cf_data) + len, cf_data_size - len);
994 if (ret == -1)
995 goto fail;
996 }
997
998 /* Load the actual cache data. */
999 size_t cache_data_size = sb.st_size - cf_data_size;
1000 for (len = 0; len < cache_data_size; len += ret) {
1001 ret = read(fd, data + len, cache_data_size - len);
1002 if (ret == -1)
1003 goto fail;
1004 }
1005
1006 /* Uncompress the cache data */
1007 uncompressed_data = malloc(cf_data.uncompressed_size);
1008 if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1009 cf_data.uncompressed_size))
1010 goto fail;
1011
1012 /* Check the data for corruption */
1013 if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1014 cf_data.uncompressed_size))
1015 goto fail;
1016
1017 free(data);
1018 free(filename);
1019 close(fd);
1020
1021 if (size)
1022 *size = cf_data.uncompressed_size;
1023
1024 return uncompressed_data;
1025
1026 fail:
1027 if (data)
1028 free(data);
1029 if (uncompressed_data)
1030 free(uncompressed_data);
1031 if (filename)
1032 free(filename);
1033 if (fd != -1)
1034 close(fd);
1035
1036 return NULL;
1037 }
1038
1039 void
1040 disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1041 {
1042 const uint32_t *key_chunk = (const uint32_t *) key;
1043 int i = *key_chunk & CACHE_INDEX_KEY_MASK;
1044 unsigned char *entry;
1045
1046 entry = &cache->stored_keys[i + CACHE_KEY_SIZE];
1047
1048 memcpy(entry, key, CACHE_KEY_SIZE);
1049 }
1050
1051 /* This function lets us test whether a given key was previously
1052 * stored in the cache with disk_cache_put_key(). The implement is
1053 * efficient by not using syscalls or hitting the disk. It's not
1054 * race-free, but the races are benign. If we race with someone else
1055 * calling disk_cache_put_key, then that's just an extra cache miss and an
1056 * extra recompile.
1057 */
1058 bool
1059 disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1060 {
1061 const uint32_t *key_chunk = (const uint32_t *) key;
1062 int i = *key_chunk & CACHE_INDEX_KEY_MASK;
1063 unsigned char *entry;
1064
1065 entry = &cache->stored_keys[i + CACHE_KEY_SIZE];
1066
1067 return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1068 }
1069
1070 #endif /* ENABLE_SHADER_CACHE */