Attempt to fix the AppVeyor build
[mesa.git] / src / util / hash_table.c
1 /*
2 * Copyright © 2009,2012 Intel Corporation
3 * Copyright © 1988-2004 Keith Packard and Bart Massey.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 * Except as contained in this notice, the names of the authors
25 * or their institutions shall not be used in advertising or
26 * otherwise to promote the sale, use or other dealings in this
27 * Software without prior written authorization from the
28 * authors.
29 *
30 * Authors:
31 * Eric Anholt <eric@anholt.net>
32 * Keith Packard <keithp@keithp.com>
33 */
34
35 /**
36 * Implements an open-addressing, linear-reprobing hash table.
37 *
38 * For more information, see:
39 *
40 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41 */
42
43 #include <stdlib.h>
44 #include <string.h>
45 #include <assert.h>
46
47 #include "hash_table.h"
48 #include "ralloc.h"
49 #include "macros.h"
50 #include "main/hash.h"
51
52 static const uint32_t deleted_key_value;
53
54 /**
55 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
56 * p and p-2 are both prime. These tables are sized to have an extra 10%
57 * free to avoid exponential performance degradation as the hash table fills
58 */
59 static const struct {
60 uint32_t max_entries, size, rehash;
61 } hash_sizes[] = {
62 { 2, 5, 3 },
63 { 4, 7, 5 },
64 { 8, 13, 11 },
65 { 16, 19, 17 },
66 { 32, 43, 41 },
67 { 64, 73, 71 },
68 { 128, 151, 149 },
69 { 256, 283, 281 },
70 { 512, 571, 569 },
71 { 1024, 1153, 1151 },
72 { 2048, 2269, 2267 },
73 { 4096, 4519, 4517 },
74 { 8192, 9013, 9011 },
75 { 16384, 18043, 18041 },
76 { 32768, 36109, 36107 },
77 { 65536, 72091, 72089 },
78 { 131072, 144409, 144407 },
79 { 262144, 288361, 288359 },
80 { 524288, 576883, 576881 },
81 { 1048576, 1153459, 1153457 },
82 { 2097152, 2307163, 2307161 },
83 { 4194304, 4613893, 4613891 },
84 { 8388608, 9227641, 9227639 },
85 { 16777216, 18455029, 18455027 },
86 { 33554432, 36911011, 36911009 },
87 { 67108864, 73819861, 73819859 },
88 { 134217728, 147639589, 147639587 },
89 { 268435456, 295279081, 295279079 },
90 { 536870912, 590559793, 590559791 },
91 { 1073741824, 1181116273, 1181116271},
92 { 2147483648ul, 2362232233ul, 2362232231ul}
93 };
94
95 static int
96 entry_is_free(const struct hash_entry *entry)
97 {
98 return entry->key == NULL;
99 }
100
101 static int
102 entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
103 {
104 return entry->key == ht->deleted_key;
105 }
106
107 static int
108 entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
109 {
110 return entry->key != NULL && entry->key != ht->deleted_key;
111 }
112
113 struct hash_table *
114 _mesa_hash_table_create(void *mem_ctx,
115 uint32_t (*key_hash_function)(const void *key),
116 bool (*key_equals_function)(const void *a,
117 const void *b))
118 {
119 struct hash_table *ht;
120
121 ht = ralloc(mem_ctx, struct hash_table);
122 if (ht == NULL)
123 return NULL;
124
125 ht->size_index = 0;
126 ht->size = hash_sizes[ht->size_index].size;
127 ht->rehash = hash_sizes[ht->size_index].rehash;
128 ht->max_entries = hash_sizes[ht->size_index].max_entries;
129 ht->key_hash_function = key_hash_function;
130 ht->key_equals_function = key_equals_function;
131 ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
132 ht->entries = 0;
133 ht->deleted_entries = 0;
134 ht->deleted_key = &deleted_key_value;
135
136 if (ht->table == NULL) {
137 ralloc_free(ht);
138 return NULL;
139 }
140
141 return ht;
142 }
143
144 /**
145 * Frees the given hash table.
146 *
147 * If delete_function is passed, it gets called on each entry present before
148 * freeing.
149 */
150 void
151 _mesa_hash_table_destroy(struct hash_table *ht,
152 void (*delete_function)(struct hash_entry *entry))
153 {
154 if (!ht)
155 return;
156
157 if (delete_function) {
158 struct hash_entry *entry;
159
160 hash_table_foreach(ht, entry) {
161 delete_function(entry);
162 }
163 }
164 ralloc_free(ht);
165 }
166
167 /**
168 * Deletes all entries of the given hash table without deleting the table
169 * itself or changing its structure.
170 *
171 * If delete_function is passed, it gets called on each entry present.
172 */
173 void
174 _mesa_hash_table_clear(struct hash_table *ht,
175 void (*delete_function)(struct hash_entry *entry))
176 {
177 struct hash_entry *entry;
178
179 for (entry = ht->table; entry != ht->table + ht->size; entry++) {
180 if (entry->key == NULL)
181 continue;
182
183 if (delete_function != NULL && entry->key != ht->deleted_key)
184 delete_function(entry);
185
186 entry->key = NULL;
187 }
188
189 ht->entries = 0;
190 ht->deleted_entries = 0;
191 }
192
193 /** Sets the value of the key pointer used for deleted entries in the table.
194 *
195 * The assumption is that usually keys are actual pointers, so we use a
196 * default value of a pointer to an arbitrary piece of storage in the library.
197 * But in some cases a consumer wants to store some other sort of value in the
198 * table, like a uint32_t, in which case that pointer may conflict with one of
199 * their valid keys. This lets that user select a safe value.
200 *
201 * This must be called before any keys are actually deleted from the table.
202 */
203 void
204 _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
205 {
206 ht->deleted_key = deleted_key;
207 }
208
209 static struct hash_entry *
210 hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
211 {
212 uint32_t start_hash_address = hash % ht->size;
213 uint32_t hash_address = start_hash_address;
214
215 do {
216 uint32_t double_hash;
217
218 struct hash_entry *entry = ht->table + hash_address;
219
220 if (entry_is_free(entry)) {
221 return NULL;
222 } else if (entry_is_present(ht, entry) && entry->hash == hash) {
223 if (ht->key_equals_function(key, entry->key)) {
224 return entry;
225 }
226 }
227
228 double_hash = 1 + hash % ht->rehash;
229
230 hash_address = (hash_address + double_hash) % ht->size;
231 } while (hash_address != start_hash_address);
232
233 return NULL;
234 }
235
236 /**
237 * Finds a hash table entry with the given key and hash of that key.
238 *
239 * Returns NULL if no entry is found. Note that the data pointer may be
240 * modified by the user.
241 */
242 struct hash_entry *
243 _mesa_hash_table_search(struct hash_table *ht, const void *key)
244 {
245 assert(ht->key_hash_function);
246 return hash_table_search(ht, ht->key_hash_function(key), key);
247 }
248
249 struct hash_entry *
250 _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
251 const void *key)
252 {
253 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
254 return hash_table_search(ht, hash, key);
255 }
256
257 static struct hash_entry *
258 hash_table_insert(struct hash_table *ht, uint32_t hash,
259 const void *key, void *data);
260
261 static void
262 _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
263 {
264 struct hash_table old_ht;
265 struct hash_entry *table, *entry;
266
267 if (new_size_index >= ARRAY_SIZE(hash_sizes))
268 return;
269
270 table = rzalloc_array(ht, struct hash_entry,
271 hash_sizes[new_size_index].size);
272 if (table == NULL)
273 return;
274
275 old_ht = *ht;
276
277 ht->table = table;
278 ht->size_index = new_size_index;
279 ht->size = hash_sizes[ht->size_index].size;
280 ht->rehash = hash_sizes[ht->size_index].rehash;
281 ht->max_entries = hash_sizes[ht->size_index].max_entries;
282 ht->entries = 0;
283 ht->deleted_entries = 0;
284
285 hash_table_foreach(&old_ht, entry) {
286 hash_table_insert(ht, entry->hash, entry->key, entry->data);
287 }
288
289 ralloc_free(old_ht.table);
290 }
291
292 static struct hash_entry *
293 hash_table_insert(struct hash_table *ht, uint32_t hash,
294 const void *key, void *data)
295 {
296 uint32_t start_hash_address, hash_address;
297 struct hash_entry *available_entry = NULL;
298
299 assert(key != NULL);
300
301 if (ht->entries >= ht->max_entries) {
302 _mesa_hash_table_rehash(ht, ht->size_index + 1);
303 } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
304 _mesa_hash_table_rehash(ht, ht->size_index);
305 }
306
307 start_hash_address = hash % ht->size;
308 hash_address = start_hash_address;
309 do {
310 struct hash_entry *entry = ht->table + hash_address;
311 uint32_t double_hash;
312
313 if (!entry_is_present(ht, entry)) {
314 /* Stash the first available entry we find */
315 if (available_entry == NULL)
316 available_entry = entry;
317 if (entry_is_free(entry))
318 break;
319 }
320
321 /* Implement replacement when another insert happens
322 * with a matching key. This is a relatively common
323 * feature of hash tables, with the alternative
324 * generally being "insert the new value as well, and
325 * return it first when the key is searched for".
326 *
327 * Note that the hash table doesn't have a delete
328 * callback. If freeing of old data pointers is
329 * required to avoid memory leaks, perform a search
330 * before inserting.
331 */
332 if (!entry_is_deleted(ht, entry) &&
333 entry->hash == hash &&
334 ht->key_equals_function(key, entry->key)) {
335 entry->key = key;
336 entry->data = data;
337 return entry;
338 }
339
340
341 double_hash = 1 + hash % ht->rehash;
342
343 hash_address = (hash_address + double_hash) % ht->size;
344 } while (hash_address != start_hash_address);
345
346 if (available_entry) {
347 if (entry_is_deleted(ht, available_entry))
348 ht->deleted_entries--;
349 available_entry->hash = hash;
350 available_entry->key = key;
351 available_entry->data = data;
352 ht->entries++;
353 return available_entry;
354 }
355
356 /* We could hit here if a required resize failed. An unchecked-malloc
357 * application could ignore this result.
358 */
359 return NULL;
360 }
361
362 /**
363 * Inserts the key with the given hash into the table.
364 *
365 * Note that insertion may rearrange the table on a resize or rehash,
366 * so previously found hash_entries are no longer valid after this function.
367 */
368 struct hash_entry *
369 _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
370 {
371 assert(ht->key_hash_function);
372 return hash_table_insert(ht, ht->key_hash_function(key), key, data);
373 }
374
375 struct hash_entry *
376 _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
377 const void *key, void *data)
378 {
379 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
380 return hash_table_insert(ht, hash, key, data);
381 }
382
383 /**
384 * This function deletes the given hash table entry.
385 *
386 * Note that deletion doesn't otherwise modify the table, so an iteration over
387 * the table deleting entries is safe.
388 */
389 void
390 _mesa_hash_table_remove(struct hash_table *ht,
391 struct hash_entry *entry)
392 {
393 if (!entry)
394 return;
395
396 entry->key = ht->deleted_key;
397 ht->entries--;
398 ht->deleted_entries++;
399 }
400
401 /**
402 * This function is an iterator over the hash table.
403 *
404 * Pass in NULL for the first entry, as in the start of a for loop. Note that
405 * an iteration over the table is O(table_size) not O(entries).
406 */
407 struct hash_entry *
408 _mesa_hash_table_next_entry(struct hash_table *ht,
409 struct hash_entry *entry)
410 {
411 if (entry == NULL)
412 entry = ht->table;
413 else
414 entry = entry + 1;
415
416 for (; entry != ht->table + ht->size; entry++) {
417 if (entry_is_present(ht, entry)) {
418 return entry;
419 }
420 }
421
422 return NULL;
423 }
424
425 /**
426 * Returns a random entry from the hash table.
427 *
428 * This may be useful in implementing random replacement (as opposed
429 * to just removing everything) in caches based on this hash table
430 * implementation. @predicate may be used to filter entries, or may
431 * be set to NULL for no filtering.
432 */
433 struct hash_entry *
434 _mesa_hash_table_random_entry(struct hash_table *ht,
435 bool (*predicate)(struct hash_entry *entry))
436 {
437 struct hash_entry *entry;
438 uint32_t i = rand() % ht->size;
439
440 if (ht->entries == 0)
441 return NULL;
442
443 for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
444 if (entry_is_present(ht, entry) &&
445 (!predicate || predicate(entry))) {
446 return entry;
447 }
448 }
449
450 for (entry = ht->table; entry != ht->table + i; entry++) {
451 if (entry_is_present(ht, entry) &&
452 (!predicate || predicate(entry))) {
453 return entry;
454 }
455 }
456
457 return NULL;
458 }
459
460
461 /**
462 * Quick FNV-1a hash implementation based on:
463 * http://www.isthe.com/chongo/tech/comp/fnv/
464 *
465 * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
466 * to be quite good, and it probably beats FNV. But FNV has the advantage
467 * that it involves almost no code. For an improvement on both, see Paul
468 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
469 */
470 uint32_t
471 _mesa_hash_data(const void *data, size_t size)
472 {
473 return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
474 data, size);
475 }
476
477 /** FNV-1a string hash implementation */
478 uint32_t
479 _mesa_hash_string(const char *key)
480 {
481 uint32_t hash = _mesa_fnv32_1a_offset_bias;
482
483 while (*key != 0) {
484 hash = _mesa_fnv32_1a_accumulate(hash, *key);
485 key++;
486 }
487
488 return hash;
489 }
490
491 /**
492 * String compare function for use as the comparison callback in
493 * _mesa_hash_table_create().
494 */
495 bool
496 _mesa_key_string_equal(const void *a, const void *b)
497 {
498 return strcmp(a, b) == 0;
499 }
500
501 bool
502 _mesa_key_pointer_equal(const void *a, const void *b)
503 {
504 return a == b;
505 }
506
507 /**
508 * Hash table wrapper which supports 64-bit keys.
509 *
510 * TODO: unify all hash table implementations.
511 */
512
513 struct hash_key_u64 {
514 uint64_t value;
515 };
516
517 static uint32_t
518 key_u64_hash(const void *key)
519 {
520 return _mesa_hash_data(key, sizeof(struct hash_key_u64));
521 }
522
523 static bool
524 key_u64_equals(const void *a, const void *b)
525 {
526 const struct hash_key_u64 *aa = a;
527 const struct hash_key_u64 *bb = b;
528
529 return aa->value == bb->value;
530 }
531
532 struct hash_table_u64 *
533 _mesa_hash_table_u64_create(void *mem_ctx)
534 {
535 struct hash_table_u64 *ht;
536
537 ht = CALLOC_STRUCT(hash_table_u64);
538 if (!ht)
539 return NULL;
540
541 if (sizeof(void *) == 8) {
542 ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
543 _mesa_key_pointer_equal);
544 } else {
545 ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash,
546 key_u64_equals);
547 }
548
549 if (ht->table)
550 _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE));
551
552 return ht;
553 }
554
555 void
556 _mesa_hash_table_u64_destroy(struct hash_table_u64 *ht,
557 void (*delete_function)(struct hash_entry *entry))
558 {
559 if (!ht)
560 return;
561
562 if (ht->deleted_key_data) {
563 if (delete_function) {
564 struct hash_table *table = ht->table;
565 struct hash_entry deleted_entry;
566
567 /* Create a fake entry for the delete function. */
568 deleted_entry.hash = table->key_hash_function(table->deleted_key);
569 deleted_entry.key = table->deleted_key;
570 deleted_entry.data = ht->deleted_key_data;
571
572 delete_function(&deleted_entry);
573 }
574 ht->deleted_key_data = NULL;
575 }
576
577 _mesa_hash_table_destroy(ht->table, delete_function);
578 free(ht);
579 }
580
581 void
582 _mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key,
583 void *data)
584 {
585 if (key == DELETED_KEY_VALUE) {
586 ht->deleted_key_data = data;
587 return;
588 }
589
590 if (sizeof(void *) == 8) {
591 _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data);
592 } else {
593 struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64);
594
595 if (!_key)
596 return;
597 _key->value = key;
598
599 _mesa_hash_table_insert(ht->table, _key, data);
600 }
601 }
602
603 static struct hash_entry *
604 hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
605 {
606 if (sizeof(void *) == 8) {
607 return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key);
608 } else {
609 struct hash_key_u64 _key = { .value = key };
610 return _mesa_hash_table_search(ht->table, &_key);
611 }
612 }
613
614 void *
615 _mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
616 {
617 struct hash_entry *entry;
618
619 if (key == DELETED_KEY_VALUE)
620 return ht->deleted_key_data;
621
622 entry = hash_table_u64_search(ht, key);
623 if (!entry)
624 return NULL;
625
626 return entry->data;
627 }
628
629 void
630 _mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key)
631 {
632 struct hash_entry *entry;
633
634 if (key == DELETED_KEY_VALUE) {
635 ht->deleted_key_data = NULL;
636 return;
637 }
638
639 entry = hash_table_u64_search(ht, key);
640 if (!entry)
641 return;
642
643 if (sizeof(void *) == 8) {
644 _mesa_hash_table_remove(ht->table, entry);
645 } else {
646 struct hash_key *_key = (struct hash_key *)entry->key;
647
648 _mesa_hash_table_remove(ht->table, entry);
649 free(_key);
650 }
651 }