util: skip NEON detection if built with -mfpu=neon
[mesa.git] / src / util / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74
75 #include "ralloc.h"
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "util/bitset.h"
79 #include "register_allocate.h"
80
81 #define NO_REG ~0U
82
83 struct ra_reg {
84 BITSET_WORD *conflicts;
85 unsigned int *conflict_list;
86 unsigned int conflict_list_size;
87 unsigned int num_conflicts;
88 };
89
90 struct ra_regs {
91 struct ra_reg *regs;
92 unsigned int count;
93
94 struct ra_class **classes;
95 unsigned int class_count;
96
97 bool round_robin;
98 };
99
100 struct ra_class {
101 /**
102 * Bitset indicating which registers belong to this class.
103 *
104 * (If bit N is set, then register N belongs to this class.)
105 */
106 BITSET_WORD *regs;
107
108 /**
109 * p(B) in Runeson/Nyström paper.
110 *
111 * This is "how many regs are in the set."
112 */
113 unsigned int p;
114
115 /**
116 * q(B,C) (indexed by C, B is this register class) in
117 * Runeson/Nyström paper. This is "how many registers of B could
118 * the worst choice register from C conflict with".
119 */
120 unsigned int *q;
121 };
122
123 struct ra_node {
124 /** @{
125 *
126 * List of which nodes this node interferes with. This should be
127 * symmetric with the other node.
128 */
129 BITSET_WORD *adjacency;
130 unsigned int *adjacency_list;
131 unsigned int adjacency_list_size;
132 unsigned int adjacency_count;
133 /** @} */
134
135 unsigned int class;
136
137 /* Client-assigned register, if assigned, or NO_REG. */
138 unsigned int forced_reg;
139
140 /* Register, if assigned, or NO_REG. */
141 unsigned int reg;
142
143 /**
144 * The q total, as defined in the Runeson/Nyström paper, for all the
145 * interfering nodes not in the stack.
146 */
147 unsigned int q_total;
148
149 /* For an implementation that needs register spilling, this is the
150 * approximate cost of spilling this node.
151 */
152 float spill_cost;
153
154 /* Temporary data for the algorithm to scratch around in */
155 struct {
156 /**
157 * Temporary version of q_total which we decrement as things are placed
158 * into the stack.
159 */
160 unsigned int q_total;
161 } tmp;
162 };
163
164 struct ra_graph {
165 struct ra_regs *regs;
166 /**
167 * the variables that need register allocation.
168 */
169 struct ra_node *nodes;
170 unsigned int count; /**< count of nodes. */
171
172 unsigned int alloc; /**< count of nodes allocated. */
173
174 unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
175 void *data);
176 void *select_reg_callback_data;
177
178 /* Temporary data for the algorithm to scratch around in */
179 struct {
180 unsigned int *stack;
181 unsigned int stack_count;
182
183 /** Bit-set indicating, for each register, if it's in the stack */
184 BITSET_WORD *in_stack;
185
186 /** Bit-set indicating, for each register, if it pre-assigned */
187 BITSET_WORD *reg_assigned;
188
189 /** Bit-set indicating, for each register, the value of the pq test */
190 BITSET_WORD *pq_test;
191
192 /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
193 unsigned int *min_q_total;
194
195 /*
196 * * For each BITSET_WORD, the node with the minimum q_total if
197 * min_q_total[i] != ~0.
198 */
199 unsigned int *min_q_node;
200
201 /**
202 * Tracks the start of the set of optimistically-colored registers in the
203 * stack.
204 */
205 unsigned int stack_optimistic_start;
206 } tmp;
207 };
208
209 /**
210 * Creates a set of registers for the allocator.
211 *
212 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
213 * using ralloc_free().
214 */
215 struct ra_regs *
216 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
217 {
218 unsigned int i;
219 struct ra_regs *regs;
220
221 regs = rzalloc(mem_ctx, struct ra_regs);
222 regs->count = count;
223 regs->regs = rzalloc_array(regs, struct ra_reg, count);
224
225 for (i = 0; i < count; i++) {
226 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
227 BITSET_WORDS(count));
228 BITSET_SET(regs->regs[i].conflicts, i);
229
230 if (need_conflict_lists) {
231 regs->regs[i].conflict_list = ralloc_array(regs->regs,
232 unsigned int, 4);
233 regs->regs[i].conflict_list_size = 4;
234 regs->regs[i].conflict_list[0] = i;
235 } else {
236 regs->regs[i].conflict_list = NULL;
237 regs->regs[i].conflict_list_size = 0;
238 }
239 regs->regs[i].num_conflicts = 1;
240 }
241
242 return regs;
243 }
244
245 /**
246 * The register allocator by default prefers to allocate low register numbers,
247 * since it was written for hardware (gen4/5 Intel) that is limited in its
248 * multithreadedness by the number of registers used in a given shader.
249 *
250 * However, for hardware without that restriction, densely packed register
251 * allocation can put serious constraints on instruction scheduling. This
252 * function tells the allocator to rotate around the registers if possible as
253 * it allocates the nodes.
254 */
255 void
256 ra_set_allocate_round_robin(struct ra_regs *regs)
257 {
258 regs->round_robin = true;
259 }
260
261 static void
262 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
263 {
264 struct ra_reg *reg1 = &regs->regs[r1];
265
266 if (reg1->conflict_list) {
267 if (reg1->conflict_list_size == reg1->num_conflicts) {
268 reg1->conflict_list_size *= 2;
269 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
270 unsigned int, reg1->conflict_list_size);
271 }
272 reg1->conflict_list[reg1->num_conflicts++] = r2;
273 }
274 BITSET_SET(reg1->conflicts, r2);
275 }
276
277 void
278 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
279 {
280 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
281 ra_add_conflict_list(regs, r1, r2);
282 ra_add_conflict_list(regs, r2, r1);
283 }
284 }
285
286 /**
287 * Adds a conflict between base_reg and reg, and also between reg and
288 * anything that base_reg conflicts with.
289 *
290 * This can simplify code for setting up multiple register classes
291 * which are aggregates of some base hardware registers, compared to
292 * explicitly using ra_add_reg_conflict.
293 */
294 void
295 ra_add_transitive_reg_conflict(struct ra_regs *regs,
296 unsigned int base_reg, unsigned int reg)
297 {
298 unsigned int i;
299
300 ra_add_reg_conflict(regs, reg, base_reg);
301
302 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
303 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
304 }
305 }
306
307 /**
308 * Makes every conflict on the given register transitive. In other words,
309 * every register that conflicts with r will now conflict with every other
310 * register conflicting with r.
311 *
312 * This can simplify code for setting up multiple register classes
313 * which are aggregates of some base hardware registers, compared to
314 * explicitly using ra_add_reg_conflict.
315 */
316 void
317 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
318 {
319 struct ra_reg *reg = &regs->regs[r];
320 BITSET_WORD tmp;
321 int c;
322
323 BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
324 struct ra_reg *other = &regs->regs[c];
325 unsigned i;
326 for (i = 0; i < BITSET_WORDS(regs->count); i++)
327 other->conflicts[i] |= reg->conflicts[i];
328 }
329 }
330
331 unsigned int
332 ra_alloc_reg_class(struct ra_regs *regs)
333 {
334 struct ra_class *class;
335
336 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
337 regs->class_count + 1);
338
339 class = rzalloc(regs, struct ra_class);
340 regs->classes[regs->class_count] = class;
341
342 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
343
344 return regs->class_count++;
345 }
346
347 void
348 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
349 {
350 struct ra_class *class = regs->classes[c];
351
352 BITSET_SET(class->regs, r);
353 class->p++;
354 }
355
356 /**
357 * Returns true if the register belongs to the given class.
358 */
359 static bool
360 reg_belongs_to_class(unsigned int r, struct ra_class *c)
361 {
362 return BITSET_TEST(c->regs, r);
363 }
364
365 /**
366 * Must be called after all conflicts and register classes have been
367 * set up and before the register set is used for allocation.
368 * To avoid costly q value computation, use the q_values paramater
369 * to pass precomputed q values to this function.
370 */
371 void
372 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
373 {
374 unsigned int b, c;
375
376 for (b = 0; b < regs->class_count; b++) {
377 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
378 }
379
380 if (q_values) {
381 for (b = 0; b < regs->class_count; b++) {
382 for (c = 0; c < regs->class_count; c++) {
383 regs->classes[b]->q[c] = q_values[b][c];
384 }
385 }
386 } else {
387 /* Compute, for each class B and C, how many regs of B an
388 * allocation to C could conflict with.
389 */
390 for (b = 0; b < regs->class_count; b++) {
391 for (c = 0; c < regs->class_count; c++) {
392 unsigned int rc;
393 int max_conflicts = 0;
394
395 for (rc = 0; rc < regs->count; rc++) {
396 int conflicts = 0;
397 unsigned int i;
398
399 if (!reg_belongs_to_class(rc, regs->classes[c]))
400 continue;
401
402 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
403 unsigned int rb = regs->regs[rc].conflict_list[i];
404 if (reg_belongs_to_class(rb, regs->classes[b]))
405 conflicts++;
406 }
407 max_conflicts = MAX2(max_conflicts, conflicts);
408 }
409 regs->classes[b]->q[c] = max_conflicts;
410 }
411 }
412 }
413
414 for (b = 0; b < regs->count; b++) {
415 ralloc_free(regs->regs[b].conflict_list);
416 regs->regs[b].conflict_list = NULL;
417 }
418 }
419
420 static void
421 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
422 {
423 BITSET_SET(g->nodes[n1].adjacency, n2);
424
425 assert(n1 != n2);
426
427 int n1_class = g->nodes[n1].class;
428 int n2_class = g->nodes[n2].class;
429 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
430
431 if (g->nodes[n1].adjacency_count >=
432 g->nodes[n1].adjacency_list_size) {
433 g->nodes[n1].adjacency_list_size *= 2;
434 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
435 unsigned int,
436 g->nodes[n1].adjacency_list_size);
437 }
438
439 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
440 g->nodes[n1].adjacency_count++;
441 }
442
443 static void
444 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
445 {
446 BITSET_CLEAR(g->nodes[n1].adjacency, n2);
447
448 assert(n1 != n2);
449
450 int n1_class = g->nodes[n1].class;
451 int n2_class = g->nodes[n2].class;
452 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
453
454 unsigned int i;
455 for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
456 if (g->nodes[n1].adjacency_list[i] == n2) {
457 memmove(&g->nodes[n1].adjacency_list[i],
458 &g->nodes[n1].adjacency_list[i + 1],
459 (g->nodes[n1].adjacency_count - i - 1) *
460 sizeof(g->nodes[n1].adjacency_list[0]));
461 break;
462 }
463 }
464 assert(i < g->nodes[n1].adjacency_count);
465 g->nodes[n1].adjacency_count--;
466 }
467
468 static void
469 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
470 {
471 if (alloc <= g->alloc)
472 return;
473
474 /* If we always have a whole number of BITSET_WORDs, it makes it much
475 * easier to memset the top of the growing bitsets.
476 */
477 assert(g->alloc % BITSET_WORDBITS == 0);
478 alloc = ALIGN(alloc, BITSET_WORDBITS);
479
480 g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
481
482 unsigned g_bitset_count = BITSET_WORDS(g->alloc);
483 unsigned bitset_count = BITSET_WORDS(alloc);
484 /* For nodes already in the graph, we just have to grow the adjacency set */
485 for (unsigned i = 0; i < g->alloc; i++) {
486 assert(g->nodes[i].adjacency != NULL);
487 g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
488 g_bitset_count, bitset_count);
489 }
490
491 /* For new nodes, we have to fully initialize them */
492 for (unsigned i = g->alloc; i < alloc; i++) {
493 memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
494 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
495 g->nodes[i].adjacency_list_size = 4;
496 g->nodes[i].adjacency_list =
497 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
498 g->nodes[i].adjacency_count = 0;
499 g->nodes[i].q_total = 0;
500
501 g->nodes[i].forced_reg = NO_REG;
502 g->nodes[i].reg = NO_REG;
503 }
504
505 /* These are scratch values and don't need to be zeroed. We'll clear them
506 * as part of ra_select() setup.
507 */
508 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
509 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
510
511 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
512 bitset_count);
513 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
514 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
515 bitset_count);
516 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
517 bitset_count);
518
519 g->alloc = alloc;
520 }
521
522 struct ra_graph *
523 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
524 {
525 struct ra_graph *g;
526
527 g = rzalloc(NULL, struct ra_graph);
528 g->regs = regs;
529 g->count = count;
530 ra_realloc_interference_graph(g, count);
531
532 return g;
533 }
534
535 void
536 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
537 {
538 g->count = count;
539 if (count > g->alloc)
540 ra_realloc_interference_graph(g, g->alloc * 2);
541 }
542
543 void ra_set_select_reg_callback(struct ra_graph *g,
544 unsigned int (*callback)(struct ra_graph *g,
545 BITSET_WORD *regs,
546 void *data),
547 void *data)
548 {
549 g->select_reg_callback = callback;
550 g->select_reg_callback_data = data;
551 }
552
553 void
554 ra_set_node_class(struct ra_graph *g,
555 unsigned int n, unsigned int class)
556 {
557 g->nodes[n].class = class;
558 }
559
560 unsigned int
561 ra_get_node_class(struct ra_graph *g,
562 unsigned int n)
563 {
564 return g->nodes[n].class;
565 }
566
567 unsigned int
568 ra_add_node(struct ra_graph *g, unsigned int class)
569 {
570 unsigned int n = g->count;
571 ra_resize_interference_graph(g, g->count + 1);
572
573 ra_set_node_class(g, n, class);
574
575 return n;
576 }
577
578 void
579 ra_add_node_interference(struct ra_graph *g,
580 unsigned int n1, unsigned int n2)
581 {
582 assert(n1 < g->count && n2 < g->count);
583 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
584 ra_add_node_adjacency(g, n1, n2);
585 ra_add_node_adjacency(g, n2, n1);
586 }
587 }
588
589 void
590 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
591 {
592 for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
593 ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
594
595 memset(g->nodes[n].adjacency, 0,
596 BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
597 g->nodes[n].adjacency_count = 0;
598 }
599
600 static void
601 update_pq_info(struct ra_graph *g, unsigned int n)
602 {
603 int i = n / BITSET_WORDBITS;
604 int n_class = g->nodes[n].class;
605 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
606 BITSET_SET(g->tmp.pq_test, n);
607 } else if (g->tmp.min_q_total[i] != UINT_MAX) {
608 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
609 * that we don't update while we have stale data and accidentally mark
610 * it as non-stale. Also, in order to remain consistent with the old
611 * naive implementation of the algorithm, we do a lexicographical sort
612 * to ensure that we always choose the node with the highest node index.
613 */
614 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
615 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
616 n > g->tmp.min_q_node[i])) {
617 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
618 g->tmp.min_q_node[i] = n;
619 }
620 }
621 }
622
623 static void
624 add_node_to_stack(struct ra_graph *g, unsigned int n)
625 {
626 unsigned int i;
627 int n_class = g->nodes[n].class;
628
629 assert(!BITSET_TEST(g->tmp.in_stack, n));
630
631 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
632 unsigned int n2 = g->nodes[n].adjacency_list[i];
633 unsigned int n2_class = g->nodes[n2].class;
634
635 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
636 !BITSET_TEST(g->tmp.reg_assigned, n2)) {
637 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
638 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
639 update_pq_info(g, n2);
640 }
641 }
642
643 g->tmp.stack[g->tmp.stack_count] = n;
644 g->tmp.stack_count++;
645 BITSET_SET(g->tmp.in_stack, n);
646
647 /* Flag the min_q_total for n's block as dirty so it gets recalculated */
648 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
649 }
650
651 /**
652 * Simplifies the interference graph by pushing all
653 * trivially-colorable nodes into a stack of nodes to be colored,
654 * removing them from the graph, and rinsing and repeating.
655 *
656 * If we encounter a case where we can't push any nodes on the stack, then
657 * we optimistically choose a node and push it on the stack. We heuristically
658 * push the node with the lowest total q value, since it has the fewest
659 * neighbors and therefore is most likely to be allocated.
660 */
661 static void
662 ra_simplify(struct ra_graph *g)
663 {
664 bool progress = true;
665 unsigned int stack_optimistic_start = UINT_MAX;
666
667 /* Figure out the high bit and bit mask for the first iteration of a loop
668 * over BITSET_WORDs.
669 */
670 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
671
672 /* Do a quick pre-pass to set things up */
673 g->tmp.stack_count = 0;
674 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
675 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
676 g->tmp.in_stack[i] = 0;
677 g->tmp.reg_assigned[i] = 0;
678 g->tmp.pq_test[i] = 0;
679 g->tmp.min_q_total[i] = UINT_MAX;
680 g->tmp.min_q_node[i] = UINT_MAX;
681 for (int j = high_bit; j >= 0; j--) {
682 unsigned int n = i * BITSET_WORDBITS + j;
683 g->nodes[n].reg = g->nodes[n].forced_reg;
684 g->nodes[n].tmp.q_total = g->nodes[n].q_total;
685 if (g->nodes[n].reg != NO_REG)
686 g->tmp.reg_assigned[i] |= BITSET_BIT(j);
687 update_pq_info(g, n);
688 }
689 }
690
691 while (progress) {
692 unsigned int min_q_total = UINT_MAX;
693 unsigned int min_q_node = UINT_MAX;
694
695 progress = false;
696
697 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
698 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
699 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
700
701 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
702 if (skip == mask)
703 continue;
704
705 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
706 if (pq) {
707 /* In this case, we have stuff we can immediately take off the
708 * stack. This also means that we're guaranteed to make progress
709 * and we don't need to bother updating lowest_q_total because we
710 * know we're going to loop again before attempting to do anything
711 * optimistic.
712 */
713 for (int j = high_bit; j >= 0; j--) {
714 if (pq & BITSET_BIT(j)) {
715 unsigned int n = i * BITSET_WORDBITS + j;
716 assert(n < g->count);
717 add_node_to_stack(g, n);
718 /* add_node_to_stack() may update pq_test for this word so
719 * we need to update our local copy.
720 */
721 pq = g->tmp.pq_test[i] & ~skip;
722 progress = true;
723 }
724 }
725 } else if (!progress) {
726 if (g->tmp.min_q_total[i] == UINT_MAX) {
727 /* The min_q_total and min_q_node are dirty because we added
728 * one of these nodes to the stack. It needs to be
729 * recalculated.
730 */
731 for (int j = high_bit; j >= 0; j--) {
732 if (skip & BITSET_BIT(j))
733 continue;
734
735 unsigned int n = i * BITSET_WORDBITS + j;
736 assert(n < g->count);
737 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
738 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
739 g->tmp.min_q_node[i] = n;
740 }
741 }
742 }
743 if (g->tmp.min_q_total[i] < min_q_total) {
744 min_q_node = g->tmp.min_q_node[i];
745 min_q_total = g->tmp.min_q_total[i];
746 }
747 }
748 }
749
750 if (!progress && min_q_total != UINT_MAX) {
751 if (stack_optimistic_start == UINT_MAX)
752 stack_optimistic_start = g->tmp.stack_count;
753
754 add_node_to_stack(g, min_q_node);
755 progress = true;
756 }
757 }
758
759 g->tmp.stack_optimistic_start = stack_optimistic_start;
760 }
761
762 static bool
763 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
764 {
765 unsigned int i;
766
767 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
768 unsigned int n2 = g->nodes[n].adjacency_list[i];
769
770 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
771 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
772 return true;
773 }
774 }
775
776 return false;
777 }
778
779 /* Computes a bitfield of what regs are available for a given register
780 * selection.
781 *
782 * This lets drivers implement a more complicated policy than our simple first
783 * or round robin policies (which don't require knowing the whole bitset)
784 */
785 static bool
786 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
787 {
788 struct ra_class *c = g->regs->classes[g->nodes[n].class];
789
790 /* Populate with the set of regs that are in the node's class. */
791 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
792
793 /* Remove any regs that conflict with nodes that we're adjacent to and have
794 * already colored.
795 */
796 for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
797 unsigned int n2 = g->nodes[n].adjacency_list[i];
798 unsigned int r = g->nodes[n2].reg;
799
800 if (!BITSET_TEST(g->tmp.in_stack, n2)) {
801 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
802 regs[j] &= ~g->regs->regs[r].conflicts[j];
803 }
804 }
805
806 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
807 if (regs[i])
808 return true;
809 }
810
811 return false;
812 }
813
814 /**
815 * Pops nodes from the stack back into the graph, coloring them with
816 * registers as they go.
817 *
818 * If all nodes were trivially colorable, then this must succeed. If
819 * not (optimistic coloring), then it may return false;
820 */
821 static bool
822 ra_select(struct ra_graph *g)
823 {
824 int start_search_reg = 0;
825 BITSET_WORD *select_regs = NULL;
826
827 if (g->select_reg_callback)
828 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
829
830 while (g->tmp.stack_count != 0) {
831 unsigned int ri;
832 unsigned int r = -1;
833 int n = g->tmp.stack[g->tmp.stack_count - 1];
834 struct ra_class *c = g->regs->classes[g->nodes[n].class];
835
836 /* set this to false even if we return here so that
837 * ra_get_best_spill_node() considers this node later.
838 */
839 BITSET_CLEAR(g->tmp.in_stack, n);
840
841 if (g->select_reg_callback) {
842 if (!ra_compute_available_regs(g, n, select_regs)) {
843 free(select_regs);
844 return false;
845 }
846
847 r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
848 } else {
849 /* Find the lowest-numbered reg which is not used by a member
850 * of the graph adjacent to us.
851 */
852 for (ri = 0; ri < g->regs->count; ri++) {
853 r = (start_search_reg + ri) % g->regs->count;
854 if (!reg_belongs_to_class(r, c))
855 continue;
856
857 if (!ra_any_neighbors_conflict(g, n, r))
858 break;
859 }
860
861 if (ri >= g->regs->count)
862 return false;
863 }
864
865 g->nodes[n].reg = r;
866 g->tmp.stack_count--;
867
868 /* Rotate the starting point except for any nodes above the lowest
869 * optimistically colorable node. The likelihood that we will succeed
870 * at allocating optimistically colorable nodes is highly dependent on
871 * the way that the previous nodes popped off the stack are laid out.
872 * The round-robin strategy increases the fragmentation of the register
873 * file and decreases the number of nearby nodes assigned to the same
874 * color, what increases the likelihood of spilling with respect to the
875 * dense packing strategy.
876 */
877 if (g->regs->round_robin &&
878 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
879 start_search_reg = r + 1;
880 }
881
882 free(select_regs);
883
884 return true;
885 }
886
887 bool
888 ra_allocate(struct ra_graph *g)
889 {
890 ra_simplify(g);
891 return ra_select(g);
892 }
893
894 unsigned int
895 ra_get_node_reg(struct ra_graph *g, unsigned int n)
896 {
897 if (g->nodes[n].forced_reg != NO_REG)
898 return g->nodes[n].forced_reg;
899 else
900 return g->nodes[n].reg;
901 }
902
903 /**
904 * Forces a node to a specific register. This can be used to avoid
905 * creating a register class containing one node when handling data
906 * that must live in a fixed location and is known to not conflict
907 * with other forced register assignment (as is common with shader
908 * input data). These nodes do not end up in the stack during
909 * ra_simplify(), and thus at ra_select() time it is as if they were
910 * the first popped off the stack and assigned their fixed locations.
911 * Nodes that use this function do not need to be assigned a register
912 * class.
913 *
914 * Must be called before ra_simplify().
915 */
916 void
917 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
918 {
919 g->nodes[n].forced_reg = reg;
920 }
921
922 static float
923 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
924 {
925 unsigned int j;
926 float benefit = 0;
927 int n_class = g->nodes[n].class;
928
929 /* Define the benefit of eliminating an interference between n, n2
930 * through spilling as q(C, B) / p(C). This is similar to the
931 * "count number of edges" approach of traditional graph coloring,
932 * but takes classes into account.
933 */
934 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
935 unsigned int n2 = g->nodes[n].adjacency_list[j];
936 unsigned int n2_class = g->nodes[n2].class;
937 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
938 g->regs->classes[n_class]->p);
939 }
940
941 return benefit;
942 }
943
944 /**
945 * Returns a node number to be spilled according to the cost/benefit using
946 * the pq test, or -1 if there are no spillable nodes.
947 */
948 int
949 ra_get_best_spill_node(struct ra_graph *g)
950 {
951 unsigned int best_node = -1;
952 float best_benefit = 0.0;
953 unsigned int n;
954
955 /* Consider any nodes that we colored successfully or the node we failed to
956 * color for spilling. When we failed to color a node in ra_select(), we
957 * only considered these nodes, so spilling any other ones would not result
958 * in us making progress.
959 */
960 for (n = 0; n < g->count; n++) {
961 float cost = g->nodes[n].spill_cost;
962 float benefit;
963
964 if (cost <= 0.0f)
965 continue;
966
967 if (BITSET_TEST(g->tmp.in_stack, n))
968 continue;
969
970 benefit = ra_get_spill_benefit(g, n);
971
972 if (benefit / cost > best_benefit) {
973 best_benefit = benefit / cost;
974 best_node = n;
975 }
976 }
977
978 return best_node;
979 }
980
981 /**
982 * Only nodes with a spill cost set (cost != 0.0) will be considered
983 * for register spilling.
984 */
985 void
986 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
987 {
988 g->nodes[n].spill_cost = cost;
989 }