util/ra: Add a function for making all conflicts on a register transitive
[mesa.git] / src / util / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74
75 #include "ralloc.h"
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "main/mtypes.h"
79 #include "util/bitset.h"
80 #include "register_allocate.h"
81
82 #define NO_REG ~0U
83
84 struct ra_reg {
85 BITSET_WORD *conflicts;
86 unsigned int *conflict_list;
87 unsigned int conflict_list_size;
88 unsigned int num_conflicts;
89 };
90
91 struct ra_regs {
92 struct ra_reg *regs;
93 unsigned int count;
94
95 struct ra_class **classes;
96 unsigned int class_count;
97
98 bool round_robin;
99 };
100
101 struct ra_class {
102 /**
103 * Bitset indicating which registers belong to this class.
104 *
105 * (If bit N is set, then register N belongs to this class.)
106 */
107 BITSET_WORD *regs;
108
109 /**
110 * p(B) in Runeson/Nyström paper.
111 *
112 * This is "how many regs are in the set."
113 */
114 unsigned int p;
115
116 /**
117 * q(B,C) (indexed by C, B is this register class) in
118 * Runeson/Nyström paper. This is "how many registers of B could
119 * the worst choice register from C conflict with".
120 */
121 unsigned int *q;
122 };
123
124 struct ra_node {
125 /** @{
126 *
127 * List of which nodes this node interferes with. This should be
128 * symmetric with the other node.
129 */
130 BITSET_WORD *adjacency;
131 unsigned int *adjacency_list;
132 unsigned int adjacency_list_size;
133 unsigned int adjacency_count;
134 /** @} */
135
136 unsigned int class;
137
138 /* Register, if assigned, or NO_REG. */
139 unsigned int reg;
140
141 /**
142 * Set when the node is in the trivially colorable stack. When
143 * set, the adjacency to this node is ignored, to implement the
144 * "remove the edge from the graph" in simplification without
145 * having to actually modify the adjacency_list.
146 */
147 bool in_stack;
148
149 /**
150 * The q total, as defined in the Runeson/Nyström paper, for all the
151 * interfering nodes not in the stack.
152 */
153 unsigned int q_total;
154
155 /* For an implementation that needs register spilling, this is the
156 * approximate cost of spilling this node.
157 */
158 float spill_cost;
159 };
160
161 struct ra_graph {
162 struct ra_regs *regs;
163 /**
164 * the variables that need register allocation.
165 */
166 struct ra_node *nodes;
167 unsigned int count; /**< count of nodes. */
168
169 unsigned int *stack;
170 unsigned int stack_count;
171
172 /**
173 * Tracks the start of the set of optimistically-colored registers in the
174 * stack.
175 */
176 unsigned int stack_optimistic_start;
177 };
178
179 /**
180 * Creates a set of registers for the allocator.
181 *
182 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
183 * using ralloc_free().
184 */
185 struct ra_regs *
186 ra_alloc_reg_set(void *mem_ctx, unsigned int count)
187 {
188 unsigned int i;
189 struct ra_regs *regs;
190
191 regs = rzalloc(mem_ctx, struct ra_regs);
192 regs->count = count;
193 regs->regs = rzalloc_array(regs, struct ra_reg, count);
194
195 for (i = 0; i < count; i++) {
196 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
197 BITSET_WORDS(count));
198 BITSET_SET(regs->regs[i].conflicts, i);
199
200 regs->regs[i].conflict_list = ralloc_array(regs->regs, unsigned int, 4);
201 regs->regs[i].conflict_list_size = 4;
202 regs->regs[i].conflict_list[0] = i;
203 regs->regs[i].num_conflicts = 1;
204 }
205
206 return regs;
207 }
208
209 /**
210 * The register allocator by default prefers to allocate low register numbers,
211 * since it was written for hardware (gen4/5 Intel) that is limited in its
212 * multithreadedness by the number of registers used in a given shader.
213 *
214 * However, for hardware without that restriction, densely packed register
215 * allocation can put serious constraints on instruction scheduling. This
216 * function tells the allocator to rotate around the registers if possible as
217 * it allocates the nodes.
218 */
219 void
220 ra_set_allocate_round_robin(struct ra_regs *regs)
221 {
222 regs->round_robin = true;
223 }
224
225 static void
226 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
227 {
228 struct ra_reg *reg1 = &regs->regs[r1];
229
230 if (reg1->conflict_list_size == reg1->num_conflicts) {
231 reg1->conflict_list_size *= 2;
232 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
233 unsigned int, reg1->conflict_list_size);
234 }
235 reg1->conflict_list[reg1->num_conflicts++] = r2;
236 BITSET_SET(reg1->conflicts, r2);
237 }
238
239 void
240 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
241 {
242 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
243 ra_add_conflict_list(regs, r1, r2);
244 ra_add_conflict_list(regs, r2, r1);
245 }
246 }
247
248 /**
249 * Adds a conflict between base_reg and reg, and also between reg and
250 * anything that base_reg conflicts with.
251 *
252 * This can simplify code for setting up multiple register classes
253 * which are aggregates of some base hardware registers, compared to
254 * explicitly using ra_add_reg_conflict.
255 */
256 void
257 ra_add_transitive_reg_conflict(struct ra_regs *regs,
258 unsigned int base_reg, unsigned int reg)
259 {
260 unsigned int i;
261
262 ra_add_reg_conflict(regs, reg, base_reg);
263
264 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
265 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
266 }
267 }
268
269 /**
270 * Makes every conflict on the given register transitive. In other words,
271 * every register that conflicts with r will now conflict with every other
272 * register conflicting with r.
273 *
274 * This can simplify code for setting up multiple register classes
275 * which are aggregates of some base hardware registers, compared to
276 * explicitly using ra_add_reg_conflict.
277 */
278 void
279 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
280 {
281 struct ra_reg *reg = &regs->regs[r];
282 BITSET_WORD tmp;
283 int c;
284
285 BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
286 struct ra_reg *other = &regs->regs[c];
287 for (unsigned i = 0; i < BITSET_WORDS(regs->count); i++)
288 other->conflicts[i] |= reg->conflicts[i];
289 }
290 }
291
292 unsigned int
293 ra_alloc_reg_class(struct ra_regs *regs)
294 {
295 struct ra_class *class;
296
297 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
298 regs->class_count + 1);
299
300 class = rzalloc(regs, struct ra_class);
301 regs->classes[regs->class_count] = class;
302
303 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
304
305 return regs->class_count++;
306 }
307
308 void
309 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
310 {
311 struct ra_class *class = regs->classes[c];
312
313 BITSET_SET(class->regs, r);
314 class->p++;
315 }
316
317 /**
318 * Returns true if the register belongs to the given class.
319 */
320 static bool
321 reg_belongs_to_class(unsigned int r, struct ra_class *c)
322 {
323 return BITSET_TEST(c->regs, r);
324 }
325
326 /**
327 * Must be called after all conflicts and register classes have been
328 * set up and before the register set is used for allocation.
329 * To avoid costly q value computation, use the q_values paramater
330 * to pass precomputed q values to this function.
331 */
332 void
333 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
334 {
335 unsigned int b, c;
336
337 for (b = 0; b < regs->class_count; b++) {
338 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
339 }
340
341 if (q_values) {
342 for (b = 0; b < regs->class_count; b++) {
343 for (c = 0; c < regs->class_count; c++) {
344 regs->classes[b]->q[c] = q_values[b][c];
345 }
346 }
347 } else {
348 /* Compute, for each class B and C, how many regs of B an
349 * allocation to C could conflict with.
350 */
351 for (b = 0; b < regs->class_count; b++) {
352 for (c = 0; c < regs->class_count; c++) {
353 unsigned int rc;
354 int max_conflicts = 0;
355
356 for (rc = 0; rc < regs->count; rc++) {
357 int conflicts = 0;
358 unsigned int i;
359
360 if (!reg_belongs_to_class(rc, regs->classes[c]))
361 continue;
362
363 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
364 unsigned int rb = regs->regs[rc].conflict_list[i];
365 if (reg_belongs_to_class(rb, regs->classes[b]))
366 conflicts++;
367 }
368 max_conflicts = MAX2(max_conflicts, conflicts);
369 }
370 regs->classes[b]->q[c] = max_conflicts;
371 }
372 }
373 }
374
375 for (b = 0; b < regs->count; b++) {
376 ralloc_free(regs->regs[b].conflict_list);
377 regs->regs[b].conflict_list = NULL;
378 }
379 }
380
381 static void
382 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
383 {
384 BITSET_SET(g->nodes[n1].adjacency, n2);
385
386 if (n1 != n2) {
387 int n1_class = g->nodes[n1].class;
388 int n2_class = g->nodes[n2].class;
389 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
390 }
391
392 if (g->nodes[n1].adjacency_count >=
393 g->nodes[n1].adjacency_list_size) {
394 g->nodes[n1].adjacency_list_size *= 2;
395 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
396 unsigned int,
397 g->nodes[n1].adjacency_list_size);
398 }
399
400 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
401 g->nodes[n1].adjacency_count++;
402 }
403
404 struct ra_graph *
405 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
406 {
407 struct ra_graph *g;
408 unsigned int i;
409
410 g = rzalloc(NULL, struct ra_graph);
411 g->regs = regs;
412 g->nodes = rzalloc_array(g, struct ra_node, count);
413 g->count = count;
414
415 g->stack = rzalloc_array(g, unsigned int, count);
416
417 for (i = 0; i < count; i++) {
418 int bitset_count = BITSET_WORDS(count);
419 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
420
421 g->nodes[i].adjacency_list_size = 4;
422 g->nodes[i].adjacency_list =
423 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
424 g->nodes[i].adjacency_count = 0;
425 g->nodes[i].q_total = 0;
426
427 ra_add_node_adjacency(g, i, i);
428 g->nodes[i].reg = NO_REG;
429 }
430
431 return g;
432 }
433
434 void
435 ra_set_node_class(struct ra_graph *g,
436 unsigned int n, unsigned int class)
437 {
438 g->nodes[n].class = class;
439 }
440
441 void
442 ra_add_node_interference(struct ra_graph *g,
443 unsigned int n1, unsigned int n2)
444 {
445 if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
446 ra_add_node_adjacency(g, n1, n2);
447 ra_add_node_adjacency(g, n2, n1);
448 }
449 }
450
451 static bool
452 pq_test(struct ra_graph *g, unsigned int n)
453 {
454 int n_class = g->nodes[n].class;
455
456 return g->nodes[n].q_total < g->regs->classes[n_class]->p;
457 }
458
459 static void
460 decrement_q(struct ra_graph *g, unsigned int n)
461 {
462 unsigned int i;
463 int n_class = g->nodes[n].class;
464
465 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
466 unsigned int n2 = g->nodes[n].adjacency_list[i];
467 unsigned int n2_class = g->nodes[n2].class;
468
469 if (n != n2 && !g->nodes[n2].in_stack) {
470 assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
471 g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
472 }
473 }
474 }
475
476 /**
477 * Simplifies the interference graph by pushing all
478 * trivially-colorable nodes into a stack of nodes to be colored,
479 * removing them from the graph, and rinsing and repeating.
480 *
481 * If we encounter a case where we can't push any nodes on the stack, then
482 * we optimistically choose a node and push it on the stack. We heuristically
483 * push the node with the lowest total q value, since it has the fewest
484 * neighbors and therefore is most likely to be allocated.
485 */
486 static void
487 ra_simplify(struct ra_graph *g)
488 {
489 bool progress = true;
490 unsigned int stack_optimistic_start = UINT_MAX;
491 int i;
492
493 while (progress) {
494 unsigned int best_optimistic_node = ~0;
495 unsigned int lowest_q_total = ~0;
496
497 progress = false;
498
499 for (i = g->count - 1; i >= 0; i--) {
500 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
501 continue;
502
503 if (pq_test(g, i)) {
504 decrement_q(g, i);
505 g->stack[g->stack_count] = i;
506 g->stack_count++;
507 g->nodes[i].in_stack = true;
508 progress = true;
509 } else {
510 unsigned int new_q_total = g->nodes[i].q_total;
511 if (new_q_total < lowest_q_total) {
512 best_optimistic_node = i;
513 lowest_q_total = new_q_total;
514 }
515 }
516 }
517
518 if (!progress && best_optimistic_node != ~0U) {
519 if (stack_optimistic_start == UINT_MAX)
520 stack_optimistic_start = g->stack_count;
521
522 decrement_q(g, best_optimistic_node);
523 g->stack[g->stack_count] = best_optimistic_node;
524 g->stack_count++;
525 g->nodes[best_optimistic_node].in_stack = true;
526 progress = true;
527 }
528 }
529
530 g->stack_optimistic_start = stack_optimistic_start;
531 }
532
533 /**
534 * Pops nodes from the stack back into the graph, coloring them with
535 * registers as they go.
536 *
537 * If all nodes were trivially colorable, then this must succeed. If
538 * not (optimistic coloring), then it may return false;
539 */
540 static bool
541 ra_select(struct ra_graph *g)
542 {
543 int start_search_reg = 0;
544
545 while (g->stack_count != 0) {
546 unsigned int i;
547 unsigned int ri;
548 unsigned int r = -1;
549 int n = g->stack[g->stack_count - 1];
550 struct ra_class *c = g->regs->classes[g->nodes[n].class];
551
552 /* Find the lowest-numbered reg which is not used by a member
553 * of the graph adjacent to us.
554 */
555 for (ri = 0; ri < g->regs->count; ri++) {
556 r = (start_search_reg + ri) % g->regs->count;
557 if (!reg_belongs_to_class(r, c))
558 continue;
559
560 /* Check if any of our neighbors conflict with this register choice. */
561 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
562 unsigned int n2 = g->nodes[n].adjacency_list[i];
563
564 if (!g->nodes[n2].in_stack &&
565 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
566 break;
567 }
568 }
569 if (i == g->nodes[n].adjacency_count)
570 break;
571 }
572
573 /* set this to false even if we return here so that
574 * ra_get_best_spill_node() considers this node later.
575 */
576 g->nodes[n].in_stack = false;
577
578 if (ri == g->regs->count)
579 return false;
580
581 g->nodes[n].reg = r;
582 g->stack_count--;
583
584 /* Rotate the starting point except for any nodes above the lowest
585 * optimistically colorable node. The likelihood that we will succeed
586 * at allocating optimistically colorable nodes is highly dependent on
587 * the way that the previous nodes popped off the stack are laid out.
588 * The round-robin strategy increases the fragmentation of the register
589 * file and decreases the number of nearby nodes assigned to the same
590 * color, what increases the likelihood of spilling with respect to the
591 * dense packing strategy.
592 */
593 if (g->regs->round_robin &&
594 g->stack_count - 1 <= g->stack_optimistic_start)
595 start_search_reg = r + 1;
596 }
597
598 return true;
599 }
600
601 bool
602 ra_allocate(struct ra_graph *g)
603 {
604 ra_simplify(g);
605 return ra_select(g);
606 }
607
608 unsigned int
609 ra_get_node_reg(struct ra_graph *g, unsigned int n)
610 {
611 return g->nodes[n].reg;
612 }
613
614 /**
615 * Forces a node to a specific register. This can be used to avoid
616 * creating a register class containing one node when handling data
617 * that must live in a fixed location and is known to not conflict
618 * with other forced register assignment (as is common with shader
619 * input data). These nodes do not end up in the stack during
620 * ra_simplify(), and thus at ra_select() time it is as if they were
621 * the first popped off the stack and assigned their fixed locations.
622 * Nodes that use this function do not need to be assigned a register
623 * class.
624 *
625 * Must be called before ra_simplify().
626 */
627 void
628 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
629 {
630 g->nodes[n].reg = reg;
631 g->nodes[n].in_stack = false;
632 }
633
634 static float
635 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
636 {
637 unsigned int j;
638 float benefit = 0;
639 int n_class = g->nodes[n].class;
640
641 /* Define the benefit of eliminating an interference between n, n2
642 * through spilling as q(C, B) / p(C). This is similar to the
643 * "count number of edges" approach of traditional graph coloring,
644 * but takes classes into account.
645 */
646 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
647 unsigned int n2 = g->nodes[n].adjacency_list[j];
648 if (n != n2) {
649 unsigned int n2_class = g->nodes[n2].class;
650 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
651 g->regs->classes[n_class]->p);
652 }
653 }
654
655 return benefit;
656 }
657
658 /**
659 * Returns a node number to be spilled according to the cost/benefit using
660 * the pq test, or -1 if there are no spillable nodes.
661 */
662 int
663 ra_get_best_spill_node(struct ra_graph *g)
664 {
665 unsigned int best_node = -1;
666 float best_benefit = 0.0;
667 unsigned int n;
668
669 /* Consider any nodes that we colored successfully or the node we failed to
670 * color for spilling. When we failed to color a node in ra_select(), we
671 * only considered these nodes, so spilling any other ones would not result
672 * in us making progress.
673 */
674 for (n = 0; n < g->count; n++) {
675 float cost = g->nodes[n].spill_cost;
676 float benefit;
677
678 if (cost <= 0.0f)
679 continue;
680
681 if (g->nodes[n].in_stack)
682 continue;
683
684 benefit = ra_get_spill_benefit(g, n);
685
686 if (benefit / cost > best_benefit) {
687 best_benefit = benefit / cost;
688 best_node = n;
689 }
690 }
691
692 return best_node;
693 }
694
695 /**
696 * Only nodes with a spill cost set (cost != 0.0) will be considered
697 * for register spilling.
698 */
699 void
700 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
701 {
702 g->nodes[n].spill_cost = cost;
703 }