util: stop including files from mesa/main
[mesa.git] / src / util / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74 #include <limits.h>
75
76 #include "ralloc.h"
77 #include "util/imports.h"
78 #include "util/bitset.h"
79 #include "u_math.h"
80 #include "register_allocate.h"
81
82 struct ra_reg {
83 BITSET_WORD *conflicts;
84 unsigned int *conflict_list;
85 unsigned int conflict_list_size;
86 unsigned int num_conflicts;
87 };
88
89 struct ra_regs {
90 struct ra_reg *regs;
91 unsigned int count;
92
93 struct ra_class **classes;
94 unsigned int class_count;
95
96 bool round_robin;
97 };
98
99 struct ra_class {
100 /**
101 * Bitset indicating which registers belong to this class.
102 *
103 * (If bit N is set, then register N belongs to this class.)
104 */
105 BITSET_WORD *regs;
106
107 /**
108 * p(B) in Runeson/Nyström paper.
109 *
110 * This is "how many regs are in the set."
111 */
112 unsigned int p;
113
114 /**
115 * q(B,C) (indexed by C, B is this register class) in
116 * Runeson/Nyström paper. This is "how many registers of B could
117 * the worst choice register from C conflict with".
118 */
119 unsigned int *q;
120 };
121
122 struct ra_node {
123 /** @{
124 *
125 * List of which nodes this node interferes with. This should be
126 * symmetric with the other node.
127 */
128 BITSET_WORD *adjacency;
129 unsigned int *adjacency_list;
130 unsigned int adjacency_list_size;
131 unsigned int adjacency_count;
132 /** @} */
133
134 unsigned int class;
135
136 /* Client-assigned register, if assigned, or NO_REG. */
137 unsigned int forced_reg;
138
139 /* Register, if assigned, or NO_REG. */
140 unsigned int reg;
141
142 /**
143 * The q total, as defined in the Runeson/Nyström paper, for all the
144 * interfering nodes not in the stack.
145 */
146 unsigned int q_total;
147
148 /* For an implementation that needs register spilling, this is the
149 * approximate cost of spilling this node.
150 */
151 float spill_cost;
152
153 /* Temporary data for the algorithm to scratch around in */
154 struct {
155 /**
156 * Temporary version of q_total which we decrement as things are placed
157 * into the stack.
158 */
159 unsigned int q_total;
160 } tmp;
161 };
162
163 struct ra_graph {
164 struct ra_regs *regs;
165 /**
166 * the variables that need register allocation.
167 */
168 struct ra_node *nodes;
169 unsigned int count; /**< count of nodes. */
170
171 unsigned int alloc; /**< count of nodes allocated. */
172
173 ra_select_reg_callback select_reg_callback;
174 void *select_reg_callback_data;
175
176 /* Temporary data for the algorithm to scratch around in */
177 struct {
178 unsigned int *stack;
179 unsigned int stack_count;
180
181 /** Bit-set indicating, for each register, if it's in the stack */
182 BITSET_WORD *in_stack;
183
184 /** Bit-set indicating, for each register, if it pre-assigned */
185 BITSET_WORD *reg_assigned;
186
187 /** Bit-set indicating, for each register, the value of the pq test */
188 BITSET_WORD *pq_test;
189
190 /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
191 unsigned int *min_q_total;
192
193 /*
194 * * For each BITSET_WORD, the node with the minimum q_total if
195 * min_q_total[i] != ~0.
196 */
197 unsigned int *min_q_node;
198
199 /**
200 * Tracks the start of the set of optimistically-colored registers in the
201 * stack.
202 */
203 unsigned int stack_optimistic_start;
204 } tmp;
205 };
206
207 /**
208 * Creates a set of registers for the allocator.
209 *
210 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
211 * using ralloc_free().
212 */
213 struct ra_regs *
214 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
215 {
216 unsigned int i;
217 struct ra_regs *regs;
218
219 regs = rzalloc(mem_ctx, struct ra_regs);
220 regs->count = count;
221 regs->regs = rzalloc_array(regs, struct ra_reg, count);
222
223 for (i = 0; i < count; i++) {
224 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
225 BITSET_WORDS(count));
226 BITSET_SET(regs->regs[i].conflicts, i);
227
228 if (need_conflict_lists) {
229 regs->regs[i].conflict_list = ralloc_array(regs->regs,
230 unsigned int, 4);
231 regs->regs[i].conflict_list_size = 4;
232 regs->regs[i].conflict_list[0] = i;
233 } else {
234 regs->regs[i].conflict_list = NULL;
235 regs->regs[i].conflict_list_size = 0;
236 }
237 regs->regs[i].num_conflicts = 1;
238 }
239
240 return regs;
241 }
242
243 /**
244 * The register allocator by default prefers to allocate low register numbers,
245 * since it was written for hardware (gen4/5 Intel) that is limited in its
246 * multithreadedness by the number of registers used in a given shader.
247 *
248 * However, for hardware without that restriction, densely packed register
249 * allocation can put serious constraints on instruction scheduling. This
250 * function tells the allocator to rotate around the registers if possible as
251 * it allocates the nodes.
252 */
253 void
254 ra_set_allocate_round_robin(struct ra_regs *regs)
255 {
256 regs->round_robin = true;
257 }
258
259 static void
260 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
261 {
262 struct ra_reg *reg1 = &regs->regs[r1];
263
264 if (reg1->conflict_list) {
265 if (reg1->conflict_list_size == reg1->num_conflicts) {
266 reg1->conflict_list_size *= 2;
267 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
268 unsigned int, reg1->conflict_list_size);
269 }
270 reg1->conflict_list[reg1->num_conflicts++] = r2;
271 }
272 BITSET_SET(reg1->conflicts, r2);
273 }
274
275 void
276 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
277 {
278 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
279 ra_add_conflict_list(regs, r1, r2);
280 ra_add_conflict_list(regs, r2, r1);
281 }
282 }
283
284 /**
285 * Adds a conflict between base_reg and reg, and also between reg and
286 * anything that base_reg conflicts with.
287 *
288 * This can simplify code for setting up multiple register classes
289 * which are aggregates of some base hardware registers, compared to
290 * explicitly using ra_add_reg_conflict.
291 */
292 void
293 ra_add_transitive_reg_conflict(struct ra_regs *regs,
294 unsigned int base_reg, unsigned int reg)
295 {
296 unsigned int i;
297
298 ra_add_reg_conflict(regs, reg, base_reg);
299
300 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
301 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
302 }
303 }
304
305 /**
306 * Set up conflicts between base_reg and it's two half registers reg0 and
307 * reg1, but take care to not add conflicts between reg0 and reg1.
308 *
309 * This is useful for architectures where full size registers are aliased by
310 * two half size registers (eg 32 bit float and 16 bit float registers).
311 */
312 void
313 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
314 unsigned int base_reg, unsigned int reg0, unsigned int reg1)
315 {
316 unsigned int i;
317
318 ra_add_reg_conflict(regs, reg0, base_reg);
319 ra_add_reg_conflict(regs, reg1, base_reg);
320
321 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
322 unsigned int conflict = regs->regs[base_reg].conflict_list[i];
323 if (conflict != reg1)
324 ra_add_reg_conflict(regs, reg0, regs->regs[base_reg].conflict_list[i]);
325 if (conflict != reg0)
326 ra_add_reg_conflict(regs, reg1, regs->regs[base_reg].conflict_list[i]);
327 }
328 }
329
330 /**
331 * Makes every conflict on the given register transitive. In other words,
332 * every register that conflicts with r will now conflict with every other
333 * register conflicting with r.
334 *
335 * This can simplify code for setting up multiple register classes
336 * which are aggregates of some base hardware registers, compared to
337 * explicitly using ra_add_reg_conflict.
338 */
339 void
340 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
341 {
342 struct ra_reg *reg = &regs->regs[r];
343 int c;
344
345 BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
346 struct ra_reg *other = &regs->regs[c];
347 unsigned i;
348 for (i = 0; i < BITSET_WORDS(regs->count); i++)
349 other->conflicts[i] |= reg->conflicts[i];
350 }
351 }
352
353 unsigned int
354 ra_alloc_reg_class(struct ra_regs *regs)
355 {
356 struct ra_class *class;
357
358 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
359 regs->class_count + 1);
360
361 class = rzalloc(regs, struct ra_class);
362 regs->classes[regs->class_count] = class;
363
364 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
365
366 return regs->class_count++;
367 }
368
369 void
370 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
371 {
372 struct ra_class *class = regs->classes[c];
373
374 BITSET_SET(class->regs, r);
375 class->p++;
376 }
377
378 /**
379 * Returns true if the register belongs to the given class.
380 */
381 static bool
382 reg_belongs_to_class(unsigned int r, struct ra_class *c)
383 {
384 return BITSET_TEST(c->regs, r);
385 }
386
387 /**
388 * Must be called after all conflicts and register classes have been
389 * set up and before the register set is used for allocation.
390 * To avoid costly q value computation, use the q_values paramater
391 * to pass precomputed q values to this function.
392 */
393 void
394 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
395 {
396 unsigned int b, c;
397
398 for (b = 0; b < regs->class_count; b++) {
399 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
400 }
401
402 if (q_values) {
403 for (b = 0; b < regs->class_count; b++) {
404 for (c = 0; c < regs->class_count; c++) {
405 regs->classes[b]->q[c] = q_values[b][c];
406 }
407 }
408 } else {
409 /* Compute, for each class B and C, how many regs of B an
410 * allocation to C could conflict with.
411 */
412 for (b = 0; b < regs->class_count; b++) {
413 for (c = 0; c < regs->class_count; c++) {
414 unsigned int rc;
415 int max_conflicts = 0;
416
417 for (rc = 0; rc < regs->count; rc++) {
418 int conflicts = 0;
419 unsigned int i;
420
421 if (!reg_belongs_to_class(rc, regs->classes[c]))
422 continue;
423
424 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
425 unsigned int rb = regs->regs[rc].conflict_list[i];
426 if (reg_belongs_to_class(rb, regs->classes[b]))
427 conflicts++;
428 }
429 max_conflicts = MAX2(max_conflicts, conflicts);
430 }
431 regs->classes[b]->q[c] = max_conflicts;
432 }
433 }
434 }
435
436 for (b = 0; b < regs->count; b++) {
437 ralloc_free(regs->regs[b].conflict_list);
438 regs->regs[b].conflict_list = NULL;
439 }
440 }
441
442 static void
443 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
444 {
445 BITSET_SET(g->nodes[n1].adjacency, n2);
446
447 assert(n1 != n2);
448
449 int n1_class = g->nodes[n1].class;
450 int n2_class = g->nodes[n2].class;
451 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
452
453 if (g->nodes[n1].adjacency_count >=
454 g->nodes[n1].adjacency_list_size) {
455 g->nodes[n1].adjacency_list_size *= 2;
456 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
457 unsigned int,
458 g->nodes[n1].adjacency_list_size);
459 }
460
461 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
462 g->nodes[n1].adjacency_count++;
463 }
464
465 static void
466 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
467 {
468 BITSET_CLEAR(g->nodes[n1].adjacency, n2);
469
470 assert(n1 != n2);
471
472 int n1_class = g->nodes[n1].class;
473 int n2_class = g->nodes[n2].class;
474 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
475
476 unsigned int i;
477 for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
478 if (g->nodes[n1].adjacency_list[i] == n2) {
479 memmove(&g->nodes[n1].adjacency_list[i],
480 &g->nodes[n1].adjacency_list[i + 1],
481 (g->nodes[n1].adjacency_count - i - 1) *
482 sizeof(g->nodes[n1].adjacency_list[0]));
483 break;
484 }
485 }
486 assert(i < g->nodes[n1].adjacency_count);
487 g->nodes[n1].adjacency_count--;
488 }
489
490 static void
491 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
492 {
493 if (alloc <= g->alloc)
494 return;
495
496 /* If we always have a whole number of BITSET_WORDs, it makes it much
497 * easier to memset the top of the growing bitsets.
498 */
499 assert(g->alloc % BITSET_WORDBITS == 0);
500 alloc = align64(alloc, BITSET_WORDBITS);
501
502 g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
503
504 unsigned g_bitset_count = BITSET_WORDS(g->alloc);
505 unsigned bitset_count = BITSET_WORDS(alloc);
506 /* For nodes already in the graph, we just have to grow the adjacency set */
507 for (unsigned i = 0; i < g->alloc; i++) {
508 assert(g->nodes[i].adjacency != NULL);
509 g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
510 g_bitset_count, bitset_count);
511 }
512
513 /* For new nodes, we have to fully initialize them */
514 for (unsigned i = g->alloc; i < alloc; i++) {
515 memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
516 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
517 g->nodes[i].adjacency_list_size = 4;
518 g->nodes[i].adjacency_list =
519 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
520 g->nodes[i].adjacency_count = 0;
521 g->nodes[i].q_total = 0;
522
523 g->nodes[i].forced_reg = NO_REG;
524 g->nodes[i].reg = NO_REG;
525 }
526
527 /* These are scratch values and don't need to be zeroed. We'll clear them
528 * as part of ra_select() setup.
529 */
530 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
531 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
532
533 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
534 bitset_count);
535 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
536 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
537 bitset_count);
538 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
539 bitset_count);
540
541 g->alloc = alloc;
542 }
543
544 struct ra_graph *
545 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
546 {
547 struct ra_graph *g;
548
549 g = rzalloc(NULL, struct ra_graph);
550 g->regs = regs;
551 g->count = count;
552 ra_realloc_interference_graph(g, count);
553
554 return g;
555 }
556
557 void
558 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
559 {
560 g->count = count;
561 if (count > g->alloc)
562 ra_realloc_interference_graph(g, g->alloc * 2);
563 }
564
565 void ra_set_select_reg_callback(struct ra_graph *g,
566 ra_select_reg_callback callback,
567 void *data)
568 {
569 g->select_reg_callback = callback;
570 g->select_reg_callback_data = data;
571 }
572
573 void
574 ra_set_node_class(struct ra_graph *g,
575 unsigned int n, unsigned int class)
576 {
577 g->nodes[n].class = class;
578 }
579
580 unsigned int
581 ra_get_node_class(struct ra_graph *g,
582 unsigned int n)
583 {
584 return g->nodes[n].class;
585 }
586
587 unsigned int
588 ra_add_node(struct ra_graph *g, unsigned int class)
589 {
590 unsigned int n = g->count;
591 ra_resize_interference_graph(g, g->count + 1);
592
593 ra_set_node_class(g, n, class);
594
595 return n;
596 }
597
598 void
599 ra_add_node_interference(struct ra_graph *g,
600 unsigned int n1, unsigned int n2)
601 {
602 assert(n1 < g->count && n2 < g->count);
603 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
604 ra_add_node_adjacency(g, n1, n2);
605 ra_add_node_adjacency(g, n2, n1);
606 }
607 }
608
609 void
610 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
611 {
612 for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
613 ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
614
615 memset(g->nodes[n].adjacency, 0,
616 BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
617 g->nodes[n].adjacency_count = 0;
618 }
619
620 static void
621 update_pq_info(struct ra_graph *g, unsigned int n)
622 {
623 int i = n / BITSET_WORDBITS;
624 int n_class = g->nodes[n].class;
625 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
626 BITSET_SET(g->tmp.pq_test, n);
627 } else if (g->tmp.min_q_total[i] != UINT_MAX) {
628 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
629 * that we don't update while we have stale data and accidentally mark
630 * it as non-stale. Also, in order to remain consistent with the old
631 * naive implementation of the algorithm, we do a lexicographical sort
632 * to ensure that we always choose the node with the highest node index.
633 */
634 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
635 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
636 n > g->tmp.min_q_node[i])) {
637 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
638 g->tmp.min_q_node[i] = n;
639 }
640 }
641 }
642
643 static void
644 add_node_to_stack(struct ra_graph *g, unsigned int n)
645 {
646 unsigned int i;
647 int n_class = g->nodes[n].class;
648
649 assert(!BITSET_TEST(g->tmp.in_stack, n));
650
651 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
652 unsigned int n2 = g->nodes[n].adjacency_list[i];
653 unsigned int n2_class = g->nodes[n2].class;
654
655 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
656 !BITSET_TEST(g->tmp.reg_assigned, n2)) {
657 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
658 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
659 update_pq_info(g, n2);
660 }
661 }
662
663 g->tmp.stack[g->tmp.stack_count] = n;
664 g->tmp.stack_count++;
665 BITSET_SET(g->tmp.in_stack, n);
666
667 /* Flag the min_q_total for n's block as dirty so it gets recalculated */
668 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
669 }
670
671 /**
672 * Simplifies the interference graph by pushing all
673 * trivially-colorable nodes into a stack of nodes to be colored,
674 * removing them from the graph, and rinsing and repeating.
675 *
676 * If we encounter a case where we can't push any nodes on the stack, then
677 * we optimistically choose a node and push it on the stack. We heuristically
678 * push the node with the lowest total q value, since it has the fewest
679 * neighbors and therefore is most likely to be allocated.
680 */
681 static void
682 ra_simplify(struct ra_graph *g)
683 {
684 bool progress = true;
685 unsigned int stack_optimistic_start = UINT_MAX;
686
687 /* Figure out the high bit and bit mask for the first iteration of a loop
688 * over BITSET_WORDs.
689 */
690 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
691
692 /* Do a quick pre-pass to set things up */
693 g->tmp.stack_count = 0;
694 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
695 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
696 g->tmp.in_stack[i] = 0;
697 g->tmp.reg_assigned[i] = 0;
698 g->tmp.pq_test[i] = 0;
699 g->tmp.min_q_total[i] = UINT_MAX;
700 g->tmp.min_q_node[i] = UINT_MAX;
701 for (int j = high_bit; j >= 0; j--) {
702 unsigned int n = i * BITSET_WORDBITS + j;
703 g->nodes[n].reg = g->nodes[n].forced_reg;
704 g->nodes[n].tmp.q_total = g->nodes[n].q_total;
705 if (g->nodes[n].reg != NO_REG)
706 g->tmp.reg_assigned[i] |= BITSET_BIT(j);
707 update_pq_info(g, n);
708 }
709 }
710
711 while (progress) {
712 unsigned int min_q_total = UINT_MAX;
713 unsigned int min_q_node = UINT_MAX;
714
715 progress = false;
716
717 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
718 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
719 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
720
721 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
722 if (skip == mask)
723 continue;
724
725 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
726 if (pq) {
727 /* In this case, we have stuff we can immediately take off the
728 * stack. This also means that we're guaranteed to make progress
729 * and we don't need to bother updating lowest_q_total because we
730 * know we're going to loop again before attempting to do anything
731 * optimistic.
732 */
733 for (int j = high_bit; j >= 0; j--) {
734 if (pq & BITSET_BIT(j)) {
735 unsigned int n = i * BITSET_WORDBITS + j;
736 assert(n < g->count);
737 add_node_to_stack(g, n);
738 /* add_node_to_stack() may update pq_test for this word so
739 * we need to update our local copy.
740 */
741 pq = g->tmp.pq_test[i] & ~skip;
742 progress = true;
743 }
744 }
745 } else if (!progress) {
746 if (g->tmp.min_q_total[i] == UINT_MAX) {
747 /* The min_q_total and min_q_node are dirty because we added
748 * one of these nodes to the stack. It needs to be
749 * recalculated.
750 */
751 for (int j = high_bit; j >= 0; j--) {
752 if (skip & BITSET_BIT(j))
753 continue;
754
755 unsigned int n = i * BITSET_WORDBITS + j;
756 assert(n < g->count);
757 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
758 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
759 g->tmp.min_q_node[i] = n;
760 }
761 }
762 }
763 if (g->tmp.min_q_total[i] < min_q_total) {
764 min_q_node = g->tmp.min_q_node[i];
765 min_q_total = g->tmp.min_q_total[i];
766 }
767 }
768 }
769
770 if (!progress && min_q_total != UINT_MAX) {
771 if (stack_optimistic_start == UINT_MAX)
772 stack_optimistic_start = g->tmp.stack_count;
773
774 add_node_to_stack(g, min_q_node);
775 progress = true;
776 }
777 }
778
779 g->tmp.stack_optimistic_start = stack_optimistic_start;
780 }
781
782 static bool
783 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
784 {
785 unsigned int i;
786
787 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
788 unsigned int n2 = g->nodes[n].adjacency_list[i];
789
790 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
791 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
792 return true;
793 }
794 }
795
796 return false;
797 }
798
799 /* Computes a bitfield of what regs are available for a given register
800 * selection.
801 *
802 * This lets drivers implement a more complicated policy than our simple first
803 * or round robin policies (which don't require knowing the whole bitset)
804 */
805 static bool
806 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
807 {
808 struct ra_class *c = g->regs->classes[g->nodes[n].class];
809
810 /* Populate with the set of regs that are in the node's class. */
811 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
812
813 /* Remove any regs that conflict with nodes that we're adjacent to and have
814 * already colored.
815 */
816 for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
817 unsigned int n2 = g->nodes[n].adjacency_list[i];
818 unsigned int r = g->nodes[n2].reg;
819
820 if (!BITSET_TEST(g->tmp.in_stack, n2)) {
821 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
822 regs[j] &= ~g->regs->regs[r].conflicts[j];
823 }
824 }
825
826 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
827 if (regs[i])
828 return true;
829 }
830
831 return false;
832 }
833
834 /**
835 * Pops nodes from the stack back into the graph, coloring them with
836 * registers as they go.
837 *
838 * If all nodes were trivially colorable, then this must succeed. If
839 * not (optimistic coloring), then it may return false;
840 */
841 static bool
842 ra_select(struct ra_graph *g)
843 {
844 int start_search_reg = 0;
845 BITSET_WORD *select_regs = NULL;
846
847 if (g->select_reg_callback)
848 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
849
850 while (g->tmp.stack_count != 0) {
851 unsigned int ri;
852 unsigned int r = -1;
853 int n = g->tmp.stack[g->tmp.stack_count - 1];
854 struct ra_class *c = g->regs->classes[g->nodes[n].class];
855
856 /* set this to false even if we return here so that
857 * ra_get_best_spill_node() considers this node later.
858 */
859 BITSET_CLEAR(g->tmp.in_stack, n);
860
861 if (g->select_reg_callback) {
862 if (!ra_compute_available_regs(g, n, select_regs)) {
863 free(select_regs);
864 return false;
865 }
866
867 r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
868 } else {
869 /* Find the lowest-numbered reg which is not used by a member
870 * of the graph adjacent to us.
871 */
872 for (ri = 0; ri < g->regs->count; ri++) {
873 r = (start_search_reg + ri) % g->regs->count;
874 if (!reg_belongs_to_class(r, c))
875 continue;
876
877 if (!ra_any_neighbors_conflict(g, n, r))
878 break;
879 }
880
881 if (ri >= g->regs->count)
882 return false;
883 }
884
885 g->nodes[n].reg = r;
886 g->tmp.stack_count--;
887
888 /* Rotate the starting point except for any nodes above the lowest
889 * optimistically colorable node. The likelihood that we will succeed
890 * at allocating optimistically colorable nodes is highly dependent on
891 * the way that the previous nodes popped off the stack are laid out.
892 * The round-robin strategy increases the fragmentation of the register
893 * file and decreases the number of nearby nodes assigned to the same
894 * color, what increases the likelihood of spilling with respect to the
895 * dense packing strategy.
896 */
897 if (g->regs->round_robin &&
898 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
899 start_search_reg = r + 1;
900 }
901
902 free(select_regs);
903
904 return true;
905 }
906
907 bool
908 ra_allocate(struct ra_graph *g)
909 {
910 ra_simplify(g);
911 return ra_select(g);
912 }
913
914 unsigned int
915 ra_get_node_reg(struct ra_graph *g, unsigned int n)
916 {
917 if (g->nodes[n].forced_reg != NO_REG)
918 return g->nodes[n].forced_reg;
919 else
920 return g->nodes[n].reg;
921 }
922
923 /**
924 * Forces a node to a specific register. This can be used to avoid
925 * creating a register class containing one node when handling data
926 * that must live in a fixed location and is known to not conflict
927 * with other forced register assignment (as is common with shader
928 * input data). These nodes do not end up in the stack during
929 * ra_simplify(), and thus at ra_select() time it is as if they were
930 * the first popped off the stack and assigned their fixed locations.
931 * Nodes that use this function do not need to be assigned a register
932 * class.
933 *
934 * Must be called before ra_simplify().
935 */
936 void
937 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
938 {
939 g->nodes[n].forced_reg = reg;
940 }
941
942 static float
943 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
944 {
945 unsigned int j;
946 float benefit = 0;
947 int n_class = g->nodes[n].class;
948
949 /* Define the benefit of eliminating an interference between n, n2
950 * through spilling as q(C, B) / p(C). This is similar to the
951 * "count number of edges" approach of traditional graph coloring,
952 * but takes classes into account.
953 */
954 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
955 unsigned int n2 = g->nodes[n].adjacency_list[j];
956 unsigned int n2_class = g->nodes[n2].class;
957 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
958 g->regs->classes[n_class]->p);
959 }
960
961 return benefit;
962 }
963
964 /**
965 * Returns a node number to be spilled according to the cost/benefit using
966 * the pq test, or -1 if there are no spillable nodes.
967 */
968 int
969 ra_get_best_spill_node(struct ra_graph *g)
970 {
971 unsigned int best_node = -1;
972 float best_benefit = 0.0;
973 unsigned int n;
974
975 /* Consider any nodes that we colored successfully or the node we failed to
976 * color for spilling. When we failed to color a node in ra_select(), we
977 * only considered these nodes, so spilling any other ones would not result
978 * in us making progress.
979 */
980 for (n = 0; n < g->count; n++) {
981 float cost = g->nodes[n].spill_cost;
982 float benefit;
983
984 if (cost <= 0.0f)
985 continue;
986
987 if (BITSET_TEST(g->tmp.in_stack, n))
988 continue;
989
990 benefit = ra_get_spill_benefit(g, n);
991
992 if (benefit / cost > best_benefit) {
993 best_benefit = benefit / cost;
994 best_node = n;
995 }
996 }
997
998 return best_node;
999 }
1000
1001 /**
1002 * Only nodes with a spill cost set (cost != 0.0) will be considered
1003 * for register spilling.
1004 */
1005 void
1006 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1007 {
1008 g->nodes[n].spill_cost = cost;
1009 }