util: use C99 declaration in the for-loop set_foreach() macro
[mesa.git] / src / util / set.c
1 /*
2 * Copyright © 2009-2012 Intel Corporation
3 * Copyright © 1988-2004 Keith Packard and Bart Massey.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 * Except as contained in this notice, the names of the authors
25 * or their institutions shall not be used in advertising or
26 * otherwise to promote the sale, use or other dealings in this
27 * Software without prior written authorization from the
28 * authors.
29 *
30 * Authors:
31 * Eric Anholt <eric@anholt.net>
32 * Keith Packard <keithp@keithp.com>
33 */
34
35 #include <stdlib.h>
36 #include <assert.h>
37 #include <string.h>
38
39 #include "macros.h"
40 #include "ralloc.h"
41 #include "set.h"
42
43 /*
44 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
45 * p and p-2 are both prime. These tables are sized to have an extra 10%
46 * free to avoid exponential performance degradation as the hash table fills
47 */
48
49 static const uint32_t deleted_key_value;
50 static const void *deleted_key = &deleted_key_value;
51
52 static const struct {
53 uint32_t max_entries, size, rehash;
54 } hash_sizes[] = {
55 { 2, 5, 3 },
56 { 4, 7, 5 },
57 { 8, 13, 11 },
58 { 16, 19, 17 },
59 { 32, 43, 41 },
60 { 64, 73, 71 },
61 { 128, 151, 149 },
62 { 256, 283, 281 },
63 { 512, 571, 569 },
64 { 1024, 1153, 1151 },
65 { 2048, 2269, 2267 },
66 { 4096, 4519, 4517 },
67 { 8192, 9013, 9011 },
68 { 16384, 18043, 18041 },
69 { 32768, 36109, 36107 },
70 { 65536, 72091, 72089 },
71 { 131072, 144409, 144407 },
72 { 262144, 288361, 288359 },
73 { 524288, 576883, 576881 },
74 { 1048576, 1153459, 1153457 },
75 { 2097152, 2307163, 2307161 },
76 { 4194304, 4613893, 4613891 },
77 { 8388608, 9227641, 9227639 },
78 { 16777216, 18455029, 18455027 },
79 { 33554432, 36911011, 36911009 },
80 { 67108864, 73819861, 73819859 },
81 { 134217728, 147639589, 147639587 },
82 { 268435456, 295279081, 295279079 },
83 { 536870912, 590559793, 590559791 },
84 { 1073741824, 1181116273, 1181116271 },
85 { 2147483648ul, 2362232233ul, 2362232231ul }
86 };
87
88 static int
89 entry_is_free(struct set_entry *entry)
90 {
91 return entry->key == NULL;
92 }
93
94 static int
95 entry_is_deleted(struct set_entry *entry)
96 {
97 return entry->key == deleted_key;
98 }
99
100 static int
101 entry_is_present(struct set_entry *entry)
102 {
103 return entry->key != NULL && entry->key != deleted_key;
104 }
105
106 struct set *
107 _mesa_set_create(void *mem_ctx,
108 uint32_t (*key_hash_function)(const void *key),
109 bool (*key_equals_function)(const void *a,
110 const void *b))
111 {
112 struct set *ht;
113
114 ht = ralloc(mem_ctx, struct set);
115 if (ht == NULL)
116 return NULL;
117
118 ht->size_index = 0;
119 ht->size = hash_sizes[ht->size_index].size;
120 ht->rehash = hash_sizes[ht->size_index].rehash;
121 ht->max_entries = hash_sizes[ht->size_index].max_entries;
122 ht->key_hash_function = key_hash_function;
123 ht->key_equals_function = key_equals_function;
124 ht->table = rzalloc_array(ht, struct set_entry, ht->size);
125 ht->entries = 0;
126 ht->deleted_entries = 0;
127
128 if (ht->table == NULL) {
129 ralloc_free(ht);
130 return NULL;
131 }
132
133 return ht;
134 }
135
136 struct set *
137 _mesa_set_clone(struct set *set, void *dst_mem_ctx)
138 {
139 struct set *clone;
140
141 clone = ralloc(dst_mem_ctx, struct set);
142 if (clone == NULL)
143 return NULL;
144
145 memcpy(clone, set, sizeof(struct set));
146
147 clone->table = ralloc_array(clone, struct set_entry, clone->size);
148 if (clone->table == NULL) {
149 ralloc_free(clone);
150 return NULL;
151 }
152
153 memcpy(clone->table, set->table, clone->size * sizeof(struct set_entry));
154
155 return clone;
156 }
157
158 /**
159 * Frees the given set.
160 *
161 * If delete_function is passed, it gets called on each entry present before
162 * freeing.
163 */
164 void
165 _mesa_set_destroy(struct set *ht, void (*delete_function)(struct set_entry *entry))
166 {
167 if (!ht)
168 return;
169
170 if (delete_function) {
171 set_foreach (ht, entry) {
172 delete_function(entry);
173 }
174 }
175 ralloc_free(ht->table);
176 ralloc_free(ht);
177 }
178
179 /**
180 * Clears all values from the given set.
181 *
182 * If delete_function is passed, it gets called on each entry present before
183 * the set is cleared.
184 */
185 void
186 _mesa_set_clear(struct set *set, void (*delete_function)(struct set_entry *entry))
187 {
188 if (!set)
189 return;
190
191 set_foreach (set, entry) {
192 if (delete_function)
193 delete_function(entry);
194 entry->key = deleted_key;
195 }
196
197 set->entries = set->deleted_entries = 0;
198 }
199
200 /**
201 * Finds a set entry with the given key and hash of that key.
202 *
203 * Returns NULL if no entry is found.
204 */
205 static struct set_entry *
206 set_search(const struct set *ht, uint32_t hash, const void *key)
207 {
208 uint32_t hash_address;
209
210 hash_address = hash % ht->size;
211 do {
212 uint32_t double_hash;
213
214 struct set_entry *entry = ht->table + hash_address;
215
216 if (entry_is_free(entry)) {
217 return NULL;
218 } else if (entry_is_present(entry) && entry->hash == hash) {
219 if (ht->key_equals_function(key, entry->key)) {
220 return entry;
221 }
222 }
223
224 double_hash = 1 + hash % ht->rehash;
225
226 hash_address = (hash_address + double_hash) % ht->size;
227 } while (hash_address != hash % ht->size);
228
229 return NULL;
230 }
231
232 struct set_entry *
233 _mesa_set_search(const struct set *set, const void *key)
234 {
235 assert(set->key_hash_function);
236 return set_search(set, set->key_hash_function(key), key);
237 }
238
239 struct set_entry *
240 _mesa_set_search_pre_hashed(const struct set *set, uint32_t hash,
241 const void *key)
242 {
243 assert(set->key_hash_function == NULL ||
244 hash == set->key_hash_function(key));
245 return set_search(set, hash, key);
246 }
247
248 static struct set_entry *
249 set_add(struct set *ht, uint32_t hash, const void *key);
250
251 static void
252 set_rehash(struct set *ht, unsigned new_size_index)
253 {
254 struct set old_ht;
255 struct set_entry *table;
256
257 if (new_size_index >= ARRAY_SIZE(hash_sizes))
258 return;
259
260 table = rzalloc_array(ht, struct set_entry,
261 hash_sizes[new_size_index].size);
262 if (table == NULL)
263 return;
264
265 old_ht = *ht;
266
267 ht->table = table;
268 ht->size_index = new_size_index;
269 ht->size = hash_sizes[ht->size_index].size;
270 ht->rehash = hash_sizes[ht->size_index].rehash;
271 ht->max_entries = hash_sizes[ht->size_index].max_entries;
272 ht->entries = 0;
273 ht->deleted_entries = 0;
274
275 set_foreach(&old_ht, entry) {
276 set_add(ht, entry->hash, entry->key);
277 }
278
279 ralloc_free(old_ht.table);
280 }
281
282 /**
283 * Inserts the key with the given hash into the table.
284 *
285 * Note that insertion may rearrange the table on a resize or rehash,
286 * so previously found hash_entries are no longer valid after this function.
287 */
288 static struct set_entry *
289 set_add(struct set *ht, uint32_t hash, const void *key)
290 {
291 uint32_t hash_address;
292 struct set_entry *available_entry = NULL;
293
294 if (ht->entries >= ht->max_entries) {
295 set_rehash(ht, ht->size_index + 1);
296 } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
297 set_rehash(ht, ht->size_index);
298 }
299
300 hash_address = hash % ht->size;
301 do {
302 struct set_entry *entry = ht->table + hash_address;
303 uint32_t double_hash;
304
305 if (!entry_is_present(entry)) {
306 /* Stash the first available entry we find */
307 if (available_entry == NULL)
308 available_entry = entry;
309 if (entry_is_free(entry))
310 break;
311 }
312
313 /* Implement replacement when another insert happens
314 * with a matching key. This is a relatively common
315 * feature of hash tables, with the alternative
316 * generally being "insert the new value as well, and
317 * return it first when the key is searched for".
318 *
319 * Note that the hash table doesn't have a delete callback.
320 * If freeing of old keys is required to avoid memory leaks,
321 * perform a search before inserting.
322 */
323 if (!entry_is_deleted(entry) &&
324 entry->hash == hash &&
325 ht->key_equals_function(key, entry->key)) {
326 entry->key = key;
327 return entry;
328 }
329
330 double_hash = 1 + hash % ht->rehash;
331
332 hash_address = (hash_address + double_hash) % ht->size;
333 } while (hash_address != hash % ht->size);
334
335 if (available_entry) {
336 if (entry_is_deleted(available_entry))
337 ht->deleted_entries--;
338 available_entry->hash = hash;
339 available_entry->key = key;
340 ht->entries++;
341 return available_entry;
342 }
343
344 /* We could hit here if a required resize failed. An unchecked-malloc
345 * application could ignore this result.
346 */
347 return NULL;
348 }
349
350 struct set_entry *
351 _mesa_set_add(struct set *set, const void *key)
352 {
353 assert(set->key_hash_function);
354 return set_add(set, set->key_hash_function(key), key);
355 }
356
357 struct set_entry *
358 _mesa_set_add_pre_hashed(struct set *set, uint32_t hash, const void *key)
359 {
360 assert(set->key_hash_function == NULL ||
361 hash == set->key_hash_function(key));
362 return set_add(set, hash, key);
363 }
364
365 /**
366 * This function deletes the given hash table entry.
367 *
368 * Note that deletion doesn't otherwise modify the table, so an iteration over
369 * the table deleting entries is safe.
370 */
371 void
372 _mesa_set_remove(struct set *ht, struct set_entry *entry)
373 {
374 if (!entry)
375 return;
376
377 entry->key = deleted_key;
378 ht->entries--;
379 ht->deleted_entries++;
380 }
381
382 /**
383 * Removes the entry with the corresponding key, if exists.
384 */
385 void
386 _mesa_set_remove_key(struct set *set, const void *key)
387 {
388 _mesa_set_remove(set, _mesa_set_search(set, key));
389 }
390
391 /**
392 * This function is an iterator over the hash table.
393 *
394 * Pass in NULL for the first entry, as in the start of a for loop. Note that
395 * an iteration over the table is O(table_size) not O(entries).
396 */
397 struct set_entry *
398 _mesa_set_next_entry(const struct set *ht, struct set_entry *entry)
399 {
400 if (entry == NULL)
401 entry = ht->table;
402 else
403 entry = entry + 1;
404
405 for (; entry != ht->table + ht->size; entry++) {
406 if (entry_is_present(entry)) {
407 return entry;
408 }
409 }
410
411 return NULL;
412 }
413
414 struct set_entry *
415 _mesa_set_random_entry(struct set *ht,
416 int (*predicate)(struct set_entry *entry))
417 {
418 struct set_entry *entry;
419 uint32_t i = rand() % ht->size;
420
421 if (ht->entries == 0)
422 return NULL;
423
424 for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
425 if (entry_is_present(entry) &&
426 (!predicate || predicate(entry))) {
427 return entry;
428 }
429 }
430
431 for (entry = ht->table; entry != ht->table + i; entry++) {
432 if (entry_is_present(entry) &&
433 (!predicate || predicate(entry))) {
434 return entry;
435 }
436 }
437
438 return NULL;
439 }