util: import sha1 implementation from OpenBSD
[mesa.git] / src / util / sha1 / sha1.c
1 /* $OpenBSD: sha1.c,v 1.26 2015/09/11 09:18:27 guenther Exp $ */
2
3 /*
4 * SHA-1 in C
5 * By Steve Reid <steve@edmweb.com>
6 * 100% Public Domain
7 *
8 * Test Vectors (from FIPS PUB 180-1)
9 * "abc"
10 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
11 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
12 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
13 * A million repetitions of "a"
14 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
15 */
16
17 #include <stdint.h>
18 #include <string.h>
19 #include "sha1.h"
20
21 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
22
23 /*
24 * blk0() and blk() perform the initial expand.
25 * I got the idea of expanding during the round function from SSLeay
26 */
27 #if BYTE_ORDER == LITTLE_ENDIAN
28 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
29 |(rol(block->l[i],8)&0x00FF00FF))
30 #else
31 # define blk0(i) block->l[i]
32 #endif
33 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
34 ^block->l[(i+2)&15]^block->l[i&15],1))
35
36 /*
37 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
38 */
39 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
40 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
41 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
42 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
43 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
44
45 typedef union {
46 uint8_t c[64];
47 uint32_t l[16];
48 } CHAR64LONG16;
49
50 /*
51 * Hash a single 512-bit block. This is the core of the algorithm.
52 */
53 void
54 SHA1Transform(uint32_t state[5], const uint8_t buffer[SHA1_BLOCK_LENGTH])
55 {
56 uint32_t a, b, c, d, e;
57 uint8_t workspace[SHA1_BLOCK_LENGTH];
58 CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
59
60 (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
61
62 /* Copy context->state[] to working vars */
63 a = state[0];
64 b = state[1];
65 c = state[2];
66 d = state[3];
67 e = state[4];
68
69 /* 4 rounds of 20 operations each. Loop unrolled. */
70 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
71 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
72 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
73 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
74 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
75 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
76 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
77 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
78 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
79 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
80 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
81 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
82 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
83 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
84 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
85 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
86 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
87 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
88 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
89 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
90
91 /* Add the working vars back into context.state[] */
92 state[0] += a;
93 state[1] += b;
94 state[2] += c;
95 state[3] += d;
96 state[4] += e;
97
98 /* Wipe variables */
99 a = b = c = d = e = 0;
100 }
101
102
103 /*
104 * SHA1Init - Initialize new context
105 */
106 void
107 SHA1Init(SHA1_CTX *context)
108 {
109
110 /* SHA1 initialization constants */
111 context->count = 0;
112 context->state[0] = 0x67452301;
113 context->state[1] = 0xEFCDAB89;
114 context->state[2] = 0x98BADCFE;
115 context->state[3] = 0x10325476;
116 context->state[4] = 0xC3D2E1F0;
117 }
118
119
120 /*
121 * Run your data through this.
122 */
123 void
124 SHA1Update(SHA1_CTX *context, const uint8_t *data, size_t len)
125 {
126 size_t i, j;
127
128 j = (size_t)((context->count >> 3) & 63);
129 context->count += (len << 3);
130 if ((j + len) > 63) {
131 (void)memcpy(&context->buffer[j], data, (i = 64-j));
132 SHA1Transform(context->state, context->buffer);
133 for ( ; i + 63 < len; i += 64)
134 SHA1Transform(context->state, (uint8_t *)&data[i]);
135 j = 0;
136 } else {
137 i = 0;
138 }
139 (void)memcpy(&context->buffer[j], &data[i], len - i);
140 }
141
142
143 /*
144 * Add padding and return the message digest.
145 */
146 void
147 SHA1Pad(SHA1_CTX *context)
148 {
149 uint8_t finalcount[8];
150 uint32_t i;
151
152 for (i = 0; i < 8; i++) {
153 finalcount[i] = (uint8_t)((context->count >>
154 ((7 - (i & 7)) * 8)) & 255); /* Endian independent */
155 }
156 SHA1Update(context, (uint8_t *)"\200", 1);
157 while ((context->count & 504) != 448)
158 SHA1Update(context, (uint8_t *)"\0", 1);
159 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
160 }
161
162 void
163 SHA1Final(uint8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
164 {
165 uint32_t i;
166
167 SHA1Pad(context);
168 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
169 digest[i] = (uint8_t)
170 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
171 }
172 memset(context, 0, sizeof(*context));
173 }