util: remove LIST_IS_EMPTY macro
[mesa.git] / src / util / slab.c
1 /*
2 * Copyright 2010 Marek Olšák <maraeo@gmail.com>
3 * Copyright 2016 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "slab.h"
25 #include "macros.h"
26 #include "u_atomic.h"
27 #include <stdint.h>
28 #include <stdbool.h>
29 #include <string.h>
30
31 #define SLAB_MAGIC_ALLOCATED 0xcafe4321
32 #define SLAB_MAGIC_FREE 0x7ee01234
33
34 #ifndef NDEBUG
35 #define SET_MAGIC(element, value) (element)->magic = (value)
36 #define CHECK_MAGIC(element, value) assert((element)->magic == (value))
37 #else
38 #define SET_MAGIC(element, value)
39 #define CHECK_MAGIC(element, value)
40 #endif
41
42 /* One array element within a big buffer. */
43 struct slab_element_header {
44 /* The next element in the free or migrated list. */
45 struct slab_element_header *next;
46
47 /* This is either
48 * - a pointer to the child pool to which this element belongs, or
49 * - a pointer to the orphaned page of the element, with the least
50 * significant bit set to 1.
51 */
52 intptr_t owner;
53
54 #ifndef NDEBUG
55 intptr_t magic;
56 #endif
57 };
58
59 /* The page is an array of allocations in one block. */
60 struct slab_page_header {
61 union {
62 /* Next page in the same child pool. */
63 struct slab_page_header *next;
64
65 /* Number of remaining, non-freed elements (for orphaned pages). */
66 unsigned num_remaining;
67 } u;
68 /* Memory after the last member is dedicated to the page itself.
69 * The allocated size is always larger than this structure.
70 */
71 };
72
73
74 static struct slab_element_header *
75 slab_get_element(struct slab_parent_pool *parent,
76 struct slab_page_header *page, unsigned index)
77 {
78 return (struct slab_element_header*)
79 ((uint8_t*)&page[1] + (parent->element_size * index));
80 }
81
82 /* The given object/element belongs to an orphaned page (i.e. the owning child
83 * pool has been destroyed). Mark the element as freed and free the whole page
84 * when no elements are left in it.
85 */
86 static void
87 slab_free_orphaned(struct slab_element_header *elt)
88 {
89 struct slab_page_header *page;
90
91 assert(elt->owner & 1);
92
93 page = (struct slab_page_header *)(elt->owner & ~(intptr_t)1);
94 if (!p_atomic_dec_return(&page->u.num_remaining))
95 free(page);
96 }
97
98 /**
99 * Create a parent pool for the allocation of same-sized objects.
100 *
101 * \param item_size Size of one object.
102 * \param num_items Number of objects to allocate at once.
103 */
104 void
105 slab_create_parent(struct slab_parent_pool *parent,
106 unsigned item_size,
107 unsigned num_items)
108 {
109 mtx_init(&parent->mutex, mtx_plain);
110 parent->element_size = ALIGN_POT(sizeof(struct slab_element_header) + item_size,
111 sizeof(intptr_t));
112 parent->num_elements = num_items;
113 }
114
115 void
116 slab_destroy_parent(struct slab_parent_pool *parent)
117 {
118 mtx_destroy(&parent->mutex);
119 }
120
121 /**
122 * Create a child pool linked to the given parent.
123 */
124 void slab_create_child(struct slab_child_pool *pool,
125 struct slab_parent_pool *parent)
126 {
127 pool->parent = parent;
128 pool->pages = NULL;
129 pool->free = NULL;
130 pool->migrated = NULL;
131 }
132
133 /**
134 * Destroy the child pool.
135 *
136 * Pages associated to the pool will be orphaned. They are eventually freed
137 * when all objects in them are freed.
138 */
139 void slab_destroy_child(struct slab_child_pool *pool)
140 {
141 if (!pool->parent)
142 return; /* the slab probably wasn't even created */
143
144 mtx_lock(&pool->parent->mutex);
145
146 while (pool->pages) {
147 struct slab_page_header *page = pool->pages;
148 pool->pages = page->u.next;
149 p_atomic_set(&page->u.num_remaining, pool->parent->num_elements);
150
151 for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
152 struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
153 p_atomic_set(&elt->owner, (intptr_t)page | 1);
154 }
155 }
156
157 while (pool->migrated) {
158 struct slab_element_header *elt = pool->migrated;
159 pool->migrated = elt->next;
160 slab_free_orphaned(elt);
161 }
162
163 mtx_unlock(&pool->parent->mutex);
164
165 while (pool->free) {
166 struct slab_element_header *elt = pool->free;
167 pool->free = elt->next;
168 slab_free_orphaned(elt);
169 }
170
171 /* Guard against use-after-free. */
172 pool->parent = NULL;
173 }
174
175 static bool
176 slab_add_new_page(struct slab_child_pool *pool)
177 {
178 struct slab_page_header *page = malloc(sizeof(struct slab_page_header) +
179 pool->parent->num_elements * pool->parent->element_size);
180
181 if (!page)
182 return false;
183
184 for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
185 struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
186 elt->owner = (intptr_t)pool;
187 assert(!(elt->owner & 1));
188
189 elt->next = pool->free;
190 pool->free = elt;
191 SET_MAGIC(elt, SLAB_MAGIC_FREE);
192 }
193
194 page->u.next = pool->pages;
195 pool->pages = page;
196
197 return true;
198 }
199
200 /**
201 * Allocate an object from the child pool. Single-threaded (i.e. the caller
202 * must ensure that no operation happens on the same child pool in another
203 * thread).
204 */
205 void *
206 slab_alloc(struct slab_child_pool *pool)
207 {
208 struct slab_element_header *elt;
209
210 if (!pool->free) {
211 /* First, collect elements that belong to us but were freed from a
212 * different child pool.
213 */
214 mtx_lock(&pool->parent->mutex);
215 pool->free = pool->migrated;
216 pool->migrated = NULL;
217 mtx_unlock(&pool->parent->mutex);
218
219 /* Now allocate a new page. */
220 if (!pool->free && !slab_add_new_page(pool))
221 return NULL;
222 }
223
224 elt = pool->free;
225 pool->free = elt->next;
226
227 CHECK_MAGIC(elt, SLAB_MAGIC_FREE);
228 SET_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
229
230 return &elt[1];
231 }
232
233 /**
234 * Free an object allocated from the slab. Single-threaded (i.e. the caller
235 * must ensure that no operation happens on the same child pool in another
236 * thread).
237 *
238 * Freeing an object in a different child pool from the one where it was
239 * allocated is allowed, as long the pool belong to the same parent. No
240 * additional locking is required in this case.
241 */
242 void slab_free(struct slab_child_pool *pool, void *ptr)
243 {
244 struct slab_element_header *elt = ((struct slab_element_header*)ptr - 1);
245 intptr_t owner_int;
246
247 CHECK_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
248 SET_MAGIC(elt, SLAB_MAGIC_FREE);
249
250 if (p_atomic_read(&elt->owner) == (intptr_t)pool) {
251 /* This is the simple case: The caller guarantees that we can safely
252 * access the free list.
253 */
254 elt->next = pool->free;
255 pool->free = elt;
256 return;
257 }
258
259 /* The slow case: migration or an orphaned page. */
260 mtx_lock(&pool->parent->mutex);
261
262 /* Note: we _must_ re-read elt->owner here because the owning child pool
263 * may have been destroyed by another thread in the meantime.
264 */
265 owner_int = p_atomic_read(&elt->owner);
266
267 if (!(owner_int & 1)) {
268 struct slab_child_pool *owner = (struct slab_child_pool *)owner_int;
269 elt->next = owner->migrated;
270 owner->migrated = elt;
271 mtx_unlock(&pool->parent->mutex);
272 } else {
273 mtx_unlock(&pool->parent->mutex);
274
275 slab_free_orphaned(elt);
276 }
277 }
278
279 /**
280 * Allocate an object from the slab. Single-threaded (no mutex).
281 */
282 void *
283 slab_alloc_st(struct slab_mempool *mempool)
284 {
285 return slab_alloc(&mempool->child);
286 }
287
288 /**
289 * Free an object allocated from the slab. Single-threaded (no mutex).
290 */
291 void
292 slab_free_st(struct slab_mempool *mempool, void *ptr)
293 {
294 slab_free(&mempool->child, ptr);
295 }
296
297 void
298 slab_destroy(struct slab_mempool *mempool)
299 {
300 slab_destroy_child(&mempool->child);
301 slab_destroy_parent(&mempool->parent);
302 }
303
304 /**
305 * Create an allocator for same-sized objects.
306 *
307 * \param item_size Size of one object.
308 * \param num_items Number of objects to allocate at once.
309 */
310 void
311 slab_create(struct slab_mempool *mempool,
312 unsigned item_size,
313 unsigned num_items)
314 {
315 slab_create_parent(&mempool->parent, item_size, num_items);
316 slab_create_child(&mempool->child, &mempool->parent);
317 }