kutil/queue: add a process name into a thread name
[mesa.git] / src / util / u_queue.c
1 /*
2 * Copyright © 2016 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
14 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
15 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16 * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
17 * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * The above copyright notice and this permission notice (including the
23 * next paragraph) shall be included in all copies or substantial portions
24 * of the Software.
25 */
26
27 #include "u_queue.h"
28
29 #include <time.h>
30
31 #include "util/os_time.h"
32 #include "util/u_string.h"
33 #include "util/u_thread.h"
34 #include "process.h"
35
36 static void util_queue_killall_and_wait(struct util_queue *queue);
37
38 /****************************************************************************
39 * Wait for all queues to assert idle when exit() is called.
40 *
41 * Otherwise, C++ static variable destructors can be called while threads
42 * are using the static variables.
43 */
44
45 static once_flag atexit_once_flag = ONCE_FLAG_INIT;
46 static struct list_head queue_list;
47 static mtx_t exit_mutex = _MTX_INITIALIZER_NP;
48
49 static void
50 atexit_handler(void)
51 {
52 struct util_queue *iter;
53
54 mtx_lock(&exit_mutex);
55 /* Wait for all queues to assert idle. */
56 LIST_FOR_EACH_ENTRY(iter, &queue_list, head) {
57 util_queue_killall_and_wait(iter);
58 }
59 mtx_unlock(&exit_mutex);
60 }
61
62 static void
63 global_init(void)
64 {
65 LIST_INITHEAD(&queue_list);
66 atexit(atexit_handler);
67 }
68
69 static void
70 add_to_atexit_list(struct util_queue *queue)
71 {
72 call_once(&atexit_once_flag, global_init);
73
74 mtx_lock(&exit_mutex);
75 LIST_ADD(&queue->head, &queue_list);
76 mtx_unlock(&exit_mutex);
77 }
78
79 static void
80 remove_from_atexit_list(struct util_queue *queue)
81 {
82 struct util_queue *iter, *tmp;
83
84 mtx_lock(&exit_mutex);
85 LIST_FOR_EACH_ENTRY_SAFE(iter, tmp, &queue_list, head) {
86 if (iter == queue) {
87 LIST_DEL(&iter->head);
88 break;
89 }
90 }
91 mtx_unlock(&exit_mutex);
92 }
93
94 /****************************************************************************
95 * util_queue_fence
96 */
97
98 #ifdef UTIL_QUEUE_FENCE_FUTEX
99 static bool
100 do_futex_fence_wait(struct util_queue_fence *fence,
101 bool timeout, int64_t abs_timeout)
102 {
103 uint32_t v = fence->val;
104 struct timespec ts;
105 ts.tv_sec = abs_timeout / (1000*1000*1000);
106 ts.tv_nsec = abs_timeout % (1000*1000*1000);
107
108 while (v != 0) {
109 if (v != 2) {
110 v = p_atomic_cmpxchg(&fence->val, 1, 2);
111 if (v == 0)
112 return true;
113 }
114
115 int r = futex_wait(&fence->val, 2, timeout ? &ts : NULL);
116 if (timeout && r < 0) {
117 if (errno == ETIMEDOUT)
118 return false;
119 }
120
121 v = fence->val;
122 }
123
124 return true;
125 }
126
127 void
128 _util_queue_fence_wait(struct util_queue_fence *fence)
129 {
130 do_futex_fence_wait(fence, false, 0);
131 }
132
133 bool
134 _util_queue_fence_wait_timeout(struct util_queue_fence *fence,
135 int64_t abs_timeout)
136 {
137 return do_futex_fence_wait(fence, true, abs_timeout);
138 }
139
140 #endif
141
142 #ifdef UTIL_QUEUE_FENCE_STANDARD
143 void
144 util_queue_fence_signal(struct util_queue_fence *fence)
145 {
146 mtx_lock(&fence->mutex);
147 fence->signalled = true;
148 cnd_broadcast(&fence->cond);
149 mtx_unlock(&fence->mutex);
150 }
151
152 void
153 _util_queue_fence_wait(struct util_queue_fence *fence)
154 {
155 mtx_lock(&fence->mutex);
156 while (!fence->signalled)
157 cnd_wait(&fence->cond, &fence->mutex);
158 mtx_unlock(&fence->mutex);
159 }
160
161 bool
162 _util_queue_fence_wait_timeout(struct util_queue_fence *fence,
163 int64_t abs_timeout)
164 {
165 /* This terrible hack is made necessary by the fact that we really want an
166 * internal interface consistent with os_time_*, but cnd_timedwait is spec'd
167 * to be relative to the TIME_UTC clock.
168 */
169 int64_t rel = abs_timeout - os_time_get_nano();
170
171 if (rel > 0) {
172 struct timespec ts;
173
174 timespec_get(&ts, TIME_UTC);
175
176 ts.tv_sec += abs_timeout / (1000*1000*1000);
177 ts.tv_nsec += abs_timeout % (1000*1000*1000);
178 if (ts.tv_nsec >= (1000*1000*1000)) {
179 ts.tv_sec++;
180 ts.tv_nsec -= (1000*1000*1000);
181 }
182
183 mtx_lock(&fence->mutex);
184 while (!fence->signalled) {
185 if (cnd_timedwait(&fence->cond, &fence->mutex, &ts) != thrd_success)
186 break;
187 }
188 mtx_unlock(&fence->mutex);
189 }
190
191 return fence->signalled;
192 }
193
194 void
195 util_queue_fence_init(struct util_queue_fence *fence)
196 {
197 memset(fence, 0, sizeof(*fence));
198 (void) mtx_init(&fence->mutex, mtx_plain);
199 cnd_init(&fence->cond);
200 fence->signalled = true;
201 }
202
203 void
204 util_queue_fence_destroy(struct util_queue_fence *fence)
205 {
206 assert(fence->signalled);
207
208 /* Ensure that another thread is not in the middle of
209 * util_queue_fence_signal (having set the fence to signalled but still
210 * holding the fence mutex).
211 *
212 * A common contract between threads is that as soon as a fence is signalled
213 * by thread A, thread B is allowed to destroy it. Since
214 * util_queue_fence_is_signalled does not lock the fence mutex (for
215 * performance reasons), we must do so here.
216 */
217 mtx_lock(&fence->mutex);
218 mtx_unlock(&fence->mutex);
219
220 cnd_destroy(&fence->cond);
221 mtx_destroy(&fence->mutex);
222 }
223 #endif
224
225 /****************************************************************************
226 * util_queue implementation
227 */
228
229 struct thread_input {
230 struct util_queue *queue;
231 int thread_index;
232 };
233
234 static int
235 util_queue_thread_func(void *input)
236 {
237 struct util_queue *queue = ((struct thread_input*)input)->queue;
238 int thread_index = ((struct thread_input*)input)->thread_index;
239
240 free(input);
241
242 if (queue->name) {
243 char name[16];
244 util_snprintf(name, sizeof(name), "%s%i", queue->name, thread_index);
245 puts(name);
246 u_thread_setname(name);
247 }
248
249 while (1) {
250 struct util_queue_job job;
251
252 mtx_lock(&queue->lock);
253 assert(queue->num_queued >= 0 && queue->num_queued <= queue->max_jobs);
254
255 /* wait if the queue is empty */
256 while (!queue->kill_threads && queue->num_queued == 0)
257 cnd_wait(&queue->has_queued_cond, &queue->lock);
258
259 if (queue->kill_threads) {
260 mtx_unlock(&queue->lock);
261 break;
262 }
263
264 job = queue->jobs[queue->read_idx];
265 memset(&queue->jobs[queue->read_idx], 0, sizeof(struct util_queue_job));
266 queue->read_idx = (queue->read_idx + 1) % queue->max_jobs;
267
268 queue->num_queued--;
269 cnd_signal(&queue->has_space_cond);
270 mtx_unlock(&queue->lock);
271
272 if (job.job) {
273 job.execute(job.job, thread_index);
274 util_queue_fence_signal(job.fence);
275 if (job.cleanup)
276 job.cleanup(job.job, thread_index);
277 }
278 }
279
280 /* signal remaining jobs before terminating */
281 mtx_lock(&queue->lock);
282 for (unsigned i = queue->read_idx; i != queue->write_idx;
283 i = (i + 1) % queue->max_jobs) {
284 if (queue->jobs[i].job) {
285 util_queue_fence_signal(queue->jobs[i].fence);
286 queue->jobs[i].job = NULL;
287 }
288 }
289 queue->read_idx = queue->write_idx;
290 queue->num_queued = 0;
291 mtx_unlock(&queue->lock);
292 return 0;
293 }
294
295 bool
296 util_queue_init(struct util_queue *queue,
297 const char *name,
298 unsigned max_jobs,
299 unsigned num_threads,
300 unsigned flags)
301 {
302 unsigned i;
303
304 /* Form the thread name from process_name and name, limited to 13
305 * characters. Characters 14-15 are reserved for the thread number.
306 * Character 16 should be 0. Final form: "process:name12"
307 *
308 * If name is too long, it's truncated. If any space is left, the process
309 * name fills it.
310 */
311 const char *process_name = util_get_process_name();
312 int process_len = process_name ? strlen(process_name) : 0;
313 int name_len = strlen(name);
314 const int max_chars = sizeof(queue->name) - 1;
315
316 name_len = MIN2(name_len, max_chars);
317
318 /* See if there is any space left for the process name, reserve 1 for
319 * the colon. */
320 process_len = MIN2(process_len, max_chars - name_len - 1);
321 process_len = MAX2(process_len, 0);
322
323 memset(queue, 0, sizeof(*queue));
324
325 if (process_len) {
326 snprintf(queue->name, sizeof(queue->name), "%.*s:%s",
327 process_len, process_name, name);
328 } else {
329 snprintf(queue->name, sizeof(queue->name), "%s", name);
330 }
331
332 queue->flags = flags;
333 queue->num_threads = num_threads;
334 queue->max_jobs = max_jobs;
335
336 queue->jobs = (struct util_queue_job*)
337 calloc(max_jobs, sizeof(struct util_queue_job));
338 if (!queue->jobs)
339 goto fail;
340
341 (void) mtx_init(&queue->lock, mtx_plain);
342 (void) mtx_init(&queue->finish_lock, mtx_plain);
343
344 queue->num_queued = 0;
345 cnd_init(&queue->has_queued_cond);
346 cnd_init(&queue->has_space_cond);
347
348 queue->threads = (thrd_t*) calloc(num_threads, sizeof(thrd_t));
349 if (!queue->threads)
350 goto fail;
351
352 /* start threads */
353 for (i = 0; i < num_threads; i++) {
354 struct thread_input *input =
355 (struct thread_input *) malloc(sizeof(struct thread_input));
356 input->queue = queue;
357 input->thread_index = i;
358
359 queue->threads[i] = u_thread_create(util_queue_thread_func, input);
360
361 if (!queue->threads[i]) {
362 free(input);
363
364 if (i == 0) {
365 /* no threads created, fail */
366 goto fail;
367 } else {
368 /* at least one thread created, so use it */
369 queue->num_threads = i;
370 break;
371 }
372 }
373
374 if (flags & UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY) {
375 #if defined(__linux__) && defined(SCHED_IDLE)
376 struct sched_param sched_param = {0};
377
378 /* The nice() function can only set a maximum of 19.
379 * SCHED_IDLE is the same as nice = 20.
380 *
381 * Note that Linux only allows decreasing the priority. The original
382 * priority can't be restored.
383 */
384 pthread_setschedparam(queue->threads[i], SCHED_IDLE, &sched_param);
385 #endif
386 }
387 }
388
389 add_to_atexit_list(queue);
390 return true;
391
392 fail:
393 free(queue->threads);
394
395 if (queue->jobs) {
396 cnd_destroy(&queue->has_space_cond);
397 cnd_destroy(&queue->has_queued_cond);
398 mtx_destroy(&queue->lock);
399 free(queue->jobs);
400 }
401 /* also util_queue_is_initialized can be used to check for success */
402 memset(queue, 0, sizeof(*queue));
403 return false;
404 }
405
406 static void
407 util_queue_killall_and_wait(struct util_queue *queue)
408 {
409 unsigned i;
410
411 /* Signal all threads to terminate. */
412 mtx_lock(&queue->lock);
413 queue->kill_threads = 1;
414 cnd_broadcast(&queue->has_queued_cond);
415 mtx_unlock(&queue->lock);
416
417 for (i = 0; i < queue->num_threads; i++)
418 thrd_join(queue->threads[i], NULL);
419 queue->num_threads = 0;
420 }
421
422 void
423 util_queue_destroy(struct util_queue *queue)
424 {
425 util_queue_killall_and_wait(queue);
426 remove_from_atexit_list(queue);
427
428 cnd_destroy(&queue->has_space_cond);
429 cnd_destroy(&queue->has_queued_cond);
430 mtx_destroy(&queue->finish_lock);
431 mtx_destroy(&queue->lock);
432 free(queue->jobs);
433 free(queue->threads);
434 }
435
436 void
437 util_queue_add_job(struct util_queue *queue,
438 void *job,
439 struct util_queue_fence *fence,
440 util_queue_execute_func execute,
441 util_queue_execute_func cleanup)
442 {
443 struct util_queue_job *ptr;
444
445 mtx_lock(&queue->lock);
446 if (queue->kill_threads) {
447 mtx_unlock(&queue->lock);
448 /* well no good option here, but any leaks will be
449 * short-lived as things are shutting down..
450 */
451 return;
452 }
453
454 util_queue_fence_reset(fence);
455
456 assert(queue->num_queued >= 0 && queue->num_queued <= queue->max_jobs);
457
458 if (queue->num_queued == queue->max_jobs) {
459 if (queue->flags & UTIL_QUEUE_INIT_RESIZE_IF_FULL) {
460 /* If the queue is full, make it larger to avoid waiting for a free
461 * slot.
462 */
463 unsigned new_max_jobs = queue->max_jobs + 8;
464 struct util_queue_job *jobs =
465 (struct util_queue_job*)calloc(new_max_jobs,
466 sizeof(struct util_queue_job));
467 assert(jobs);
468
469 /* Copy all queued jobs into the new list. */
470 unsigned num_jobs = 0;
471 unsigned i = queue->read_idx;
472
473 do {
474 jobs[num_jobs++] = queue->jobs[i];
475 i = (i + 1) % queue->max_jobs;
476 } while (i != queue->write_idx);
477
478 assert(num_jobs == queue->num_queued);
479
480 free(queue->jobs);
481 queue->jobs = jobs;
482 queue->read_idx = 0;
483 queue->write_idx = num_jobs;
484 queue->max_jobs = new_max_jobs;
485 } else {
486 /* Wait until there is a free slot. */
487 while (queue->num_queued == queue->max_jobs)
488 cnd_wait(&queue->has_space_cond, &queue->lock);
489 }
490 }
491
492 ptr = &queue->jobs[queue->write_idx];
493 assert(ptr->job == NULL);
494 ptr->job = job;
495 ptr->fence = fence;
496 ptr->execute = execute;
497 ptr->cleanup = cleanup;
498 queue->write_idx = (queue->write_idx + 1) % queue->max_jobs;
499
500 queue->num_queued++;
501 cnd_signal(&queue->has_queued_cond);
502 mtx_unlock(&queue->lock);
503 }
504
505 /**
506 * Remove a queued job. If the job hasn't started execution, it's removed from
507 * the queue. If the job has started execution, the function waits for it to
508 * complete.
509 *
510 * In all cases, the fence is signalled when the function returns.
511 *
512 * The function can be used when destroying an object associated with the job
513 * when you don't care about the job completion state.
514 */
515 void
516 util_queue_drop_job(struct util_queue *queue, struct util_queue_fence *fence)
517 {
518 bool removed = false;
519
520 if (util_queue_fence_is_signalled(fence))
521 return;
522
523 mtx_lock(&queue->lock);
524 for (unsigned i = queue->read_idx; i != queue->write_idx;
525 i = (i + 1) % queue->max_jobs) {
526 if (queue->jobs[i].fence == fence) {
527 if (queue->jobs[i].cleanup)
528 queue->jobs[i].cleanup(queue->jobs[i].job, -1);
529
530 /* Just clear it. The threads will treat as a no-op job. */
531 memset(&queue->jobs[i], 0, sizeof(queue->jobs[i]));
532 removed = true;
533 break;
534 }
535 }
536 mtx_unlock(&queue->lock);
537
538 if (removed)
539 util_queue_fence_signal(fence);
540 else
541 util_queue_fence_wait(fence);
542 }
543
544 static void
545 util_queue_finish_execute(void *data, int num_thread)
546 {
547 util_barrier *barrier = data;
548 util_barrier_wait(barrier);
549 }
550
551 /**
552 * Wait until all previously added jobs have completed.
553 */
554 void
555 util_queue_finish(struct util_queue *queue)
556 {
557 util_barrier barrier;
558 struct util_queue_fence *fences = malloc(queue->num_threads * sizeof(*fences));
559
560 util_barrier_init(&barrier, queue->num_threads);
561
562 /* If 2 threads were adding jobs for 2 different barries at the same time,
563 * a deadlock would happen, because 1 barrier requires that all threads
564 * wait for it exclusively.
565 */
566 mtx_lock(&queue->finish_lock);
567
568 for (unsigned i = 0; i < queue->num_threads; ++i) {
569 util_queue_fence_init(&fences[i]);
570 util_queue_add_job(queue, &barrier, &fences[i], util_queue_finish_execute, NULL);
571 }
572
573 for (unsigned i = 0; i < queue->num_threads; ++i) {
574 util_queue_fence_wait(&fences[i]);
575 util_queue_fence_destroy(&fences[i]);
576 }
577 mtx_unlock(&queue->finish_lock);
578
579 util_barrier_destroy(&barrier);
580
581 free(fences);
582 }
583
584 int64_t
585 util_queue_get_thread_time_nano(struct util_queue *queue, unsigned thread_index)
586 {
587 /* Allow some flexibility by not raising an error. */
588 if (thread_index >= queue->num_threads)
589 return 0;
590
591 return u_thread_get_time_nano(queue->threads[thread_index]);
592 }