vk: Add four unit tests for our lock-free data-structures
[mesa.git] / src / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #define _DEFAULT_SOURCE
25
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <unistd.h>
29 #include <values.h>
30 #include <assert.h>
31 #include <linux/futex.h>
32 #include <linux/memfd.h>
33 #include <sys/time.h>
34 #include <sys/mman.h>
35 #include <sys/syscall.h>
36
37 #include "anv_private.h"
38
39 #ifdef HAVE_VALGRIND
40 #define VG_NOACCESS_READ(__ptr) ({ \
41 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
42 __typeof(*(__ptr)) __val = *(__ptr); \
43 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
44 __val; \
45 })
46 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
47 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
48 *(__ptr) = (__val); \
49 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
50 })
51 #else
52 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
53 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY 1
106
107 struct anv_mmap_cleanup {
108 void *map;
109 size_t size;
110 uint32_t gem_handle;
111 };
112
113 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
114
115 static inline long
116 sys_futex(void *addr1, int op, int val1,
117 struct timespec *timeout, void *addr2, int val3)
118 {
119 return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
120 }
121
122 static inline int
123 futex_wake(uint32_t *addr, int count)
124 {
125 return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
126 }
127
128 static inline int
129 futex_wait(uint32_t *addr, int32_t value)
130 {
131 return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
132 }
133
134 static inline int
135 memfd_create(const char *name, unsigned int flags)
136 {
137 return syscall(SYS_memfd_create, name, flags);
138 }
139
140 static inline uint32_t
141 ilog2_round_up(uint32_t value)
142 {
143 assert(value != 0);
144 return 32 - __builtin_clz(value - 1);
145 }
146
147 static inline uint32_t
148 round_to_power_of_two(uint32_t value)
149 {
150 return 1 << ilog2_round_up(value);
151 }
152
153 static bool
154 anv_free_list_pop(union anv_free_list *list, void **map, uint32_t *offset)
155 {
156 union anv_free_list current, new, old;
157
158 current.u64 = list->u64;
159 while (current.offset != EMPTY) {
160 /* We have to add a memory barrier here so that the list head (and
161 * offset) gets read before we read the map pointer. This way we
162 * know that the map pointer is valid for the given offset at the
163 * point where we read it.
164 */
165 __sync_synchronize();
166
167 uint32_t *next_ptr = *map + current.offset;
168 new.offset = VG_NOACCESS_READ(next_ptr);
169 new.count = current.count + 1;
170 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
171 if (old.u64 == current.u64) {
172 *offset = current.offset;
173 return true;
174 }
175 current = old;
176 }
177
178 return false;
179 }
180
181 static void
182 anv_free_list_push(union anv_free_list *list, void *map, uint32_t offset)
183 {
184 union anv_free_list current, old, new;
185 uint32_t *next_ptr = map + offset;
186
187 old = *list;
188 do {
189 current = old;
190 VG_NOACCESS_WRITE(next_ptr, current.offset);
191 new.offset = offset;
192 new.count = current.count + 1;
193 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
194 } while (old.u64 != current.u64);
195 }
196
197 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
198 * means that the bottom 12 bits should all be zero.
199 */
200 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
201 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
202 #define PFL_PACK(ptr, count) ({ \
203 assert(((uintptr_t)(ptr) & 0xfff) == 0); \
204 (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
205 })
206
207 static bool
208 anv_ptr_free_list_pop(void **list, void **elem)
209 {
210 void *current = *list;
211 while (PFL_PTR(current) != NULL) {
212 void **next_ptr = PFL_PTR(current);
213 void *new_ptr = VG_NOACCESS_READ(next_ptr);
214 unsigned new_count = PFL_COUNT(current) + 1;
215 void *new = PFL_PACK(new_ptr, new_count);
216 void *old = __sync_val_compare_and_swap(list, current, new);
217 if (old == current) {
218 *elem = PFL_PTR(current);
219 return true;
220 }
221 current = old;
222 }
223
224 return false;
225 }
226
227 static void
228 anv_ptr_free_list_push(void **list, void *elem)
229 {
230 void *old, *current;
231 void **next_ptr = elem;
232
233 old = *list;
234 do {
235 current = old;
236 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
237 unsigned new_count = PFL_COUNT(current) + 1;
238 void *new = PFL_PACK(elem, new_count);
239 old = __sync_val_compare_and_swap(list, current, new);
240 } while (old != current);
241 }
242
243 static uint32_t
244 anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size);
245
246 void
247 anv_block_pool_init(struct anv_block_pool *pool,
248 struct anv_device *device, uint32_t block_size)
249 {
250 assert(is_power_of_two(block_size));
251
252 pool->device = device;
253 pool->bo.gem_handle = 0;
254 pool->bo.offset = 0;
255 pool->block_size = block_size;
256 pool->free_list = ANV_FREE_LIST_EMPTY;
257 anv_vector_init(&pool->mmap_cleanups,
258 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
259
260 /* Immediately grow the pool so we'll have a backing bo. */
261 pool->state.next = 0;
262 pool->state.end = anv_block_pool_grow(pool, 0);
263 }
264
265 void
266 anv_block_pool_finish(struct anv_block_pool *pool)
267 {
268 struct anv_mmap_cleanup *cleanup;
269
270 anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
271 if (cleanup->map)
272 munmap(cleanup->map, cleanup->size);
273 if (cleanup->gem_handle)
274 anv_gem_close(pool->device, cleanup->gem_handle);
275 }
276
277 anv_vector_finish(&pool->mmap_cleanups);
278
279 close(pool->fd);
280 }
281
282 static uint32_t
283 anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size)
284 {
285 size_t size;
286 void *map;
287 int gem_handle;
288 struct anv_mmap_cleanup *cleanup;
289
290 if (old_size == 0) {
291 size = 32 * pool->block_size;
292 } else {
293 size = old_size * 2;
294 }
295
296 cleanup = anv_vector_add(&pool->mmap_cleanups);
297 if (!cleanup)
298 return 0;
299 *cleanup = ANV_MMAP_CLEANUP_INIT;
300
301 if (old_size == 0)
302 pool->fd = memfd_create("block pool", MFD_CLOEXEC);
303
304 if (pool->fd == -1)
305 return 0;
306
307 if (ftruncate(pool->fd, size) == -1)
308 return 0;
309
310 /* First try to see if mremap can grow the map in place. */
311 map = MAP_FAILED;
312 if (old_size > 0)
313 map = mremap(pool->map, old_size, size, 0);
314 if (map == MAP_FAILED) {
315 /* Just leak the old map until we destroy the pool. We can't munmap it
316 * without races or imposing locking on the block allocate fast path. On
317 * the whole the leaked maps adds up to less than the size of the
318 * current map. MAP_POPULATE seems like the right thing to do, but we
319 * should try to get some numbers.
320 */
321 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
322 MAP_SHARED | MAP_POPULATE, pool->fd, 0);
323 cleanup->map = map;
324 cleanup->size = size;
325 }
326 if (map == MAP_FAILED)
327 return 0;
328
329 gem_handle = anv_gem_userptr(pool->device, map, size);
330 if (gem_handle == 0)
331 return 0;
332 cleanup->gem_handle = gem_handle;
333
334 /* Now that we successfull allocated everything, we can write the new
335 * values back into pool. */
336 pool->map = map;
337 pool->bo.gem_handle = gem_handle;
338 pool->bo.size = size;
339 pool->bo.map = map;
340 pool->bo.index = 0;
341
342 return size;
343 }
344
345 uint32_t
346 anv_block_pool_alloc(struct anv_block_pool *pool)
347 {
348 uint32_t offset;
349 struct anv_block_state state, old, new;
350
351 /* Try free list first. */
352 if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
353 assert(pool->map);
354 return offset;
355 }
356
357 restart:
358 state.u64 = __sync_fetch_and_add(&pool->state.u64, pool->block_size);
359 if (state.next < state.end) {
360 assert(pool->map);
361 return state.next;
362 } else if (state.next == state.end) {
363 /* We allocated the first block outside the pool, we have to grow it.
364 * pool->next_block acts a mutex: threads who try to allocate now will
365 * get block indexes above the current limit and hit futex_wait
366 * below. */
367 new.next = state.next + pool->block_size;
368 new.end = anv_block_pool_grow(pool, state.end);
369 assert(new.end > 0);
370 old.u64 = __sync_lock_test_and_set(&pool->state.u64, new.u64);
371 if (old.next != state.next)
372 futex_wake(&pool->state.end, INT_MAX);
373 return state.next;
374 } else {
375 futex_wait(&pool->state.end, state.end);
376 goto restart;
377 }
378 }
379
380 void
381 anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset)
382 {
383 anv_free_list_push(&pool->free_list, pool->map, offset);
384 }
385
386 static void
387 anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
388 size_t state_size)
389 {
390 /* At least a cache line and must divide the block size. */
391 assert(state_size >= 64 && is_power_of_two(state_size));
392
393 pool->state_size = state_size;
394 pool->free_list = ANV_FREE_LIST_EMPTY;
395 pool->block.next = 0;
396 pool->block.end = 0;
397 }
398
399 static uint32_t
400 anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
401 struct anv_block_pool *block_pool)
402 {
403 uint32_t offset;
404 struct anv_block_state block, old, new;
405
406 /* Try free list first. */
407 if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset))
408 return offset;
409
410 /* If free list was empty (or somebody raced us and took the items) we
411 * allocate a new item from the end of the block */
412 restart:
413 block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
414
415 if (block.next < block.end) {
416 return block.next;
417 } else if (block.next == block.end) {
418 offset = anv_block_pool_alloc(block_pool);
419 new.next = offset + pool->state_size;
420 new.end = offset + block_pool->block_size;
421 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
422 if (old.next != block.next)
423 futex_wake(&pool->block.end, INT_MAX);
424 return offset;
425 } else {
426 futex_wait(&pool->block.end, block.end);
427 goto restart;
428 }
429 }
430
431 static void
432 anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
433 struct anv_block_pool *block_pool,
434 uint32_t offset)
435 {
436 anv_free_list_push(&pool->free_list, block_pool->map, offset);
437 }
438
439 void
440 anv_state_pool_init(struct anv_state_pool *pool,
441 struct anv_block_pool *block_pool)
442 {
443 pool->block_pool = block_pool;
444 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
445 size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
446 anv_fixed_size_state_pool_init(&pool->buckets[i], size);
447 }
448 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
449 }
450
451 void
452 anv_state_pool_finish(struct anv_state_pool *pool)
453 {
454 VG(VALGRIND_DESTROY_MEMPOOL(pool));
455 }
456
457 struct anv_state
458 anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
459 {
460 unsigned size_log2 = ilog2_round_up(size < align ? align : size);
461 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
462 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
463 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
464 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
465
466 struct anv_state state;
467 state.alloc_size = 1 << size_log2;
468 state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
469 pool->block_pool);
470 state.map = pool->block_pool->map + state.offset;
471 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
472 return state;
473 }
474
475 void
476 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
477 {
478 assert(is_power_of_two(state.alloc_size));
479 unsigned size_log2 = ilog2_round_up(state.alloc_size);
480 assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
481 size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
482 unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
483
484 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
485 anv_fixed_size_state_pool_free(&pool->buckets[bucket],
486 pool->block_pool, state.offset);
487 }
488
489 #define NULL_BLOCK 1
490 struct stream_block {
491 uint32_t next;
492
493 /* The map for the BO at the time the block was givne to us */
494 void *current_map;
495
496 #ifdef HAVE_VALGRIND
497 void *_vg_ptr;
498 #endif
499 };
500
501 /* The state stream allocator is a one-shot, single threaded allocator for
502 * variable sized blocks. We use it for allocating dynamic state.
503 */
504 void
505 anv_state_stream_init(struct anv_state_stream *stream,
506 struct anv_block_pool *block_pool)
507 {
508 stream->block_pool = block_pool;
509 stream->next = 0;
510 stream->end = 0;
511 stream->current_block = NULL_BLOCK;
512
513 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
514 }
515
516 void
517 anv_state_stream_finish(struct anv_state_stream *stream)
518 {
519 struct stream_block *sb;
520 uint32_t block, next_block;
521
522 block = stream->current_block;
523 while (block != NULL_BLOCK) {
524 sb = stream->block_pool->map + block;
525 next_block = VG_NOACCESS_READ(&sb->next);
526 VG(VALGRIND_MEMPOOL_FREE(stream, VG_NOACCESS_READ(&sb->_vg_ptr)));
527 anv_block_pool_free(stream->block_pool, block);
528 block = next_block;
529 }
530
531 VG(VALGRIND_DESTROY_MEMPOOL(stream));
532 }
533
534 struct anv_state
535 anv_state_stream_alloc(struct anv_state_stream *stream,
536 uint32_t size, uint32_t alignment)
537 {
538 struct stream_block *sb;
539 struct anv_state state;
540 uint32_t block;
541
542 state.offset = align_u32(stream->next, alignment);
543 if (state.offset + size > stream->end) {
544 block = anv_block_pool_alloc(stream->block_pool);
545 void *current_map = stream->block_pool->map;
546 sb = current_map + block;
547 VG_NOACCESS_WRITE(&sb->current_map, current_map);
548 VG_NOACCESS_WRITE(&sb->next, stream->current_block);
549 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0));
550 stream->current_block = block;
551 stream->next = block + sizeof(*sb);
552 stream->end = block + stream->block_pool->block_size;
553 state.offset = align_u32(stream->next, alignment);
554 assert(state.offset + size <= stream->end);
555 }
556
557 sb = stream->block_pool->map + stream->current_block;
558 void *current_map = VG_NOACCESS_READ(&sb->current_map);
559
560 state.map = current_map + state.offset;
561 state.alloc_size = size;
562
563 #ifdef HAVE_VALGRIND
564 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
565 if (vg_ptr == NULL) {
566 vg_ptr = state.map;
567 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
568 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
569 } else {
570 ptrdiff_t vg_offset = vg_ptr - current_map;
571 assert(vg_offset >= stream->current_block &&
572 vg_offset < stream->end);
573 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr,
574 (state.offset + size) - vg_offset);
575 }
576 #endif
577
578 stream->next = state.offset + size;
579
580 return state;
581 }
582
583 struct bo_pool_bo_link {
584 struct bo_pool_bo_link *next;
585 struct anv_bo bo;
586 };
587
588 void
589 anv_bo_pool_init(struct anv_bo_pool *pool,
590 struct anv_device *device, uint32_t bo_size)
591 {
592 pool->device = device;
593 pool->bo_size = bo_size;
594 pool->free_list = NULL;
595
596 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
597 }
598
599 void
600 anv_bo_pool_finish(struct anv_bo_pool *pool)
601 {
602 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
603 while (link != NULL) {
604 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
605
606 anv_gem_munmap(link_copy.bo.map, pool->bo_size);
607 anv_gem_close(pool->device, link_copy.bo.gem_handle);
608 link = link_copy.next;
609 }
610
611 VG(VALGRIND_DESTROY_MEMPOOL(pool));
612 }
613
614 VkResult
615 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
616 {
617 VkResult result;
618
619 void *next_free_void;
620 if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
621 struct bo_pool_bo_link *next_free = next_free_void;
622 *bo = VG_NOACCESS_READ(&next_free->bo);
623 assert(bo->map == next_free);
624 assert(bo->size == pool->bo_size);
625
626 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
627
628 return VK_SUCCESS;
629 }
630
631 struct anv_bo new_bo;
632
633 result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
634 if (result != VK_SUCCESS)
635 return result;
636
637 assert(new_bo.size == pool->bo_size);
638
639 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size);
640 if (new_bo.map == NULL) {
641 anv_gem_close(pool->device, new_bo.gem_handle);
642 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
643 }
644
645 *bo = new_bo;
646
647 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
648
649 return VK_SUCCESS;
650 }
651
652 void
653 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
654 {
655 struct bo_pool_bo_link *link = bo->map;
656 link->bo = *bo;
657
658 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
659 anv_ptr_free_list_push(&pool->free_list, link);
660 }