Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / vulkan / overlay-layer / overlay.cpp
1 /*
2 * Copyright © 2019 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <string.h>
25 #include <stdlib.h>
26 #include <assert.h>
27
28 #include <vulkan/vulkan.h>
29 #include <vulkan/vk_layer.h>
30
31 #include "git_sha1.h"
32
33 #include "imgui.h"
34
35 #include "overlay_params.h"
36
37 #include "util/debug.h"
38 #include "util/hash_table.h"
39 #include "util/list.h"
40 #include "util/ralloc.h"
41 #include "util/os_time.h"
42 #include "util/os_socket.h"
43 #include "util/simple_mtx.h"
44
45 #include "vk_enum_to_str.h"
46 #include "vk_util.h"
47
48 /* Mapped from VkInstace/VkPhysicalDevice */
49 struct instance_data {
50 struct vk_instance_dispatch_table vtable;
51 VkInstance instance;
52
53 struct overlay_params params;
54 bool pipeline_statistics_enabled;
55
56 bool first_line_printed;
57
58 int control_client;
59
60 /* Dumping of frame stats to a file has been enabled. */
61 bool capture_enabled;
62
63 /* Dumping of frame stats to a file has been enabled and started. */
64 bool capture_started;
65 };
66
67 struct frame_stat {
68 uint64_t stats[OVERLAY_PARAM_ENABLED_MAX];
69 };
70
71 /* Mapped from VkDevice */
72 struct queue_data;
73 struct device_data {
74 struct instance_data *instance;
75
76 PFN_vkSetDeviceLoaderData set_device_loader_data;
77
78 struct vk_device_dispatch_table vtable;
79 VkPhysicalDevice physical_device;
80 VkDevice device;
81
82 VkPhysicalDeviceProperties properties;
83
84 struct queue_data *graphic_queue;
85
86 struct queue_data **queues;
87 uint32_t n_queues;
88
89 /* For a single frame */
90 struct frame_stat frame_stats;
91 };
92
93 /* Mapped from VkCommandBuffer */
94 struct command_buffer_data {
95 struct device_data *device;
96
97 VkCommandBufferLevel level;
98
99 VkCommandBuffer cmd_buffer;
100 VkQueryPool pipeline_query_pool;
101 VkQueryPool timestamp_query_pool;
102 uint32_t query_index;
103
104 struct frame_stat stats;
105
106 struct list_head link; /* link into queue_data::running_command_buffer */
107 };
108
109 /* Mapped from VkQueue */
110 struct queue_data {
111 struct device_data *device;
112
113 VkQueue queue;
114 VkQueueFlags flags;
115 uint32_t family_index;
116 uint64_t timestamp_mask;
117
118 VkFence queries_fence;
119
120 struct list_head running_command_buffer;
121 };
122
123 struct overlay_draw {
124 struct list_head link;
125
126 VkCommandBuffer command_buffer;
127
128 VkSemaphore cross_engine_semaphore;
129
130 VkSemaphore semaphore;
131 VkFence fence;
132
133 VkBuffer vertex_buffer;
134 VkDeviceMemory vertex_buffer_mem;
135 VkDeviceSize vertex_buffer_size;
136
137 VkBuffer index_buffer;
138 VkDeviceMemory index_buffer_mem;
139 VkDeviceSize index_buffer_size;
140 };
141
142 /* Mapped from VkSwapchainKHR */
143 struct swapchain_data {
144 struct device_data *device;
145
146 VkSwapchainKHR swapchain;
147 unsigned width, height;
148 VkFormat format;
149
150 uint32_t n_images;
151 VkImage *images;
152 VkImageView *image_views;
153 VkFramebuffer *framebuffers;
154
155 VkRenderPass render_pass;
156
157 VkDescriptorPool descriptor_pool;
158 VkDescriptorSetLayout descriptor_layout;
159 VkDescriptorSet descriptor_set;
160
161 VkSampler font_sampler;
162
163 VkPipelineLayout pipeline_layout;
164 VkPipeline pipeline;
165
166 VkCommandPool command_pool;
167
168 struct list_head draws; /* List of struct overlay_draw */
169
170 bool font_uploaded;
171 VkImage font_image;
172 VkImageView font_image_view;
173 VkDeviceMemory font_mem;
174 VkBuffer upload_font_buffer;
175 VkDeviceMemory upload_font_buffer_mem;
176
177 /**/
178 ImGuiContext* imgui_context;
179 ImVec2 window_size;
180
181 /**/
182 uint64_t n_frames;
183 uint64_t last_present_time;
184
185 unsigned n_frames_since_update;
186 uint64_t last_fps_update;
187 double fps;
188
189 enum overlay_param_enabled stat_selector;
190 double time_dividor;
191 struct frame_stat stats_min, stats_max;
192 struct frame_stat frames_stats[200];
193
194 /* Over a single frame */
195 struct frame_stat frame_stats;
196
197 /* Over fps_sampling_period */
198 struct frame_stat accumulated_stats;
199 };
200
201 static const VkQueryPipelineStatisticFlags overlay_query_flags =
202 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT |
203 VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT |
204 VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT |
205 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT |
206 VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT |
207 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT |
208 VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT |
209 VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT |
210 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT |
211 VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT |
212 VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT;
213 #define OVERLAY_QUERY_COUNT (11)
214
215 static struct hash_table_u64 *vk_object_to_data = NULL;
216 static simple_mtx_t vk_object_to_data_mutex = _SIMPLE_MTX_INITIALIZER_NP;
217
218 thread_local ImGuiContext* __MesaImGui;
219
220 static inline void ensure_vk_object_map(void)
221 {
222 if (!vk_object_to_data)
223 vk_object_to_data = _mesa_hash_table_u64_create(NULL);
224 }
225
226 #define HKEY(obj) ((uint64_t)(obj))
227 #define FIND(type, obj) ((type *)find_object_data(HKEY(obj)))
228
229 static void *find_object_data(uint64_t obj)
230 {
231 simple_mtx_lock(&vk_object_to_data_mutex);
232 ensure_vk_object_map();
233 void *data = _mesa_hash_table_u64_search(vk_object_to_data, obj);
234 simple_mtx_unlock(&vk_object_to_data_mutex);
235 return data;
236 }
237
238 static void map_object(uint64_t obj, void *data)
239 {
240 simple_mtx_lock(&vk_object_to_data_mutex);
241 ensure_vk_object_map();
242 _mesa_hash_table_u64_insert(vk_object_to_data, obj, data);
243 simple_mtx_unlock(&vk_object_to_data_mutex);
244 }
245
246 static void unmap_object(uint64_t obj)
247 {
248 simple_mtx_lock(&vk_object_to_data_mutex);
249 _mesa_hash_table_u64_remove(vk_object_to_data, obj);
250 simple_mtx_unlock(&vk_object_to_data_mutex);
251 }
252
253 /**/
254
255 #define VK_CHECK(expr) \
256 do { \
257 VkResult __result = (expr); \
258 if (__result != VK_SUCCESS) { \
259 fprintf(stderr, "'%s' line %i failed with %s\n", \
260 #expr, __LINE__, vk_Result_to_str(__result)); \
261 } \
262 } while (0)
263
264 /**/
265
266 static VkLayerInstanceCreateInfo *get_instance_chain_info(const VkInstanceCreateInfo *pCreateInfo,
267 VkLayerFunction func)
268 {
269 vk_foreach_struct(item, pCreateInfo->pNext) {
270 if (item->sType == VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO &&
271 ((VkLayerInstanceCreateInfo *) item)->function == func)
272 return (VkLayerInstanceCreateInfo *) item;
273 }
274 unreachable("instance chain info not found");
275 return NULL;
276 }
277
278 static VkLayerDeviceCreateInfo *get_device_chain_info(const VkDeviceCreateInfo *pCreateInfo,
279 VkLayerFunction func)
280 {
281 vk_foreach_struct(item, pCreateInfo->pNext) {
282 if (item->sType == VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO &&
283 ((VkLayerDeviceCreateInfo *) item)->function == func)
284 return (VkLayerDeviceCreateInfo *)item;
285 }
286 unreachable("device chain info not found");
287 return NULL;
288 }
289
290 static struct VkBaseOutStructure *
291 clone_chain(const struct VkBaseInStructure *chain)
292 {
293 struct VkBaseOutStructure *head = NULL, *tail = NULL;
294
295 vk_foreach_struct_const(item, chain) {
296 size_t item_size = vk_structure_type_size(item);
297 struct VkBaseOutStructure *new_item =
298 (struct VkBaseOutStructure *)malloc(item_size);;
299
300 memcpy(new_item, item, item_size);
301
302 if (!head)
303 head = new_item;
304 if (tail)
305 tail->pNext = new_item;
306 tail = new_item;
307 }
308
309 return head;
310 }
311
312 static void
313 free_chain(struct VkBaseOutStructure *chain)
314 {
315 while (chain) {
316 void *node = chain;
317 chain = chain->pNext;
318 free(node);
319 }
320 }
321
322 /**/
323
324 static struct instance_data *new_instance_data(VkInstance instance)
325 {
326 struct instance_data *data = rzalloc(NULL, struct instance_data);
327 data->instance = instance;
328 data->control_client = -1;
329 map_object(HKEY(data->instance), data);
330 return data;
331 }
332
333 static void destroy_instance_data(struct instance_data *data)
334 {
335 if (data->params.output_file)
336 fclose(data->params.output_file);
337 if (data->params.control >= 0)
338 os_socket_close(data->params.control);
339 unmap_object(HKEY(data->instance));
340 ralloc_free(data);
341 }
342
343 static void instance_data_map_physical_devices(struct instance_data *instance_data,
344 bool map)
345 {
346 uint32_t physicalDeviceCount = 0;
347 instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
348 &physicalDeviceCount,
349 NULL);
350
351 VkPhysicalDevice *physicalDevices = (VkPhysicalDevice *) malloc(sizeof(VkPhysicalDevice) * physicalDeviceCount);
352 instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance,
353 &physicalDeviceCount,
354 physicalDevices);
355
356 for (uint32_t i = 0; i < physicalDeviceCount; i++) {
357 if (map)
358 map_object(HKEY(physicalDevices[i]), instance_data);
359 else
360 unmap_object(HKEY(physicalDevices[i]));
361 }
362
363 free(physicalDevices);
364 }
365
366 /**/
367 static struct device_data *new_device_data(VkDevice device, struct instance_data *instance)
368 {
369 struct device_data *data = rzalloc(NULL, struct device_data);
370 data->instance = instance;
371 data->device = device;
372 map_object(HKEY(data->device), data);
373 return data;
374 }
375
376 static struct queue_data *new_queue_data(VkQueue queue,
377 const VkQueueFamilyProperties *family_props,
378 uint32_t family_index,
379 struct device_data *device_data)
380 {
381 struct queue_data *data = rzalloc(device_data, struct queue_data);
382 data->device = device_data;
383 data->queue = queue;
384 data->flags = family_props->queueFlags;
385 data->timestamp_mask = (1ull << family_props->timestampValidBits) - 1;
386 data->family_index = family_index;
387 list_inithead(&data->running_command_buffer);
388 map_object(HKEY(data->queue), data);
389
390 /* Fence synchronizing access to queries on that queue. */
391 VkFenceCreateInfo fence_info = {};
392 fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
393 fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT;
394 VK_CHECK(device_data->vtable.CreateFence(device_data->device,
395 &fence_info,
396 NULL,
397 &data->queries_fence));
398
399 if (data->flags & VK_QUEUE_GRAPHICS_BIT)
400 device_data->graphic_queue = data;
401
402 return data;
403 }
404
405 static void destroy_queue(struct queue_data *data)
406 {
407 struct device_data *device_data = data->device;
408 device_data->vtable.DestroyFence(device_data->device, data->queries_fence, NULL);
409 unmap_object(HKEY(data->queue));
410 ralloc_free(data);
411 }
412
413 static void device_map_queues(struct device_data *data,
414 const VkDeviceCreateInfo *pCreateInfo)
415 {
416 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
417 data->n_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
418 data->queues = ralloc_array(data, struct queue_data *, data->n_queues);
419
420 struct instance_data *instance_data = data->instance;
421 uint32_t n_family_props;
422 instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
423 &n_family_props,
424 NULL);
425 VkQueueFamilyProperties *family_props =
426 (VkQueueFamilyProperties *)malloc(sizeof(VkQueueFamilyProperties) * n_family_props);
427 instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device,
428 &n_family_props,
429 family_props);
430
431 uint32_t queue_index = 0;
432 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
433 for (uint32_t j = 0; j < pCreateInfo->pQueueCreateInfos[i].queueCount; j++) {
434 VkQueue queue;
435 data->vtable.GetDeviceQueue(data->device,
436 pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex,
437 j, &queue);
438
439 VK_CHECK(data->set_device_loader_data(data->device, queue));
440
441 data->queues[queue_index++] =
442 new_queue_data(queue, &family_props[pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex],
443 pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex, data);
444 }
445 }
446
447 free(family_props);
448 }
449
450 static void device_unmap_queues(struct device_data *data)
451 {
452 for (uint32_t i = 0; i < data->n_queues; i++)
453 destroy_queue(data->queues[i]);
454 }
455
456 static void destroy_device_data(struct device_data *data)
457 {
458 unmap_object(HKEY(data->device));
459 ralloc_free(data);
460 }
461
462 /**/
463 static struct command_buffer_data *new_command_buffer_data(VkCommandBuffer cmd_buffer,
464 VkCommandBufferLevel level,
465 VkQueryPool pipeline_query_pool,
466 VkQueryPool timestamp_query_pool,
467 uint32_t query_index,
468 struct device_data *device_data)
469 {
470 struct command_buffer_data *data = rzalloc(NULL, struct command_buffer_data);
471 data->device = device_data;
472 data->cmd_buffer = cmd_buffer;
473 data->level = level;
474 data->pipeline_query_pool = pipeline_query_pool;
475 data->timestamp_query_pool = timestamp_query_pool;
476 data->query_index = query_index;
477 list_inithead(&data->link);
478 map_object(HKEY(data->cmd_buffer), data);
479 return data;
480 }
481
482 static void destroy_command_buffer_data(struct command_buffer_data *data)
483 {
484 unmap_object(HKEY(data->cmd_buffer));
485 list_delinit(&data->link);
486 ralloc_free(data);
487 }
488
489 /**/
490 static struct swapchain_data *new_swapchain_data(VkSwapchainKHR swapchain,
491 struct device_data *device_data)
492 {
493 struct instance_data *instance_data = device_data->instance;
494 struct swapchain_data *data = rzalloc(NULL, struct swapchain_data);
495 data->device = device_data;
496 data->swapchain = swapchain;
497 data->window_size = ImVec2(instance_data->params.width, instance_data->params.height);
498 list_inithead(&data->draws);
499 map_object(HKEY(data->swapchain), data);
500 return data;
501 }
502
503 static void destroy_swapchain_data(struct swapchain_data *data)
504 {
505 unmap_object(HKEY(data->swapchain));
506 ralloc_free(data);
507 }
508
509 struct overlay_draw *get_overlay_draw(struct swapchain_data *data)
510 {
511 struct device_data *device_data = data->device;
512 struct overlay_draw *draw = list_is_empty(&data->draws) ?
513 NULL : list_first_entry(&data->draws, struct overlay_draw, link);
514
515 VkSemaphoreCreateInfo sem_info = {};
516 sem_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
517
518 if (draw && device_data->vtable.GetFenceStatus(device_data->device, draw->fence) == VK_SUCCESS) {
519 list_del(&draw->link);
520 VK_CHECK(device_data->vtable.ResetFences(device_data->device,
521 1, &draw->fence));
522 list_addtail(&draw->link, &data->draws);
523 return draw;
524 }
525
526 draw = rzalloc(data, struct overlay_draw);
527
528 VkCommandBufferAllocateInfo cmd_buffer_info = {};
529 cmd_buffer_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
530 cmd_buffer_info.commandPool = data->command_pool;
531 cmd_buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
532 cmd_buffer_info.commandBufferCount = 1;
533 VK_CHECK(device_data->vtable.AllocateCommandBuffers(device_data->device,
534 &cmd_buffer_info,
535 &draw->command_buffer));
536 VK_CHECK(device_data->set_device_loader_data(device_data->device,
537 draw->command_buffer));
538
539
540 VkFenceCreateInfo fence_info = {};
541 fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
542 VK_CHECK(device_data->vtable.CreateFence(device_data->device,
543 &fence_info,
544 NULL,
545 &draw->fence));
546
547 VK_CHECK(device_data->vtable.CreateSemaphore(device_data->device, &sem_info,
548 NULL, &draw->semaphore));
549 VK_CHECK(device_data->vtable.CreateSemaphore(device_data->device, &sem_info,
550 NULL, &draw->cross_engine_semaphore));
551
552 list_addtail(&draw->link, &data->draws);
553
554 return draw;
555 }
556
557 static const char *param_unit(enum overlay_param_enabled param)
558 {
559 switch (param) {
560 case OVERLAY_PARAM_ENABLED_frame_timing:
561 case OVERLAY_PARAM_ENABLED_acquire_timing:
562 case OVERLAY_PARAM_ENABLED_present_timing:
563 return "(us)";
564 case OVERLAY_PARAM_ENABLED_gpu_timing:
565 return "(ns)";
566 default:
567 return "";
568 }
569 }
570
571 static void parse_command(struct instance_data *instance_data,
572 const char *cmd, unsigned cmdlen,
573 const char *param, unsigned paramlen)
574 {
575 if (!strncmp(cmd, "capture", cmdlen)) {
576 int value = atoi(param);
577 bool enabled = value > 0;
578
579 if (enabled) {
580 instance_data->capture_enabled = true;
581 } else {
582 instance_data->capture_enabled = false;
583 instance_data->capture_started = false;
584 }
585 }
586 }
587
588 #define BUFSIZE 4096
589
590 /**
591 * This function will process commands through the control file.
592 *
593 * A command starts with a colon, followed by the command, and followed by an
594 * option '=' and a parameter. It has to end with a semi-colon. A full command
595 * + parameter looks like:
596 *
597 * :cmd=param;
598 */
599 static void process_char(struct instance_data *instance_data, char c)
600 {
601 static char cmd[BUFSIZE];
602 static char param[BUFSIZE];
603
604 static unsigned cmdpos = 0;
605 static unsigned parampos = 0;
606 static bool reading_cmd = false;
607 static bool reading_param = false;
608
609 switch (c) {
610 case ':':
611 cmdpos = 0;
612 parampos = 0;
613 reading_cmd = true;
614 reading_param = false;
615 break;
616 case ';':
617 if (!reading_cmd)
618 break;
619 cmd[cmdpos++] = '\0';
620 param[parampos++] = '\0';
621 parse_command(instance_data, cmd, cmdpos, param, parampos);
622 reading_cmd = false;
623 reading_param = false;
624 break;
625 case '=':
626 if (!reading_cmd)
627 break;
628 reading_param = true;
629 break;
630 default:
631 if (!reading_cmd)
632 break;
633
634 if (reading_param) {
635 /* overflow means an invalid parameter */
636 if (parampos >= BUFSIZE - 1) {
637 reading_cmd = false;
638 reading_param = false;
639 break;
640 }
641
642 param[parampos++] = c;
643 } else {
644 /* overflow means an invalid command */
645 if (cmdpos >= BUFSIZE - 1) {
646 reading_cmd = false;
647 break;
648 }
649
650 cmd[cmdpos++] = c;
651 }
652 }
653 }
654
655 static void control_send(struct instance_data *instance_data,
656 const char *cmd, unsigned cmdlen,
657 const char *param, unsigned paramlen)
658 {
659 unsigned msglen = 0;
660 char buffer[BUFSIZE];
661
662 assert(cmdlen + paramlen + 3 < BUFSIZE);
663
664 buffer[msglen++] = ':';
665
666 memcpy(&buffer[msglen], cmd, cmdlen);
667 msglen += cmdlen;
668
669 if (paramlen > 0) {
670 buffer[msglen++] = '=';
671 memcpy(&buffer[msglen], param, paramlen);
672 msglen += paramlen;
673 buffer[msglen++] = ';';
674 }
675
676 os_socket_send(instance_data->control_client, buffer, msglen, 0);
677 }
678
679 static void control_send_connection_string(struct device_data *device_data)
680 {
681 struct instance_data *instance_data = device_data->instance;
682
683 const char *controlVersionCmd = "MesaOverlayControlVersion";
684 const char *controlVersionString = "1";
685
686 control_send(instance_data, controlVersionCmd, strlen(controlVersionCmd),
687 controlVersionString, strlen(controlVersionString));
688
689 const char *deviceCmd = "DeviceName";
690 const char *deviceName = device_data->properties.deviceName;
691
692 control_send(instance_data, deviceCmd, strlen(deviceCmd),
693 deviceName, strlen(deviceName));
694
695 const char *mesaVersionCmd = "MesaVersion";
696 const char *mesaVersionString = "Mesa " PACKAGE_VERSION MESA_GIT_SHA1;
697
698 control_send(instance_data, mesaVersionCmd, strlen(mesaVersionCmd),
699 mesaVersionString, strlen(mesaVersionString));
700 }
701
702 static void control_client_check(struct device_data *device_data)
703 {
704 struct instance_data *instance_data = device_data->instance;
705
706 /* Already connected, just return. */
707 if (instance_data->control_client >= 0)
708 return;
709
710 int socket = os_socket_accept(instance_data->params.control);
711 if (socket == -1) {
712 if (errno != EAGAIN && errno != EWOULDBLOCK && errno != ECONNABORTED)
713 fprintf(stderr, "ERROR on socket: %s\n", strerror(errno));
714 return;
715 }
716
717 if (socket >= 0) {
718 os_socket_block(socket, false);
719 instance_data->control_client = socket;
720 control_send_connection_string(device_data);
721 }
722 }
723
724 static void control_client_disconnected(struct instance_data *instance_data)
725 {
726 os_socket_close(instance_data->control_client);
727 instance_data->control_client = -1;
728 }
729
730 static void process_control_socket(struct instance_data *instance_data)
731 {
732 const int client = instance_data->control_client;
733 if (client >= 0) {
734 char buf[BUFSIZE];
735
736 while (true) {
737 ssize_t n = os_socket_recv(client, buf, BUFSIZE, 0);
738
739 if (n == -1) {
740 if (errno == EAGAIN || errno == EWOULDBLOCK) {
741 /* nothing to read, try again later */
742 break;
743 }
744
745 if (errno != ECONNRESET)
746 fprintf(stderr, "ERROR on connection: %s\n", strerror(errno));
747
748 control_client_disconnected(instance_data);
749 } else if (n == 0) {
750 /* recv() returns 0 when the client disconnects */
751 control_client_disconnected(instance_data);
752 }
753
754 for (ssize_t i = 0; i < n; i++) {
755 process_char(instance_data, buf[i]);
756 }
757
758 /* If we try to read BUFSIZE and receive BUFSIZE bytes from the
759 * socket, there's a good chance that there's still more data to be
760 * read, so we will try again. Otherwise, simply be done for this
761 * iteration and try again on the next frame.
762 */
763 if (n < BUFSIZE)
764 break;
765 }
766 }
767 }
768
769 static void snapshot_swapchain_frame(struct swapchain_data *data)
770 {
771 struct device_data *device_data = data->device;
772 struct instance_data *instance_data = device_data->instance;
773 uint32_t f_idx = data->n_frames % ARRAY_SIZE(data->frames_stats);
774 uint64_t now = os_time_get(); /* us */
775
776 if (instance_data->params.control >= 0) {
777 control_client_check(device_data);
778 process_control_socket(instance_data);
779 }
780
781 if (data->last_present_time) {
782 data->frame_stats.stats[OVERLAY_PARAM_ENABLED_frame_timing] =
783 now - data->last_present_time;
784 }
785
786 memset(&data->frames_stats[f_idx], 0, sizeof(data->frames_stats[f_idx]));
787 for (int s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
788 data->frames_stats[f_idx].stats[s] += device_data->frame_stats.stats[s] + data->frame_stats.stats[s];
789 data->accumulated_stats.stats[s] += device_data->frame_stats.stats[s] + data->frame_stats.stats[s];
790 }
791
792 /* If capture has been enabled but it hasn't started yet, it means we are on
793 * the first snapshot after it has been enabled. At this point we want to
794 * use the stats captured so far to update the display, but we don't want
795 * this data to cause noise to the stats that we want to capture from now
796 * on.
797 *
798 * capture_begin == true will trigger an update of the fps on display, and a
799 * flush of the data, but no stats will be written to the output file. This
800 * way, we will have only stats from after the capture has been enabled
801 * written to the output_file.
802 */
803 const bool capture_begin =
804 instance_data->capture_enabled && !instance_data->capture_started;
805
806 if (data->last_fps_update) {
807 double elapsed = (double)(now - data->last_fps_update); /* us */
808 if (capture_begin ||
809 elapsed >= instance_data->params.fps_sampling_period) {
810 data->fps = 1000000.0f * data->n_frames_since_update / elapsed;
811 if (instance_data->capture_started) {
812 if (!instance_data->first_line_printed) {
813 bool first_column = true;
814
815 instance_data->first_line_printed = true;
816
817 #define OVERLAY_PARAM_BOOL(name) \
818 if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_##name]) { \
819 fprintf(instance_data->params.output_file, \
820 "%s%s%s", first_column ? "" : ", ", #name, \
821 param_unit(OVERLAY_PARAM_ENABLED_##name)); \
822 first_column = false; \
823 }
824 #define OVERLAY_PARAM_CUSTOM(name)
825 OVERLAY_PARAMS
826 #undef OVERLAY_PARAM_BOOL
827 #undef OVERLAY_PARAM_CUSTOM
828 fprintf(instance_data->params.output_file, "\n");
829 }
830
831 for (int s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
832 if (!instance_data->params.enabled[s])
833 continue;
834 if (s == OVERLAY_PARAM_ENABLED_fps) {
835 fprintf(instance_data->params.output_file,
836 "%s%.2f", s == 0 ? "" : ", ", data->fps);
837 } else {
838 fprintf(instance_data->params.output_file,
839 "%s%" PRIu64, s == 0 ? "" : ", ",
840 data->accumulated_stats.stats[s]);
841 }
842 }
843 fprintf(instance_data->params.output_file, "\n");
844 fflush(instance_data->params.output_file);
845 }
846
847 memset(&data->accumulated_stats, 0, sizeof(data->accumulated_stats));
848 data->n_frames_since_update = 0;
849 data->last_fps_update = now;
850
851 if (capture_begin)
852 instance_data->capture_started = true;
853 }
854 } else {
855 data->last_fps_update = now;
856 }
857
858 memset(&device_data->frame_stats, 0, sizeof(device_data->frame_stats));
859 memset(&data->frame_stats, 0, sizeof(device_data->frame_stats));
860
861 data->last_present_time = now;
862 data->n_frames++;
863 data->n_frames_since_update++;
864 }
865
866 static float get_time_stat(void *_data, int _idx)
867 {
868 struct swapchain_data *data = (struct swapchain_data *) _data;
869 if ((ARRAY_SIZE(data->frames_stats) - _idx) > data->n_frames)
870 return 0.0f;
871 int idx = ARRAY_SIZE(data->frames_stats) +
872 data->n_frames < ARRAY_SIZE(data->frames_stats) ?
873 _idx - data->n_frames :
874 _idx + data->n_frames;
875 idx %= ARRAY_SIZE(data->frames_stats);
876 /* Time stats are in us. */
877 return data->frames_stats[idx].stats[data->stat_selector] / data->time_dividor;
878 }
879
880 static float get_stat(void *_data, int _idx)
881 {
882 struct swapchain_data *data = (struct swapchain_data *) _data;
883 if ((ARRAY_SIZE(data->frames_stats) - _idx) > data->n_frames)
884 return 0.0f;
885 int idx = ARRAY_SIZE(data->frames_stats) +
886 data->n_frames < ARRAY_SIZE(data->frames_stats) ?
887 _idx - data->n_frames :
888 _idx + data->n_frames;
889 idx %= ARRAY_SIZE(data->frames_stats);
890 return data->frames_stats[idx].stats[data->stat_selector];
891 }
892
893 static void position_layer(struct swapchain_data *data)
894
895 {
896 struct device_data *device_data = data->device;
897 struct instance_data *instance_data = device_data->instance;
898 const float margin = 10.0f;
899
900 ImGui::SetNextWindowBgAlpha(0.5);
901 ImGui::SetNextWindowSize(data->window_size, ImGuiCond_Always);
902 switch (instance_data->params.position) {
903 case LAYER_POSITION_TOP_LEFT:
904 ImGui::SetNextWindowPos(ImVec2(margin, margin), ImGuiCond_Always);
905 break;
906 case LAYER_POSITION_TOP_RIGHT:
907 ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x - margin, margin),
908 ImGuiCond_Always);
909 break;
910 case LAYER_POSITION_BOTTOM_LEFT:
911 ImGui::SetNextWindowPos(ImVec2(margin, data->height - data->window_size.y - margin),
912 ImGuiCond_Always);
913 break;
914 case LAYER_POSITION_BOTTOM_RIGHT:
915 ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x - margin,
916 data->height - data->window_size.y - margin),
917 ImGuiCond_Always);
918 break;
919 }
920 }
921
922 static void compute_swapchain_display(struct swapchain_data *data)
923 {
924 struct device_data *device_data = data->device;
925 struct instance_data *instance_data = device_data->instance;
926
927 ImGui::SetCurrentContext(data->imgui_context);
928 ImGui::NewFrame();
929 position_layer(data);
930 ImGui::Begin("Mesa overlay");
931 ImGui::Text("Device: %s", device_data->properties.deviceName);
932
933 const char *format_name = vk_Format_to_str(data->format);
934 format_name = format_name ? (format_name + strlen("VK_FORMAT_")) : "unknown";
935 ImGui::Text("Swapchain format: %s", format_name);
936 ImGui::Text("Frames: %" PRIu64, data->n_frames);
937 if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_fps])
938 ImGui::Text("FPS: %.2f" , data->fps);
939
940 /* Recompute min/max */
941 for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
942 data->stats_min.stats[s] = UINT64_MAX;
943 data->stats_max.stats[s] = 0;
944 }
945 for (uint32_t f = 0; f < MIN2(data->n_frames, ARRAY_SIZE(data->frames_stats)); f++) {
946 for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
947 data->stats_min.stats[s] = MIN2(data->frames_stats[f].stats[s],
948 data->stats_min.stats[s]);
949 data->stats_max.stats[s] = MAX2(data->frames_stats[f].stats[s],
950 data->stats_max.stats[s]);
951 }
952 }
953 for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
954 assert(data->stats_min.stats[s] != UINT64_MAX);
955 }
956
957 for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++) {
958 if (!instance_data->params.enabled[s] ||
959 s == OVERLAY_PARAM_ENABLED_fps ||
960 s == OVERLAY_PARAM_ENABLED_frame)
961 continue;
962
963 char hash[40];
964 snprintf(hash, sizeof(hash), "##%s", overlay_param_names[s]);
965 data->stat_selector = (enum overlay_param_enabled) s;
966 data->time_dividor = 1000.0f;
967 if (s == OVERLAY_PARAM_ENABLED_gpu_timing)
968 data->time_dividor = 1000000.0f;
969
970 if (s == OVERLAY_PARAM_ENABLED_frame_timing ||
971 s == OVERLAY_PARAM_ENABLED_acquire_timing ||
972 s == OVERLAY_PARAM_ENABLED_present_timing ||
973 s == OVERLAY_PARAM_ENABLED_gpu_timing) {
974 double min_time = data->stats_min.stats[s] / data->time_dividor;
975 double max_time = data->stats_max.stats[s] / data->time_dividor;
976 ImGui::PlotHistogram(hash, get_time_stat, data,
977 ARRAY_SIZE(data->frames_stats), 0,
978 NULL, min_time, max_time,
979 ImVec2(ImGui::GetContentRegionAvailWidth(), 30));
980 ImGui::Text("%s: %.3fms [%.3f, %.3f]", overlay_param_names[s],
981 get_time_stat(data, ARRAY_SIZE(data->frames_stats) - 1),
982 min_time, max_time);
983 } else {
984 ImGui::PlotHistogram(hash, get_stat, data,
985 ARRAY_SIZE(data->frames_stats), 0,
986 NULL,
987 data->stats_min.stats[s],
988 data->stats_max.stats[s],
989 ImVec2(ImGui::GetContentRegionAvailWidth(), 30));
990 ImGui::Text("%s: %.0f [%" PRIu64 ", %" PRIu64 "]", overlay_param_names[s],
991 get_stat(data, ARRAY_SIZE(data->frames_stats) - 1),
992 data->stats_min.stats[s], data->stats_max.stats[s]);
993 }
994 }
995 data->window_size = ImVec2(data->window_size.x, ImGui::GetCursorPosY() + 10.0f);
996 ImGui::End();
997 ImGui::EndFrame();
998 ImGui::Render();
999 }
1000
1001 static uint32_t vk_memory_type(struct device_data *data,
1002 VkMemoryPropertyFlags properties,
1003 uint32_t type_bits)
1004 {
1005 VkPhysicalDeviceMemoryProperties prop;
1006 data->instance->vtable.GetPhysicalDeviceMemoryProperties(data->physical_device, &prop);
1007 for (uint32_t i = 0; i < prop.memoryTypeCount; i++)
1008 if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<<i))
1009 return i;
1010 return 0xFFFFFFFF; // Unable to find memoryType
1011 }
1012
1013 static void ensure_swapchain_fonts(struct swapchain_data *data,
1014 VkCommandBuffer command_buffer)
1015 {
1016 if (data->font_uploaded)
1017 return;
1018
1019 data->font_uploaded = true;
1020
1021 struct device_data *device_data = data->device;
1022 ImGuiIO& io = ImGui::GetIO();
1023 unsigned char* pixels;
1024 int width, height;
1025 io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
1026 size_t upload_size = width * height * 4 * sizeof(char);
1027
1028 /* Upload buffer */
1029 VkBufferCreateInfo buffer_info = {};
1030 buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
1031 buffer_info.size = upload_size;
1032 buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
1033 buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
1034 VK_CHECK(device_data->vtable.CreateBuffer(device_data->device, &buffer_info,
1035 NULL, &data->upload_font_buffer));
1036 VkMemoryRequirements upload_buffer_req;
1037 device_data->vtable.GetBufferMemoryRequirements(device_data->device,
1038 data->upload_font_buffer,
1039 &upload_buffer_req);
1040 VkMemoryAllocateInfo upload_alloc_info = {};
1041 upload_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
1042 upload_alloc_info.allocationSize = upload_buffer_req.size;
1043 upload_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
1044 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
1045 upload_buffer_req.memoryTypeBits);
1046 VK_CHECK(device_data->vtable.AllocateMemory(device_data->device,
1047 &upload_alloc_info,
1048 NULL,
1049 &data->upload_font_buffer_mem));
1050 VK_CHECK(device_data->vtable.BindBufferMemory(device_data->device,
1051 data->upload_font_buffer,
1052 data->upload_font_buffer_mem, 0));
1053
1054 /* Upload to Buffer */
1055 char* map = NULL;
1056 VK_CHECK(device_data->vtable.MapMemory(device_data->device,
1057 data->upload_font_buffer_mem,
1058 0, upload_size, 0, (void**)(&map)));
1059 memcpy(map, pixels, upload_size);
1060 VkMappedMemoryRange range[1] = {};
1061 range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
1062 range[0].memory = data->upload_font_buffer_mem;
1063 range[0].size = upload_size;
1064 VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 1, range));
1065 device_data->vtable.UnmapMemory(device_data->device,
1066 data->upload_font_buffer_mem);
1067
1068 /* Copy buffer to image */
1069 VkImageMemoryBarrier copy_barrier[1] = {};
1070 copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
1071 copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
1072 copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
1073 copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
1074 copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
1075 copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
1076 copy_barrier[0].image = data->font_image;
1077 copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
1078 copy_barrier[0].subresourceRange.levelCount = 1;
1079 copy_barrier[0].subresourceRange.layerCount = 1;
1080 device_data->vtable.CmdPipelineBarrier(command_buffer,
1081 VK_PIPELINE_STAGE_HOST_BIT,
1082 VK_PIPELINE_STAGE_TRANSFER_BIT,
1083 0, 0, NULL, 0, NULL,
1084 1, copy_barrier);
1085
1086 VkBufferImageCopy region = {};
1087 region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
1088 region.imageSubresource.layerCount = 1;
1089 region.imageExtent.width = width;
1090 region.imageExtent.height = height;
1091 region.imageExtent.depth = 1;
1092 device_data->vtable.CmdCopyBufferToImage(command_buffer,
1093 data->upload_font_buffer,
1094 data->font_image,
1095 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1096 1, &region);
1097
1098 VkImageMemoryBarrier use_barrier[1] = {};
1099 use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
1100 use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
1101 use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
1102 use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
1103 use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
1104 use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
1105 use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
1106 use_barrier[0].image = data->font_image;
1107 use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
1108 use_barrier[0].subresourceRange.levelCount = 1;
1109 use_barrier[0].subresourceRange.layerCount = 1;
1110 device_data->vtable.CmdPipelineBarrier(command_buffer,
1111 VK_PIPELINE_STAGE_TRANSFER_BIT,
1112 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
1113 0,
1114 0, NULL,
1115 0, NULL,
1116 1, use_barrier);
1117
1118 /* Store our identifier */
1119 io.Fonts->TexID = (ImTextureID)(intptr_t)data->font_image;
1120 }
1121
1122 static void CreateOrResizeBuffer(struct device_data *data,
1123 VkBuffer *buffer,
1124 VkDeviceMemory *buffer_memory,
1125 VkDeviceSize *buffer_size,
1126 size_t new_size, VkBufferUsageFlagBits usage)
1127 {
1128 if (*buffer != VK_NULL_HANDLE)
1129 data->vtable.DestroyBuffer(data->device, *buffer, NULL);
1130 if (*buffer_memory)
1131 data->vtable.FreeMemory(data->device, *buffer_memory, NULL);
1132
1133 VkBufferCreateInfo buffer_info = {};
1134 buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
1135 buffer_info.size = new_size;
1136 buffer_info.usage = usage;
1137 buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
1138 VK_CHECK(data->vtable.CreateBuffer(data->device, &buffer_info, NULL, buffer));
1139
1140 VkMemoryRequirements req;
1141 data->vtable.GetBufferMemoryRequirements(data->device, *buffer, &req);
1142 VkMemoryAllocateInfo alloc_info = {};
1143 alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
1144 alloc_info.allocationSize = req.size;
1145 alloc_info.memoryTypeIndex =
1146 vk_memory_type(data, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits);
1147 VK_CHECK(data->vtable.AllocateMemory(data->device, &alloc_info, NULL, buffer_memory));
1148
1149 VK_CHECK(data->vtable.BindBufferMemory(data->device, *buffer, *buffer_memory, 0));
1150 *buffer_size = new_size;
1151 }
1152
1153 static struct overlay_draw *render_swapchain_display(struct swapchain_data *data,
1154 struct queue_data *present_queue,
1155 const VkSemaphore *wait_semaphores,
1156 unsigned n_wait_semaphores,
1157 unsigned image_index)
1158 {
1159 ImDrawData* draw_data = ImGui::GetDrawData();
1160 if (draw_data->TotalVtxCount == 0)
1161 return NULL;
1162
1163 struct device_data *device_data = data->device;
1164 struct overlay_draw *draw = get_overlay_draw(data);
1165
1166 device_data->vtable.ResetCommandBuffer(draw->command_buffer, 0);
1167
1168 VkRenderPassBeginInfo render_pass_info = {};
1169 render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
1170 render_pass_info.renderPass = data->render_pass;
1171 render_pass_info.framebuffer = data->framebuffers[image_index];
1172 render_pass_info.renderArea.extent.width = data->width;
1173 render_pass_info.renderArea.extent.height = data->height;
1174
1175 VkCommandBufferBeginInfo buffer_begin_info = {};
1176 buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
1177
1178 device_data->vtable.BeginCommandBuffer(draw->command_buffer, &buffer_begin_info);
1179
1180 ensure_swapchain_fonts(data, draw->command_buffer);
1181
1182 /* Bounce the image to display back to color attachment layout for
1183 * rendering on top of it.
1184 */
1185 VkImageMemoryBarrier imb;
1186 imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
1187 imb.pNext = nullptr;
1188 imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
1189 imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
1190 imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
1191 imb.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
1192 imb.image = data->images[image_index];
1193 imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
1194 imb.subresourceRange.baseMipLevel = 0;
1195 imb.subresourceRange.levelCount = 1;
1196 imb.subresourceRange.baseArrayLayer = 0;
1197 imb.subresourceRange.layerCount = 1;
1198 imb.srcQueueFamilyIndex = present_queue->family_index;
1199 imb.dstQueueFamilyIndex = device_data->graphic_queue->family_index;
1200 device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
1201 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
1202 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
1203 0, /* dependency flags */
1204 0, nullptr, /* memory barriers */
1205 0, nullptr, /* buffer memory barriers */
1206 1, &imb); /* image memory barriers */
1207
1208 device_data->vtable.CmdBeginRenderPass(draw->command_buffer, &render_pass_info,
1209 VK_SUBPASS_CONTENTS_INLINE);
1210
1211 /* Create/Resize vertex & index buffers */
1212 size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert);
1213 size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx);
1214 if (draw->vertex_buffer_size < vertex_size) {
1215 CreateOrResizeBuffer(device_data,
1216 &draw->vertex_buffer,
1217 &draw->vertex_buffer_mem,
1218 &draw->vertex_buffer_size,
1219 vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
1220 }
1221 if (draw->index_buffer_size < index_size) {
1222 CreateOrResizeBuffer(device_data,
1223 &draw->index_buffer,
1224 &draw->index_buffer_mem,
1225 &draw->index_buffer_size,
1226 index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
1227 }
1228
1229 /* Upload vertex & index data */
1230 ImDrawVert* vtx_dst = NULL;
1231 ImDrawIdx* idx_dst = NULL;
1232 VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->vertex_buffer_mem,
1233 0, vertex_size, 0, (void**)(&vtx_dst)));
1234 VK_CHECK(device_data->vtable.MapMemory(device_data->device, draw->index_buffer_mem,
1235 0, index_size, 0, (void**)(&idx_dst)));
1236 for (int n = 0; n < draw_data->CmdListsCount; n++)
1237 {
1238 const ImDrawList* cmd_list = draw_data->CmdLists[n];
1239 memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
1240 memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
1241 vtx_dst += cmd_list->VtxBuffer.Size;
1242 idx_dst += cmd_list->IdxBuffer.Size;
1243 }
1244 VkMappedMemoryRange range[2] = {};
1245 range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
1246 range[0].memory = draw->vertex_buffer_mem;
1247 range[0].size = VK_WHOLE_SIZE;
1248 range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
1249 range[1].memory = draw->index_buffer_mem;
1250 range[1].size = VK_WHOLE_SIZE;
1251 VK_CHECK(device_data->vtable.FlushMappedMemoryRanges(device_data->device, 2, range));
1252 device_data->vtable.UnmapMemory(device_data->device, draw->vertex_buffer_mem);
1253 device_data->vtable.UnmapMemory(device_data->device, draw->index_buffer_mem);
1254
1255 /* Bind pipeline and descriptor sets */
1256 device_data->vtable.CmdBindPipeline(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, data->pipeline);
1257 VkDescriptorSet desc_set[1] = { data->descriptor_set };
1258 device_data->vtable.CmdBindDescriptorSets(draw->command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS,
1259 data->pipeline_layout, 0, 1, desc_set, 0, NULL);
1260
1261 /* Bind vertex & index buffers */
1262 VkBuffer vertex_buffers[1] = { draw->vertex_buffer };
1263 VkDeviceSize vertex_offset[1] = { 0 };
1264 device_data->vtable.CmdBindVertexBuffers(draw->command_buffer, 0, 1, vertex_buffers, vertex_offset);
1265 device_data->vtable.CmdBindIndexBuffer(draw->command_buffer, draw->index_buffer, 0, VK_INDEX_TYPE_UINT16);
1266
1267 /* Setup viewport */
1268 VkViewport viewport;
1269 viewport.x = 0;
1270 viewport.y = 0;
1271 viewport.width = draw_data->DisplaySize.x;
1272 viewport.height = draw_data->DisplaySize.y;
1273 viewport.minDepth = 0.0f;
1274 viewport.maxDepth = 1.0f;
1275 device_data->vtable.CmdSetViewport(draw->command_buffer, 0, 1, &viewport);
1276
1277
1278 /* Setup scale and translation through push constants :
1279 *
1280 * Our visible imgui space lies from draw_data->DisplayPos (top left) to
1281 * draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin
1282 * is typically (0,0) for single viewport apps.
1283 */
1284 float scale[2];
1285 scale[0] = 2.0f / draw_data->DisplaySize.x;
1286 scale[1] = 2.0f / draw_data->DisplaySize.y;
1287 float translate[2];
1288 translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0];
1289 translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1];
1290 device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
1291 VK_SHADER_STAGE_VERTEX_BIT,
1292 sizeof(float) * 0, sizeof(float) * 2, scale);
1293 device_data->vtable.CmdPushConstants(draw->command_buffer, data->pipeline_layout,
1294 VK_SHADER_STAGE_VERTEX_BIT,
1295 sizeof(float) * 2, sizeof(float) * 2, translate);
1296
1297 // Render the command lists:
1298 int vtx_offset = 0;
1299 int idx_offset = 0;
1300 ImVec2 display_pos = draw_data->DisplayPos;
1301 for (int n = 0; n < draw_data->CmdListsCount; n++)
1302 {
1303 const ImDrawList* cmd_list = draw_data->CmdLists[n];
1304 for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
1305 {
1306 const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
1307 // Apply scissor/clipping rectangle
1308 // FIXME: We could clamp width/height based on clamped min/max values.
1309 VkRect2D scissor;
1310 scissor.offset.x = (int32_t)(pcmd->ClipRect.x - display_pos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - display_pos.x) : 0;
1311 scissor.offset.y = (int32_t)(pcmd->ClipRect.y - display_pos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - display_pos.y) : 0;
1312 scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x);
1313 scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1); // FIXME: Why +1 here?
1314 device_data->vtable.CmdSetScissor(draw->command_buffer, 0, 1, &scissor);
1315
1316 // Draw
1317 device_data->vtable.CmdDrawIndexed(draw->command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0);
1318
1319 idx_offset += pcmd->ElemCount;
1320 }
1321 vtx_offset += cmd_list->VtxBuffer.Size;
1322 }
1323
1324 device_data->vtable.CmdEndRenderPass(draw->command_buffer);
1325
1326 if (device_data->graphic_queue->family_index != present_queue->family_index)
1327 {
1328 /* Transfer the image back to the present queue family
1329 * image layout was already changed to present by the render pass
1330 */
1331 imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
1332 imb.pNext = nullptr;
1333 imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
1334 imb.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
1335 imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
1336 imb.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
1337 imb.image = data->images[image_index];
1338 imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
1339 imb.subresourceRange.baseMipLevel = 0;
1340 imb.subresourceRange.levelCount = 1;
1341 imb.subresourceRange.baseArrayLayer = 0;
1342 imb.subresourceRange.layerCount = 1;
1343 imb.srcQueueFamilyIndex = device_data->graphic_queue->family_index;
1344 imb.dstQueueFamilyIndex = present_queue->family_index;
1345 device_data->vtable.CmdPipelineBarrier(draw->command_buffer,
1346 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
1347 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
1348 0, /* dependency flags */
1349 0, nullptr, /* memory barriers */
1350 0, nullptr, /* buffer memory barriers */
1351 1, &imb); /* image memory barriers */
1352 }
1353
1354 device_data->vtable.EndCommandBuffer(draw->command_buffer);
1355
1356 /* When presenting on a different queue than where we're drawing the
1357 * overlay *AND* when the application does not provide a semaphore to
1358 * vkQueuePresent, insert our own cross engine synchronization
1359 * semaphore.
1360 */
1361 if (n_wait_semaphores == 0 && device_data->graphic_queue->queue != present_queue->queue) {
1362 VkPipelineStageFlags stages_wait = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
1363 VkSubmitInfo submit_info = {};
1364 submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
1365 submit_info.commandBufferCount = 0;
1366 submit_info.pWaitDstStageMask = &stages_wait;
1367 submit_info.waitSemaphoreCount = 0;
1368 submit_info.signalSemaphoreCount = 1;
1369 submit_info.pSignalSemaphores = &draw->cross_engine_semaphore;
1370
1371 device_data->vtable.QueueSubmit(present_queue->queue, 1, &submit_info, VK_NULL_HANDLE);
1372
1373 submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
1374 submit_info.commandBufferCount = 1;
1375 submit_info.pWaitDstStageMask = &stages_wait;
1376 submit_info.pCommandBuffers = &draw->command_buffer;
1377 submit_info.waitSemaphoreCount = 1;
1378 submit_info.pWaitSemaphores = &draw->cross_engine_semaphore;
1379 submit_info.signalSemaphoreCount = 1;
1380 submit_info.pSignalSemaphores = &draw->semaphore;
1381
1382 device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, draw->fence);
1383 } else {
1384 VkPipelineStageFlags *stages_wait = (VkPipelineStageFlags*) malloc(sizeof(VkPipelineStageFlags) * n_wait_semaphores);
1385 for (unsigned i = 0; i < n_wait_semaphores; i++)
1386 {
1387 // wait in the fragment stage until the swapchain image is ready
1388 stages_wait[i] = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
1389 }
1390
1391 VkSubmitInfo submit_info = {};
1392 submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
1393 submit_info.commandBufferCount = 1;
1394 submit_info.pCommandBuffers = &draw->command_buffer;
1395 submit_info.pWaitDstStageMask = stages_wait;
1396 submit_info.waitSemaphoreCount = n_wait_semaphores;
1397 submit_info.pWaitSemaphores = wait_semaphores;
1398 submit_info.signalSemaphoreCount = 1;
1399 submit_info.pSignalSemaphores = &draw->semaphore;
1400
1401 device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, draw->fence);
1402
1403 free(stages_wait);
1404 }
1405
1406 return draw;
1407 }
1408
1409 static const uint32_t overlay_vert_spv[] = {
1410 #include "overlay.vert.spv.h"
1411 };
1412 static const uint32_t overlay_frag_spv[] = {
1413 #include "overlay.frag.spv.h"
1414 };
1415
1416 static void setup_swapchain_data_pipeline(struct swapchain_data *data)
1417 {
1418 struct device_data *device_data = data->device;
1419 VkShaderModule vert_module, frag_module;
1420
1421 /* Create shader modules */
1422 VkShaderModuleCreateInfo vert_info = {};
1423 vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
1424 vert_info.codeSize = sizeof(overlay_vert_spv);
1425 vert_info.pCode = overlay_vert_spv;
1426 VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
1427 &vert_info, NULL, &vert_module));
1428 VkShaderModuleCreateInfo frag_info = {};
1429 frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
1430 frag_info.codeSize = sizeof(overlay_frag_spv);
1431 frag_info.pCode = (uint32_t*)overlay_frag_spv;
1432 VK_CHECK(device_data->vtable.CreateShaderModule(device_data->device,
1433 &frag_info, NULL, &frag_module));
1434
1435 /* Font sampler */
1436 VkSamplerCreateInfo sampler_info = {};
1437 sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
1438 sampler_info.magFilter = VK_FILTER_LINEAR;
1439 sampler_info.minFilter = VK_FILTER_LINEAR;
1440 sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
1441 sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
1442 sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
1443 sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
1444 sampler_info.minLod = -1000;
1445 sampler_info.maxLod = 1000;
1446 sampler_info.maxAnisotropy = 1.0f;
1447 VK_CHECK(device_data->vtable.CreateSampler(device_data->device, &sampler_info,
1448 NULL, &data->font_sampler));
1449
1450 /* Descriptor pool */
1451 VkDescriptorPoolSize sampler_pool_size = {};
1452 sampler_pool_size.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
1453 sampler_pool_size.descriptorCount = 1;
1454 VkDescriptorPoolCreateInfo desc_pool_info = {};
1455 desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
1456 desc_pool_info.maxSets = 1;
1457 desc_pool_info.poolSizeCount = 1;
1458 desc_pool_info.pPoolSizes = &sampler_pool_size;
1459 VK_CHECK(device_data->vtable.CreateDescriptorPool(device_data->device,
1460 &desc_pool_info,
1461 NULL, &data->descriptor_pool));
1462
1463 /* Descriptor layout */
1464 VkSampler sampler[1] = { data->font_sampler };
1465 VkDescriptorSetLayoutBinding binding[1] = {};
1466 binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
1467 binding[0].descriptorCount = 1;
1468 binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
1469 binding[0].pImmutableSamplers = sampler;
1470 VkDescriptorSetLayoutCreateInfo set_layout_info = {};
1471 set_layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
1472 set_layout_info.bindingCount = 1;
1473 set_layout_info.pBindings = binding;
1474 VK_CHECK(device_data->vtable.CreateDescriptorSetLayout(device_data->device,
1475 &set_layout_info,
1476 NULL, &data->descriptor_layout));
1477
1478 /* Descriptor set */
1479 VkDescriptorSetAllocateInfo alloc_info = {};
1480 alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
1481 alloc_info.descriptorPool = data->descriptor_pool;
1482 alloc_info.descriptorSetCount = 1;
1483 alloc_info.pSetLayouts = &data->descriptor_layout;
1484 VK_CHECK(device_data->vtable.AllocateDescriptorSets(device_data->device,
1485 &alloc_info,
1486 &data->descriptor_set));
1487
1488 /* Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full
1489 * 3d projection matrix
1490 */
1491 VkPushConstantRange push_constants[1] = {};
1492 push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
1493 push_constants[0].offset = sizeof(float) * 0;
1494 push_constants[0].size = sizeof(float) * 4;
1495 VkPipelineLayoutCreateInfo layout_info = {};
1496 layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
1497 layout_info.setLayoutCount = 1;
1498 layout_info.pSetLayouts = &data->descriptor_layout;
1499 layout_info.pushConstantRangeCount = 1;
1500 layout_info.pPushConstantRanges = push_constants;
1501 VK_CHECK(device_data->vtable.CreatePipelineLayout(device_data->device,
1502 &layout_info,
1503 NULL, &data->pipeline_layout));
1504
1505 VkPipelineShaderStageCreateInfo stage[2] = {};
1506 stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
1507 stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
1508 stage[0].module = vert_module;
1509 stage[0].pName = "main";
1510 stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
1511 stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
1512 stage[1].module = frag_module;
1513 stage[1].pName = "main";
1514
1515 VkVertexInputBindingDescription binding_desc[1] = {};
1516 binding_desc[0].stride = sizeof(ImDrawVert);
1517 binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
1518
1519 VkVertexInputAttributeDescription attribute_desc[3] = {};
1520 attribute_desc[0].location = 0;
1521 attribute_desc[0].binding = binding_desc[0].binding;
1522 attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT;
1523 attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos);
1524 attribute_desc[1].location = 1;
1525 attribute_desc[1].binding = binding_desc[0].binding;
1526 attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT;
1527 attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv);
1528 attribute_desc[2].location = 2;
1529 attribute_desc[2].binding = binding_desc[0].binding;
1530 attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM;
1531 attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col);
1532
1533 VkPipelineVertexInputStateCreateInfo vertex_info = {};
1534 vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
1535 vertex_info.vertexBindingDescriptionCount = 1;
1536 vertex_info.pVertexBindingDescriptions = binding_desc;
1537 vertex_info.vertexAttributeDescriptionCount = 3;
1538 vertex_info.pVertexAttributeDescriptions = attribute_desc;
1539
1540 VkPipelineInputAssemblyStateCreateInfo ia_info = {};
1541 ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
1542 ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
1543
1544 VkPipelineViewportStateCreateInfo viewport_info = {};
1545 viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
1546 viewport_info.viewportCount = 1;
1547 viewport_info.scissorCount = 1;
1548
1549 VkPipelineRasterizationStateCreateInfo raster_info = {};
1550 raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
1551 raster_info.polygonMode = VK_POLYGON_MODE_FILL;
1552 raster_info.cullMode = VK_CULL_MODE_NONE;
1553 raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
1554 raster_info.lineWidth = 1.0f;
1555
1556 VkPipelineMultisampleStateCreateInfo ms_info = {};
1557 ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
1558 ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
1559
1560 VkPipelineColorBlendAttachmentState color_attachment[1] = {};
1561 color_attachment[0].blendEnable = VK_TRUE;
1562 color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
1563 color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
1564 color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD;
1565 color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
1566 color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
1567 color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD;
1568 color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
1569 VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
1570
1571 VkPipelineDepthStencilStateCreateInfo depth_info = {};
1572 depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
1573
1574 VkPipelineColorBlendStateCreateInfo blend_info = {};
1575 blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
1576 blend_info.attachmentCount = 1;
1577 blend_info.pAttachments = color_attachment;
1578
1579 VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
1580 VkPipelineDynamicStateCreateInfo dynamic_state = {};
1581 dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
1582 dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states);
1583 dynamic_state.pDynamicStates = dynamic_states;
1584
1585 VkGraphicsPipelineCreateInfo info = {};
1586 info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
1587 info.flags = 0;
1588 info.stageCount = 2;
1589 info.pStages = stage;
1590 info.pVertexInputState = &vertex_info;
1591 info.pInputAssemblyState = &ia_info;
1592 info.pViewportState = &viewport_info;
1593 info.pRasterizationState = &raster_info;
1594 info.pMultisampleState = &ms_info;
1595 info.pDepthStencilState = &depth_info;
1596 info.pColorBlendState = &blend_info;
1597 info.pDynamicState = &dynamic_state;
1598 info.layout = data->pipeline_layout;
1599 info.renderPass = data->render_pass;
1600 VK_CHECK(
1601 device_data->vtable.CreateGraphicsPipelines(device_data->device, VK_NULL_HANDLE,
1602 1, &info,
1603 NULL, &data->pipeline));
1604
1605 device_data->vtable.DestroyShaderModule(device_data->device, vert_module, NULL);
1606 device_data->vtable.DestroyShaderModule(device_data->device, frag_module, NULL);
1607
1608 ImGuiIO& io = ImGui::GetIO();
1609 unsigned char* pixels;
1610 int width, height;
1611 io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
1612
1613 /* Font image */
1614 VkImageCreateInfo image_info = {};
1615 image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
1616 image_info.imageType = VK_IMAGE_TYPE_2D;
1617 image_info.format = VK_FORMAT_R8G8B8A8_UNORM;
1618 image_info.extent.width = width;
1619 image_info.extent.height = height;
1620 image_info.extent.depth = 1;
1621 image_info.mipLevels = 1;
1622 image_info.arrayLayers = 1;
1623 image_info.samples = VK_SAMPLE_COUNT_1_BIT;
1624 image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
1625 image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
1626 image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
1627 image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
1628 VK_CHECK(device_data->vtable.CreateImage(device_data->device, &image_info,
1629 NULL, &data->font_image));
1630 VkMemoryRequirements font_image_req;
1631 device_data->vtable.GetImageMemoryRequirements(device_data->device,
1632 data->font_image, &font_image_req);
1633 VkMemoryAllocateInfo image_alloc_info = {};
1634 image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
1635 image_alloc_info.allocationSize = font_image_req.size;
1636 image_alloc_info.memoryTypeIndex = vk_memory_type(device_data,
1637 VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
1638 font_image_req.memoryTypeBits);
1639 VK_CHECK(device_data->vtable.AllocateMemory(device_data->device, &image_alloc_info,
1640 NULL, &data->font_mem));
1641 VK_CHECK(device_data->vtable.BindImageMemory(device_data->device,
1642 data->font_image,
1643 data->font_mem, 0));
1644
1645 /* Font image view */
1646 VkImageViewCreateInfo view_info = {};
1647 view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
1648 view_info.image = data->font_image;
1649 view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
1650 view_info.format = VK_FORMAT_R8G8B8A8_UNORM;
1651 view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
1652 view_info.subresourceRange.levelCount = 1;
1653 view_info.subresourceRange.layerCount = 1;
1654 VK_CHECK(device_data->vtable.CreateImageView(device_data->device, &view_info,
1655 NULL, &data->font_image_view));
1656
1657 /* Descriptor set */
1658 VkDescriptorImageInfo desc_image[1] = {};
1659 desc_image[0].sampler = data->font_sampler;
1660 desc_image[0].imageView = data->font_image_view;
1661 desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
1662 VkWriteDescriptorSet write_desc[1] = {};
1663 write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
1664 write_desc[0].dstSet = data->descriptor_set;
1665 write_desc[0].descriptorCount = 1;
1666 write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
1667 write_desc[0].pImageInfo = desc_image;
1668 device_data->vtable.UpdateDescriptorSets(device_data->device, 1, write_desc, 0, NULL);
1669 }
1670
1671 static void setup_swapchain_data(struct swapchain_data *data,
1672 const VkSwapchainCreateInfoKHR *pCreateInfo)
1673 {
1674 data->width = pCreateInfo->imageExtent.width;
1675 data->height = pCreateInfo->imageExtent.height;
1676 data->format = pCreateInfo->imageFormat;
1677
1678 data->imgui_context = ImGui::CreateContext();
1679 ImGui::SetCurrentContext(data->imgui_context);
1680
1681 ImGui::GetIO().IniFilename = NULL;
1682 ImGui::GetIO().DisplaySize = ImVec2((float)data->width, (float)data->height);
1683
1684 struct device_data *device_data = data->device;
1685
1686 /* Render pass */
1687 VkAttachmentDescription attachment_desc = {};
1688 attachment_desc.format = pCreateInfo->imageFormat;
1689 attachment_desc.samples = VK_SAMPLE_COUNT_1_BIT;
1690 attachment_desc.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
1691 attachment_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
1692 attachment_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
1693 attachment_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
1694 attachment_desc.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
1695 attachment_desc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
1696 VkAttachmentReference color_attachment = {};
1697 color_attachment.attachment = 0;
1698 color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
1699 VkSubpassDescription subpass = {};
1700 subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
1701 subpass.colorAttachmentCount = 1;
1702 subpass.pColorAttachments = &color_attachment;
1703 VkSubpassDependency dependency = {};
1704 dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
1705 dependency.dstSubpass = 0;
1706 dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
1707 dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
1708 dependency.srcAccessMask = 0;
1709 dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
1710 VkRenderPassCreateInfo render_pass_info = {};
1711 render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
1712 render_pass_info.attachmentCount = 1;
1713 render_pass_info.pAttachments = &attachment_desc;
1714 render_pass_info.subpassCount = 1;
1715 render_pass_info.pSubpasses = &subpass;
1716 render_pass_info.dependencyCount = 1;
1717 render_pass_info.pDependencies = &dependency;
1718 VK_CHECK(device_data->vtable.CreateRenderPass(device_data->device,
1719 &render_pass_info,
1720 NULL, &data->render_pass));
1721
1722 setup_swapchain_data_pipeline(data);
1723
1724 VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
1725 data->swapchain,
1726 &data->n_images,
1727 NULL));
1728
1729 data->images = ralloc_array(data, VkImage, data->n_images);
1730 data->image_views = ralloc_array(data, VkImageView, data->n_images);
1731 data->framebuffers = ralloc_array(data, VkFramebuffer, data->n_images);
1732
1733 VK_CHECK(device_data->vtable.GetSwapchainImagesKHR(device_data->device,
1734 data->swapchain,
1735 &data->n_images,
1736 data->images));
1737
1738 /* Image views */
1739 VkImageViewCreateInfo view_info = {};
1740 view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
1741 view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
1742 view_info.format = pCreateInfo->imageFormat;
1743 view_info.components.r = VK_COMPONENT_SWIZZLE_R;
1744 view_info.components.g = VK_COMPONENT_SWIZZLE_G;
1745 view_info.components.b = VK_COMPONENT_SWIZZLE_B;
1746 view_info.components.a = VK_COMPONENT_SWIZZLE_A;
1747 view_info.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
1748 for (uint32_t i = 0; i < data->n_images; i++) {
1749 view_info.image = data->images[i];
1750 VK_CHECK(device_data->vtable.CreateImageView(device_data->device,
1751 &view_info, NULL,
1752 &data->image_views[i]));
1753 }
1754
1755 /* Framebuffers */
1756 VkImageView attachment[1];
1757 VkFramebufferCreateInfo fb_info = {};
1758 fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
1759 fb_info.renderPass = data->render_pass;
1760 fb_info.attachmentCount = 1;
1761 fb_info.pAttachments = attachment;
1762 fb_info.width = data->width;
1763 fb_info.height = data->height;
1764 fb_info.layers = 1;
1765 for (uint32_t i = 0; i < data->n_images; i++) {
1766 attachment[0] = data->image_views[i];
1767 VK_CHECK(device_data->vtable.CreateFramebuffer(device_data->device, &fb_info,
1768 NULL, &data->framebuffers[i]));
1769 }
1770
1771 /* Command buffer pool */
1772 VkCommandPoolCreateInfo cmd_buffer_pool_info = {};
1773 cmd_buffer_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
1774 cmd_buffer_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
1775 cmd_buffer_pool_info.queueFamilyIndex = device_data->graphic_queue->family_index;
1776 VK_CHECK(device_data->vtable.CreateCommandPool(device_data->device,
1777 &cmd_buffer_pool_info,
1778 NULL, &data->command_pool));
1779 }
1780
1781 static void shutdown_swapchain_data(struct swapchain_data *data)
1782 {
1783 struct device_data *device_data = data->device;
1784
1785 list_for_each_entry_safe(struct overlay_draw, draw, &data->draws, link) {
1786 device_data->vtable.DestroySemaphore(device_data->device, draw->cross_engine_semaphore, NULL);
1787 device_data->vtable.DestroySemaphore(device_data->device, draw->semaphore, NULL);
1788 device_data->vtable.DestroyFence(device_data->device, draw->fence, NULL);
1789 device_data->vtable.DestroyBuffer(device_data->device, draw->vertex_buffer, NULL);
1790 device_data->vtable.DestroyBuffer(device_data->device, draw->index_buffer, NULL);
1791 device_data->vtable.FreeMemory(device_data->device, draw->vertex_buffer_mem, NULL);
1792 device_data->vtable.FreeMemory(device_data->device, draw->index_buffer_mem, NULL);
1793 }
1794
1795 for (uint32_t i = 0; i < data->n_images; i++) {
1796 device_data->vtable.DestroyImageView(device_data->device, data->image_views[i], NULL);
1797 device_data->vtable.DestroyFramebuffer(device_data->device, data->framebuffers[i], NULL);
1798 }
1799
1800 device_data->vtable.DestroyRenderPass(device_data->device, data->render_pass, NULL);
1801
1802 device_data->vtable.DestroyCommandPool(device_data->device, data->command_pool, NULL);
1803
1804 device_data->vtable.DestroyPipeline(device_data->device, data->pipeline, NULL);
1805 device_data->vtable.DestroyPipelineLayout(device_data->device, data->pipeline_layout, NULL);
1806
1807 device_data->vtable.DestroyDescriptorPool(device_data->device,
1808 data->descriptor_pool, NULL);
1809 device_data->vtable.DestroyDescriptorSetLayout(device_data->device,
1810 data->descriptor_layout, NULL);
1811
1812 device_data->vtable.DestroySampler(device_data->device, data->font_sampler, NULL);
1813 device_data->vtable.DestroyImageView(device_data->device, data->font_image_view, NULL);
1814 device_data->vtable.DestroyImage(device_data->device, data->font_image, NULL);
1815 device_data->vtable.FreeMemory(device_data->device, data->font_mem, NULL);
1816
1817 device_data->vtable.DestroyBuffer(device_data->device, data->upload_font_buffer, NULL);
1818 device_data->vtable.FreeMemory(device_data->device, data->upload_font_buffer_mem, NULL);
1819
1820 ImGui::DestroyContext(data->imgui_context);
1821 }
1822
1823 static struct overlay_draw *before_present(struct swapchain_data *swapchain_data,
1824 struct queue_data *present_queue,
1825 const VkSemaphore *wait_semaphores,
1826 unsigned n_wait_semaphores,
1827 unsigned imageIndex)
1828 {
1829 struct instance_data *instance_data = swapchain_data->device->instance;
1830 struct overlay_draw *draw = NULL;
1831
1832 snapshot_swapchain_frame(swapchain_data);
1833
1834 if (!instance_data->params.no_display && swapchain_data->n_frames > 0) {
1835 compute_swapchain_display(swapchain_data);
1836 draw = render_swapchain_display(swapchain_data, present_queue,
1837 wait_semaphores, n_wait_semaphores,
1838 imageIndex);
1839 }
1840
1841 return draw;
1842 }
1843
1844 static VkResult overlay_CreateSwapchainKHR(
1845 VkDevice device,
1846 const VkSwapchainCreateInfoKHR* pCreateInfo,
1847 const VkAllocationCallbacks* pAllocator,
1848 VkSwapchainKHR* pSwapchain)
1849 {
1850 struct device_data *device_data = FIND(struct device_data, device);
1851 VkResult result = device_data->vtable.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain);
1852 if (result != VK_SUCCESS) return result;
1853
1854 struct swapchain_data *swapchain_data = new_swapchain_data(*pSwapchain, device_data);
1855 setup_swapchain_data(swapchain_data, pCreateInfo);
1856 return result;
1857 }
1858
1859 static void overlay_DestroySwapchainKHR(
1860 VkDevice device,
1861 VkSwapchainKHR swapchain,
1862 const VkAllocationCallbacks* pAllocator)
1863 {
1864 if (swapchain == VK_NULL_HANDLE) {
1865 struct device_data *device_data = FIND(struct device_data, device);
1866 device_data->vtable.DestroySwapchainKHR(device, swapchain, pAllocator);
1867 return;
1868 }
1869
1870 struct swapchain_data *swapchain_data =
1871 FIND(struct swapchain_data, swapchain);
1872
1873 shutdown_swapchain_data(swapchain_data);
1874 swapchain_data->device->vtable.DestroySwapchainKHR(device, swapchain, pAllocator);
1875 destroy_swapchain_data(swapchain_data);
1876 }
1877
1878 static VkResult overlay_QueuePresentKHR(
1879 VkQueue queue,
1880 const VkPresentInfoKHR* pPresentInfo)
1881 {
1882 struct queue_data *queue_data = FIND(struct queue_data, queue);
1883 struct device_data *device_data = queue_data->device;
1884 struct instance_data *instance_data = device_data->instance;
1885 uint32_t query_results[OVERLAY_QUERY_COUNT];
1886
1887 device_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_frame]++;
1888
1889 if (list_length(&queue_data->running_command_buffer) > 0) {
1890 /* Before getting the query results, make sure the operations have
1891 * completed.
1892 */
1893 VK_CHECK(device_data->vtable.ResetFences(device_data->device,
1894 1, &queue_data->queries_fence));
1895 VK_CHECK(device_data->vtable.QueueSubmit(queue, 0, NULL, queue_data->queries_fence));
1896 VK_CHECK(device_data->vtable.WaitForFences(device_data->device,
1897 1, &queue_data->queries_fence,
1898 VK_FALSE, UINT64_MAX));
1899
1900 /* Now get the results. */
1901 list_for_each_entry_safe(struct command_buffer_data, cmd_buffer_data,
1902 &queue_data->running_command_buffer, link) {
1903 list_delinit(&cmd_buffer_data->link);
1904
1905 if (cmd_buffer_data->pipeline_query_pool) {
1906 memset(query_results, 0, sizeof(query_results));
1907 VK_CHECK(device_data->vtable.GetQueryPoolResults(device_data->device,
1908 cmd_buffer_data->pipeline_query_pool,
1909 cmd_buffer_data->query_index, 1,
1910 sizeof(uint32_t) * OVERLAY_QUERY_COUNT,
1911 query_results, 0, VK_QUERY_RESULT_WAIT_BIT));
1912
1913 for (uint32_t i = OVERLAY_PARAM_ENABLED_vertices;
1914 i <= OVERLAY_PARAM_ENABLED_compute_invocations; i++) {
1915 device_data->frame_stats.stats[i] += query_results[i - OVERLAY_PARAM_ENABLED_vertices];
1916 }
1917 }
1918 if (cmd_buffer_data->timestamp_query_pool) {
1919 uint64_t gpu_timestamps[2] = { 0 };
1920 VK_CHECK(device_data->vtable.GetQueryPoolResults(device_data->device,
1921 cmd_buffer_data->timestamp_query_pool,
1922 cmd_buffer_data->query_index * 2, 2,
1923 2 * sizeof(uint64_t), gpu_timestamps, sizeof(uint64_t),
1924 VK_QUERY_RESULT_WAIT_BIT | VK_QUERY_RESULT_64_BIT));
1925
1926 gpu_timestamps[0] &= queue_data->timestamp_mask;
1927 gpu_timestamps[1] &= queue_data->timestamp_mask;
1928 device_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_gpu_timing] +=
1929 (gpu_timestamps[1] - gpu_timestamps[0]) *
1930 device_data->properties.limits.timestampPeriod;
1931 }
1932 }
1933 }
1934
1935 /* Otherwise we need to add our overlay drawing semaphore to the list of
1936 * semaphores to wait on. If we don't do that the presented picture might
1937 * be have incomplete overlay drawings.
1938 */
1939 VkResult result = VK_SUCCESS;
1940 if (instance_data->params.no_display) {
1941 for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
1942 VkSwapchainKHR swapchain = pPresentInfo->pSwapchains[i];
1943 struct swapchain_data *swapchain_data =
1944 FIND(struct swapchain_data, swapchain);
1945
1946 uint32_t image_index = pPresentInfo->pImageIndices[i];
1947
1948 before_present(swapchain_data,
1949 queue_data,
1950 pPresentInfo->pWaitSemaphores,
1951 pPresentInfo->waitSemaphoreCount,
1952 image_index);
1953
1954 VkPresentInfoKHR present_info = *pPresentInfo;
1955 present_info.swapchainCount = 1;
1956 present_info.pSwapchains = &swapchain;
1957 present_info.pImageIndices = &image_index;
1958
1959 uint64_t ts0 = os_time_get();
1960 result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info);
1961 uint64_t ts1 = os_time_get();
1962 swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_present_timing] += ts1 - ts0;
1963 }
1964 } else {
1965 for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
1966 VkSwapchainKHR swapchain = pPresentInfo->pSwapchains[i];
1967 struct swapchain_data *swapchain_data =
1968 FIND(struct swapchain_data, swapchain);
1969
1970 uint32_t image_index = pPresentInfo->pImageIndices[i];
1971
1972 VkPresentInfoKHR present_info = *pPresentInfo;
1973 present_info.swapchainCount = 1;
1974 present_info.pSwapchains = &swapchain;
1975 present_info.pImageIndices = &image_index;
1976
1977 struct overlay_draw *draw = before_present(swapchain_data,
1978 queue_data,
1979 pPresentInfo->pWaitSemaphores,
1980 pPresentInfo->waitSemaphoreCount,
1981 image_index);
1982
1983 /* Because the submission of the overlay draw waits on the semaphores
1984 * handed for present, we don't need to have this present operation
1985 * wait on them as well, we can just wait on the overlay submission
1986 * semaphore.
1987 */
1988 present_info.pWaitSemaphores = &draw->semaphore;
1989 present_info.waitSemaphoreCount = 1;
1990
1991 uint64_t ts0 = os_time_get();
1992 VkResult chain_result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info);
1993 uint64_t ts1 = os_time_get();
1994 swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_present_timing] += ts1 - ts0;
1995 if (pPresentInfo->pResults)
1996 pPresentInfo->pResults[i] = chain_result;
1997 if (chain_result != VK_SUCCESS && result == VK_SUCCESS)
1998 result = chain_result;
1999 }
2000 }
2001 return result;
2002 }
2003
2004 static VkResult overlay_AcquireNextImageKHR(
2005 VkDevice device,
2006 VkSwapchainKHR swapchain,
2007 uint64_t timeout,
2008 VkSemaphore semaphore,
2009 VkFence fence,
2010 uint32_t* pImageIndex)
2011 {
2012 struct swapchain_data *swapchain_data =
2013 FIND(struct swapchain_data, swapchain);
2014 struct device_data *device_data = swapchain_data->device;
2015
2016 uint64_t ts0 = os_time_get();
2017 VkResult result = device_data->vtable.AcquireNextImageKHR(device, swapchain, timeout,
2018 semaphore, fence, pImageIndex);
2019 uint64_t ts1 = os_time_get();
2020
2021 swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_acquire_timing] += ts1 - ts0;
2022 swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_acquire]++;
2023
2024 return result;
2025 }
2026
2027 static VkResult overlay_AcquireNextImage2KHR(
2028 VkDevice device,
2029 const VkAcquireNextImageInfoKHR* pAcquireInfo,
2030 uint32_t* pImageIndex)
2031 {
2032 struct swapchain_data *swapchain_data =
2033 FIND(struct swapchain_data, pAcquireInfo->swapchain);
2034 struct device_data *device_data = swapchain_data->device;
2035
2036 uint64_t ts0 = os_time_get();
2037 VkResult result = device_data->vtable.AcquireNextImage2KHR(device, pAcquireInfo, pImageIndex);
2038 uint64_t ts1 = os_time_get();
2039
2040 swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_acquire_timing] += ts1 - ts0;
2041 swapchain_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_acquire]++;
2042
2043 return result;
2044 }
2045
2046 static void overlay_CmdDraw(
2047 VkCommandBuffer commandBuffer,
2048 uint32_t vertexCount,
2049 uint32_t instanceCount,
2050 uint32_t firstVertex,
2051 uint32_t firstInstance)
2052 {
2053 struct command_buffer_data *cmd_buffer_data =
2054 FIND(struct command_buffer_data, commandBuffer);
2055 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_draw]++;
2056 struct device_data *device_data = cmd_buffer_data->device;
2057 device_data->vtable.CmdDraw(commandBuffer, vertexCount, instanceCount,
2058 firstVertex, firstInstance);
2059 }
2060
2061 static void overlay_CmdDrawIndexed(
2062 VkCommandBuffer commandBuffer,
2063 uint32_t indexCount,
2064 uint32_t instanceCount,
2065 uint32_t firstIndex,
2066 int32_t vertexOffset,
2067 uint32_t firstInstance)
2068 {
2069 struct command_buffer_data *cmd_buffer_data =
2070 FIND(struct command_buffer_data, commandBuffer);
2071 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indexed]++;
2072 struct device_data *device_data = cmd_buffer_data->device;
2073 device_data->vtable.CmdDrawIndexed(commandBuffer, indexCount, instanceCount,
2074 firstIndex, vertexOffset, firstInstance);
2075 }
2076
2077 static void overlay_CmdDrawIndirect(
2078 VkCommandBuffer commandBuffer,
2079 VkBuffer buffer,
2080 VkDeviceSize offset,
2081 uint32_t drawCount,
2082 uint32_t stride)
2083 {
2084 struct command_buffer_data *cmd_buffer_data =
2085 FIND(struct command_buffer_data, commandBuffer);
2086 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indirect]++;
2087 struct device_data *device_data = cmd_buffer_data->device;
2088 device_data->vtable.CmdDrawIndirect(commandBuffer, buffer, offset, drawCount, stride);
2089 }
2090
2091 static void overlay_CmdDrawIndexedIndirect(
2092 VkCommandBuffer commandBuffer,
2093 VkBuffer buffer,
2094 VkDeviceSize offset,
2095 uint32_t drawCount,
2096 uint32_t stride)
2097 {
2098 struct command_buffer_data *cmd_buffer_data =
2099 FIND(struct command_buffer_data, commandBuffer);
2100 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indexed_indirect]++;
2101 struct device_data *device_data = cmd_buffer_data->device;
2102 device_data->vtable.CmdDrawIndexedIndirect(commandBuffer, buffer, offset, drawCount, stride);
2103 }
2104
2105 static void overlay_CmdDrawIndirectCount(
2106 VkCommandBuffer commandBuffer,
2107 VkBuffer buffer,
2108 VkDeviceSize offset,
2109 VkBuffer countBuffer,
2110 VkDeviceSize countBufferOffset,
2111 uint32_t maxDrawCount,
2112 uint32_t stride)
2113 {
2114 struct command_buffer_data *cmd_buffer_data =
2115 FIND(struct command_buffer_data, commandBuffer);
2116 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indirect_count]++;
2117 struct device_data *device_data = cmd_buffer_data->device;
2118 device_data->vtable.CmdDrawIndirectCount(commandBuffer, buffer, offset,
2119 countBuffer, countBufferOffset,
2120 maxDrawCount, stride);
2121 }
2122
2123 static void overlay_CmdDrawIndexedIndirectCount(
2124 VkCommandBuffer commandBuffer,
2125 VkBuffer buffer,
2126 VkDeviceSize offset,
2127 VkBuffer countBuffer,
2128 VkDeviceSize countBufferOffset,
2129 uint32_t maxDrawCount,
2130 uint32_t stride)
2131 {
2132 struct command_buffer_data *cmd_buffer_data =
2133 FIND(struct command_buffer_data, commandBuffer);
2134 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indexed_indirect_count]++;
2135 struct device_data *device_data = cmd_buffer_data->device;
2136 device_data->vtable.CmdDrawIndexedIndirectCount(commandBuffer, buffer, offset,
2137 countBuffer, countBufferOffset,
2138 maxDrawCount, stride);
2139 }
2140
2141 static void overlay_CmdDispatch(
2142 VkCommandBuffer commandBuffer,
2143 uint32_t groupCountX,
2144 uint32_t groupCountY,
2145 uint32_t groupCountZ)
2146 {
2147 struct command_buffer_data *cmd_buffer_data =
2148 FIND(struct command_buffer_data, commandBuffer);
2149 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_dispatch]++;
2150 struct device_data *device_data = cmd_buffer_data->device;
2151 device_data->vtable.CmdDispatch(commandBuffer, groupCountX, groupCountY, groupCountZ);
2152 }
2153
2154 static void overlay_CmdDispatchIndirect(
2155 VkCommandBuffer commandBuffer,
2156 VkBuffer buffer,
2157 VkDeviceSize offset)
2158 {
2159 struct command_buffer_data *cmd_buffer_data =
2160 FIND(struct command_buffer_data, commandBuffer);
2161 cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_dispatch_indirect]++;
2162 struct device_data *device_data = cmd_buffer_data->device;
2163 device_data->vtable.CmdDispatchIndirect(commandBuffer, buffer, offset);
2164 }
2165
2166 static void overlay_CmdBindPipeline(
2167 VkCommandBuffer commandBuffer,
2168 VkPipelineBindPoint pipelineBindPoint,
2169 VkPipeline pipeline)
2170 {
2171 struct command_buffer_data *cmd_buffer_data =
2172 FIND(struct command_buffer_data, commandBuffer);
2173 switch (pipelineBindPoint) {
2174 case VK_PIPELINE_BIND_POINT_GRAPHICS: cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_pipeline_graphics]++; break;
2175 case VK_PIPELINE_BIND_POINT_COMPUTE: cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_pipeline_compute]++; break;
2176 case VK_PIPELINE_BIND_POINT_RAY_TRACING_NV: cmd_buffer_data->stats.stats[OVERLAY_PARAM_ENABLED_pipeline_raytracing]++; break;
2177 default: break;
2178 }
2179 struct device_data *device_data = cmd_buffer_data->device;
2180 device_data->vtable.CmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline);
2181 }
2182
2183 static VkResult overlay_BeginCommandBuffer(
2184 VkCommandBuffer commandBuffer,
2185 const VkCommandBufferBeginInfo* pBeginInfo)
2186 {
2187 struct command_buffer_data *cmd_buffer_data =
2188 FIND(struct command_buffer_data, commandBuffer);
2189 struct device_data *device_data = cmd_buffer_data->device;
2190
2191 memset(&cmd_buffer_data->stats, 0, sizeof(cmd_buffer_data->stats));
2192
2193 /* We don't record any query in secondary command buffers, just make sure
2194 * we have the right inheritance.
2195 */
2196 if (cmd_buffer_data->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
2197 VkCommandBufferBeginInfo *begin_info = (VkCommandBufferBeginInfo *)
2198 clone_chain((const struct VkBaseInStructure *)pBeginInfo);
2199 VkCommandBufferInheritanceInfo *parent_inhe_info = (VkCommandBufferInheritanceInfo *)
2200 vk_find_struct(begin_info, COMMAND_BUFFER_INHERITANCE_INFO);
2201 VkCommandBufferInheritanceInfo inhe_info = {
2202 VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO,
2203 NULL,
2204 VK_NULL_HANDLE,
2205 0,
2206 VK_NULL_HANDLE,
2207 VK_FALSE,
2208 0,
2209 overlay_query_flags,
2210 };
2211
2212 if (parent_inhe_info)
2213 parent_inhe_info->pipelineStatistics = overlay_query_flags;
2214 else {
2215 inhe_info.pNext = begin_info->pNext;
2216 begin_info->pNext = &inhe_info;
2217 }
2218
2219 VkResult result = device_data->vtable.BeginCommandBuffer(commandBuffer, pBeginInfo);
2220
2221 if (!parent_inhe_info)
2222 begin_info->pNext = inhe_info.pNext;
2223
2224 free_chain((struct VkBaseOutStructure *)begin_info);
2225
2226 return result;
2227 }
2228
2229 /* Otherwise record a begin query as first command. */
2230 VkResult result = device_data->vtable.BeginCommandBuffer(commandBuffer, pBeginInfo);
2231
2232 if (result == VK_SUCCESS) {
2233 if (cmd_buffer_data->pipeline_query_pool) {
2234 device_data->vtable.CmdResetQueryPool(commandBuffer,
2235 cmd_buffer_data->pipeline_query_pool,
2236 cmd_buffer_data->query_index, 1);
2237 }
2238 if (cmd_buffer_data->timestamp_query_pool) {
2239 device_data->vtable.CmdResetQueryPool(commandBuffer,
2240 cmd_buffer_data->timestamp_query_pool,
2241 cmd_buffer_data->query_index * 2, 2);
2242 }
2243 if (cmd_buffer_data->pipeline_query_pool) {
2244 device_data->vtable.CmdBeginQuery(commandBuffer,
2245 cmd_buffer_data->pipeline_query_pool,
2246 cmd_buffer_data->query_index, 0);
2247 }
2248 if (cmd_buffer_data->timestamp_query_pool) {
2249 device_data->vtable.CmdWriteTimestamp(commandBuffer,
2250 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
2251 cmd_buffer_data->timestamp_query_pool,
2252 cmd_buffer_data->query_index * 2);
2253 }
2254 }
2255
2256 return result;
2257 }
2258
2259 static VkResult overlay_EndCommandBuffer(
2260 VkCommandBuffer commandBuffer)
2261 {
2262 struct command_buffer_data *cmd_buffer_data =
2263 FIND(struct command_buffer_data, commandBuffer);
2264 struct device_data *device_data = cmd_buffer_data->device;
2265
2266 if (cmd_buffer_data->timestamp_query_pool) {
2267 device_data->vtable.CmdWriteTimestamp(commandBuffer,
2268 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
2269 cmd_buffer_data->timestamp_query_pool,
2270 cmd_buffer_data->query_index * 2 + 1);
2271 }
2272 if (cmd_buffer_data->pipeline_query_pool) {
2273 device_data->vtable.CmdEndQuery(commandBuffer,
2274 cmd_buffer_data->pipeline_query_pool,
2275 cmd_buffer_data->query_index);
2276 }
2277
2278 return device_data->vtable.EndCommandBuffer(commandBuffer);
2279 }
2280
2281 static VkResult overlay_ResetCommandBuffer(
2282 VkCommandBuffer commandBuffer,
2283 VkCommandBufferResetFlags flags)
2284 {
2285 struct command_buffer_data *cmd_buffer_data =
2286 FIND(struct command_buffer_data, commandBuffer);
2287 struct device_data *device_data = cmd_buffer_data->device;
2288
2289 memset(&cmd_buffer_data->stats, 0, sizeof(cmd_buffer_data->stats));
2290
2291 return device_data->vtable.ResetCommandBuffer(commandBuffer, flags);
2292 }
2293
2294 static void overlay_CmdExecuteCommands(
2295 VkCommandBuffer commandBuffer,
2296 uint32_t commandBufferCount,
2297 const VkCommandBuffer* pCommandBuffers)
2298 {
2299 struct command_buffer_data *cmd_buffer_data =
2300 FIND(struct command_buffer_data, commandBuffer);
2301 struct device_data *device_data = cmd_buffer_data->device;
2302
2303 /* Add the stats of the executed command buffers to the primary one. */
2304 for (uint32_t c = 0; c < commandBufferCount; c++) {
2305 struct command_buffer_data *sec_cmd_buffer_data =
2306 FIND(struct command_buffer_data, pCommandBuffers[c]);
2307
2308 for (uint32_t s = 0; s < OVERLAY_PARAM_ENABLED_MAX; s++)
2309 cmd_buffer_data->stats.stats[s] += sec_cmd_buffer_data->stats.stats[s];
2310 }
2311
2312 device_data->vtable.CmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
2313 }
2314
2315 static VkResult overlay_AllocateCommandBuffers(
2316 VkDevice device,
2317 const VkCommandBufferAllocateInfo* pAllocateInfo,
2318 VkCommandBuffer* pCommandBuffers)
2319 {
2320 struct device_data *device_data = FIND(struct device_data, device);
2321 VkResult result =
2322 device_data->vtable.AllocateCommandBuffers(device, pAllocateInfo, pCommandBuffers);
2323 if (result != VK_SUCCESS)
2324 return result;
2325
2326 VkQueryPool pipeline_query_pool = VK_NULL_HANDLE;
2327 VkQueryPool timestamp_query_pool = VK_NULL_HANDLE;
2328 if (device_data->instance->pipeline_statistics_enabled &&
2329 pAllocateInfo->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
2330 VkQueryPoolCreateInfo pool_info = {
2331 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
2332 NULL,
2333 0,
2334 VK_QUERY_TYPE_PIPELINE_STATISTICS,
2335 pAllocateInfo->commandBufferCount,
2336 overlay_query_flags,
2337 };
2338 VK_CHECK(device_data->vtable.CreateQueryPool(device_data->device, &pool_info,
2339 NULL, &pipeline_query_pool));
2340 }
2341 if (device_data->instance->params.enabled[OVERLAY_PARAM_ENABLED_gpu_timing]) {
2342 VkQueryPoolCreateInfo pool_info = {
2343 VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
2344 NULL,
2345 0,
2346 VK_QUERY_TYPE_TIMESTAMP,
2347 pAllocateInfo->commandBufferCount * 2,
2348 0,
2349 };
2350 VK_CHECK(device_data->vtable.CreateQueryPool(device_data->device, &pool_info,
2351 NULL, &timestamp_query_pool));
2352 }
2353
2354 for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++) {
2355 new_command_buffer_data(pCommandBuffers[i], pAllocateInfo->level,
2356 pipeline_query_pool, timestamp_query_pool,
2357 i, device_data);
2358 }
2359
2360 if (pipeline_query_pool)
2361 map_object(HKEY(pipeline_query_pool), (void *)(uintptr_t) pAllocateInfo->commandBufferCount);
2362 if (timestamp_query_pool)
2363 map_object(HKEY(timestamp_query_pool), (void *)(uintptr_t) pAllocateInfo->commandBufferCount);
2364
2365 return result;
2366 }
2367
2368 static void overlay_FreeCommandBuffers(
2369 VkDevice device,
2370 VkCommandPool commandPool,
2371 uint32_t commandBufferCount,
2372 const VkCommandBuffer* pCommandBuffers)
2373 {
2374 struct device_data *device_data = FIND(struct device_data, device);
2375 for (uint32_t i = 0; i < commandBufferCount; i++) {
2376 struct command_buffer_data *cmd_buffer_data =
2377 FIND(struct command_buffer_data, pCommandBuffers[i]);
2378
2379 /* It is legal to free a NULL command buffer*/
2380 if (!cmd_buffer_data)
2381 continue;
2382
2383 uint64_t count = (uintptr_t)find_object_data(HKEY(cmd_buffer_data->pipeline_query_pool));
2384 if (count == 1) {
2385 unmap_object(HKEY(cmd_buffer_data->pipeline_query_pool));
2386 device_data->vtable.DestroyQueryPool(device_data->device,
2387 cmd_buffer_data->pipeline_query_pool, NULL);
2388 } else if (count != 0) {
2389 map_object(HKEY(cmd_buffer_data->pipeline_query_pool), (void *)(uintptr_t)(count - 1));
2390 }
2391 count = (uintptr_t)find_object_data(HKEY(cmd_buffer_data->timestamp_query_pool));
2392 if (count == 1) {
2393 unmap_object(HKEY(cmd_buffer_data->timestamp_query_pool));
2394 device_data->vtable.DestroyQueryPool(device_data->device,
2395 cmd_buffer_data->timestamp_query_pool, NULL);
2396 } else if (count != 0) {
2397 map_object(HKEY(cmd_buffer_data->timestamp_query_pool), (void *)(uintptr_t)(count - 1));
2398 }
2399 destroy_command_buffer_data(cmd_buffer_data);
2400 }
2401
2402 device_data->vtable.FreeCommandBuffers(device, commandPool,
2403 commandBufferCount, pCommandBuffers);
2404 }
2405
2406 static VkResult overlay_QueueSubmit(
2407 VkQueue queue,
2408 uint32_t submitCount,
2409 const VkSubmitInfo* pSubmits,
2410 VkFence fence)
2411 {
2412 struct queue_data *queue_data = FIND(struct queue_data, queue);
2413 struct device_data *device_data = queue_data->device;
2414
2415 device_data->frame_stats.stats[OVERLAY_PARAM_ENABLED_submit]++;
2416
2417 for (uint32_t s = 0; s < submitCount; s++) {
2418 for (uint32_t c = 0; c < pSubmits[s].commandBufferCount; c++) {
2419 struct command_buffer_data *cmd_buffer_data =
2420 FIND(struct command_buffer_data, pSubmits[s].pCommandBuffers[c]);
2421
2422 /* Merge the submitted command buffer stats into the device. */
2423 for (uint32_t st = 0; st < OVERLAY_PARAM_ENABLED_MAX; st++)
2424 device_data->frame_stats.stats[st] += cmd_buffer_data->stats.stats[st];
2425
2426 /* Attach the command buffer to the queue so we remember to read its
2427 * pipeline statistics & timestamps at QueuePresent().
2428 */
2429 if (!cmd_buffer_data->pipeline_query_pool &&
2430 !cmd_buffer_data->timestamp_query_pool)
2431 continue;
2432
2433 if (list_is_empty(&cmd_buffer_data->link)) {
2434 list_addtail(&cmd_buffer_data->link,
2435 &queue_data->running_command_buffer);
2436 } else {
2437 fprintf(stderr, "Command buffer submitted multiple times before present.\n"
2438 "This could lead to invalid data.\n");
2439 }
2440 }
2441 }
2442
2443 return device_data->vtable.QueueSubmit(queue, submitCount, pSubmits, fence);
2444 }
2445
2446 static VkResult overlay_CreateDevice(
2447 VkPhysicalDevice physicalDevice,
2448 const VkDeviceCreateInfo* pCreateInfo,
2449 const VkAllocationCallbacks* pAllocator,
2450 VkDevice* pDevice)
2451 {
2452 struct instance_data *instance_data =
2453 FIND(struct instance_data, physicalDevice);
2454 VkLayerDeviceCreateInfo *chain_info =
2455 get_device_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
2456
2457 assert(chain_info->u.pLayerInfo);
2458 PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
2459 PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
2460 PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(NULL, "vkCreateDevice");
2461 if (fpCreateDevice == NULL) {
2462 return VK_ERROR_INITIALIZATION_FAILED;
2463 }
2464
2465 // Advance the link info for the next element on the chain
2466 chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
2467
2468 VkPhysicalDeviceFeatures device_features = {};
2469 VkDeviceCreateInfo device_info = *pCreateInfo;
2470
2471 if (pCreateInfo->pEnabledFeatures)
2472 device_features = *(pCreateInfo->pEnabledFeatures);
2473 if (instance_data->pipeline_statistics_enabled) {
2474 device_features.inheritedQueries = true;
2475 device_features.pipelineStatisticsQuery = true;
2476 }
2477 device_info.pEnabledFeatures = &device_features;
2478
2479
2480 VkResult result = fpCreateDevice(physicalDevice, &device_info, pAllocator, pDevice);
2481 if (result != VK_SUCCESS) return result;
2482
2483 struct device_data *device_data = new_device_data(*pDevice, instance_data);
2484 device_data->physical_device = physicalDevice;
2485 vk_load_device_commands(*pDevice, fpGetDeviceProcAddr, &device_data->vtable);
2486
2487 instance_data->vtable.GetPhysicalDeviceProperties(device_data->physical_device,
2488 &device_data->properties);
2489
2490 VkLayerDeviceCreateInfo *load_data_info =
2491 get_device_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
2492 device_data->set_device_loader_data = load_data_info->u.pfnSetDeviceLoaderData;
2493
2494 device_map_queues(device_data, pCreateInfo);
2495
2496 return result;
2497 }
2498
2499 static void overlay_DestroyDevice(
2500 VkDevice device,
2501 const VkAllocationCallbacks* pAllocator)
2502 {
2503 struct device_data *device_data = FIND(struct device_data, device);
2504 device_unmap_queues(device_data);
2505 device_data->vtable.DestroyDevice(device, pAllocator);
2506 destroy_device_data(device_data);
2507 }
2508
2509 static VkResult overlay_CreateInstance(
2510 const VkInstanceCreateInfo* pCreateInfo,
2511 const VkAllocationCallbacks* pAllocator,
2512 VkInstance* pInstance)
2513 {
2514 VkLayerInstanceCreateInfo *chain_info =
2515 get_instance_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
2516
2517 assert(chain_info->u.pLayerInfo);
2518 PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr =
2519 chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
2520 PFN_vkCreateInstance fpCreateInstance =
2521 (PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
2522 if (fpCreateInstance == NULL) {
2523 return VK_ERROR_INITIALIZATION_FAILED;
2524 }
2525
2526 // Advance the link info for the next element on the chain
2527 chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
2528
2529 VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
2530 if (result != VK_SUCCESS) return result;
2531
2532 struct instance_data *instance_data = new_instance_data(*pInstance);
2533 vk_load_instance_commands(instance_data->instance,
2534 fpGetInstanceProcAddr,
2535 &instance_data->vtable);
2536 instance_data_map_physical_devices(instance_data, true);
2537
2538 parse_overlay_env(&instance_data->params, getenv("VK_LAYER_MESA_OVERLAY_CONFIG"));
2539
2540 /* If there's no control file, and an output_file was specified, start
2541 * capturing fps data right away.
2542 */
2543 instance_data->capture_enabled =
2544 instance_data->params.output_file && instance_data->params.control < 0;
2545 instance_data->capture_started = instance_data->capture_enabled;
2546
2547 for (int i = OVERLAY_PARAM_ENABLED_vertices;
2548 i <= OVERLAY_PARAM_ENABLED_compute_invocations; i++) {
2549 if (instance_data->params.enabled[i]) {
2550 instance_data->pipeline_statistics_enabled = true;
2551 break;
2552 }
2553 }
2554
2555 return result;
2556 }
2557
2558 static void overlay_DestroyInstance(
2559 VkInstance instance,
2560 const VkAllocationCallbacks* pAllocator)
2561 {
2562 struct instance_data *instance_data = FIND(struct instance_data, instance);
2563 instance_data_map_physical_devices(instance_data, false);
2564 instance_data->vtable.DestroyInstance(instance, pAllocator);
2565 destroy_instance_data(instance_data);
2566 }
2567
2568 static const struct {
2569 const char *name;
2570 void *ptr;
2571 } name_to_funcptr_map[] = {
2572 { "vkGetDeviceProcAddr", (void *) vkGetDeviceProcAddr },
2573 #define ADD_HOOK(fn) { "vk" # fn, (void *) overlay_ ## fn }
2574 #define ADD_ALIAS_HOOK(alias, fn) { "vk" # alias, (void *) overlay_ ## fn }
2575 ADD_HOOK(AllocateCommandBuffers),
2576 ADD_HOOK(FreeCommandBuffers),
2577 ADD_HOOK(ResetCommandBuffer),
2578 ADD_HOOK(BeginCommandBuffer),
2579 ADD_HOOK(EndCommandBuffer),
2580 ADD_HOOK(CmdExecuteCommands),
2581
2582 ADD_HOOK(CmdDraw),
2583 ADD_HOOK(CmdDrawIndexed),
2584 ADD_HOOK(CmdDrawIndirect),
2585 ADD_HOOK(CmdDrawIndexedIndirect),
2586 ADD_HOOK(CmdDispatch),
2587 ADD_HOOK(CmdDispatchIndirect),
2588 ADD_HOOK(CmdDrawIndirectCount),
2589 ADD_ALIAS_HOOK(CmdDrawIndirectCountKHR, CmdDrawIndirectCount),
2590 ADD_HOOK(CmdDrawIndexedIndirectCount),
2591 ADD_ALIAS_HOOK(CmdDrawIndexedIndirectCountKHR, CmdDrawIndexedIndirectCount),
2592
2593 ADD_HOOK(CmdBindPipeline),
2594
2595 ADD_HOOK(CreateSwapchainKHR),
2596 ADD_HOOK(QueuePresentKHR),
2597 ADD_HOOK(DestroySwapchainKHR),
2598 ADD_HOOK(AcquireNextImageKHR),
2599 ADD_HOOK(AcquireNextImage2KHR),
2600
2601 ADD_HOOK(QueueSubmit),
2602
2603 ADD_HOOK(CreateDevice),
2604 ADD_HOOK(DestroyDevice),
2605
2606 ADD_HOOK(CreateInstance),
2607 ADD_HOOK(DestroyInstance),
2608 #undef ADD_HOOK
2609 };
2610
2611 static void *find_ptr(const char *name)
2612 {
2613 for (uint32_t i = 0; i < ARRAY_SIZE(name_to_funcptr_map); i++) {
2614 if (strcmp(name, name_to_funcptr_map[i].name) == 0)
2615 return name_to_funcptr_map[i].ptr;
2616 }
2617
2618 return NULL;
2619 }
2620
2621 VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice dev,
2622 const char *funcName)
2623 {
2624 void *ptr = find_ptr(funcName);
2625 if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
2626
2627 if (dev == NULL) return NULL;
2628
2629 struct device_data *device_data = FIND(struct device_data, dev);
2630 if (device_data->vtable.GetDeviceProcAddr == NULL) return NULL;
2631 return device_data->vtable.GetDeviceProcAddr(dev, funcName);
2632 }
2633
2634 VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance,
2635 const char *funcName)
2636 {
2637 void *ptr = find_ptr(funcName);
2638 if (ptr) return reinterpret_cast<PFN_vkVoidFunction>(ptr);
2639
2640 if (instance == NULL) return NULL;
2641
2642 struct instance_data *instance_data = FIND(struct instance_data, instance);
2643 if (instance_data->vtable.GetInstanceProcAddr == NULL) return NULL;
2644 return instance_data->vtable.GetInstanceProcAddr(instance, funcName);
2645 }