nir: Fix printing of individual instructions with io semantics.
[mesa.git] / src / compiler / nir / nir_loop_analyze.c
index 71cbe3c5a8dcf3d3a2f2f8a46b239c1e1a4507de..fa930a71c70011ee5106b147f3ebfca67ad07ed3 100644 (file)
@@ -32,7 +32,10 @@ typedef enum {
    basic_induction
 } nir_loop_variable_type;
 
-struct nir_basic_induction_var;
+typedef struct nir_basic_induction_var {
+   nir_alu_instr *alu;                      /* The def of the alu-operation */
+   nir_ssa_def *def_outside_loop;           /* The phi-src outside the loop */
+} nir_basic_induction_var;
 
 typedef struct {
    /* A link for the work list */
@@ -49,17 +52,13 @@ typedef struct {
    /* If this is of type basic_induction */
    struct nir_basic_induction_var *ind;
 
-   /* True if variable is in an if branch or a nested loop */
-   bool in_control_flow;
+   /* True if variable is in an if branch */
+   bool in_if_branch;
 
-} nir_loop_variable;
+   /* True if variable is in a nested loop */
+   bool in_nested_loop;
 
-typedef struct nir_basic_induction_var {
-   nir_op alu_op;                           /* The type of alu-operation    */
-   nir_loop_variable *alu_def;              /* The def of the alu-operation */
-   nir_loop_variable *invariant;            /* The invariant alu-operand    */
-   nir_loop_variable *def_outside_loop;     /* The phi-src outside the loop */
-} nir_basic_induction_var;
+} nir_loop_variable;
 
 typedef struct {
    /* The loop we store information for */
@@ -83,7 +82,8 @@ get_loop_var(nir_ssa_def *value, loop_info_state *state)
 
 typedef struct {
    loop_info_state *state;
-   bool in_control_flow;
+   bool in_if_branch;
+   bool in_nested_loop;
 } init_loop_state;
 
 static bool
@@ -92,8 +92,10 @@ init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
    init_loop_state *loop_init_state = void_init_loop_state;
    nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
 
-   if (loop_init_state->in_control_flow) {
-      var->in_control_flow = true;
+   if (loop_init_state->in_nested_loop) {
+      var->in_nested_loop = true;
+   } else if (loop_init_state->in_if_branch) {
+      var->in_if_branch = true;
    } else {
       /* Add to the tail of the list. That way we start at the beginning of
        * the defs in the loop instead of the end when walking the list. This
@@ -108,20 +110,83 @@ init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
    return true;
 }
 
+/** Calculate an estimated cost in number of instructions
+ *
+ * We do this so that we don't unroll loops which will later get massively
+ * inflated due to int64 or fp64 lowering.  The estimates provided here don't
+ * have to be massively accurate; they just have to be good enough that loop
+ * unrolling doesn't cause things to blow up too much.
+ */
+static unsigned
+instr_cost(nir_instr *instr, const nir_shader_compiler_options *options)
+{
+   if (instr->type == nir_instr_type_intrinsic ||
+       instr->type == nir_instr_type_tex)
+      return 1;
+
+   if (instr->type != nir_instr_type_alu)
+      return 0;
+
+   nir_alu_instr *alu = nir_instr_as_alu(instr);
+   const nir_op_info *info = &nir_op_infos[alu->op];
+
+   /* Assume everything 16 or 32-bit is cheap.
+    *
+    * There are no 64-bit ops that don't have a 64-bit thing as their
+    * destination or first source.
+    */
+   if (nir_dest_bit_size(alu->dest.dest) < 64 &&
+       nir_src_bit_size(alu->src[0].src) < 64)
+      return 1;
+
+   bool is_fp64 = nir_dest_bit_size(alu->dest.dest) == 64 &&
+      nir_alu_type_get_base_type(info->output_type) == nir_type_float;
+   for (unsigned i = 0; i < info->num_inputs; i++) {
+      if (nir_src_bit_size(alu->src[i].src) == 64 &&
+          nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float)
+         is_fp64 = true;
+   }
+
+   if (is_fp64) {
+      /* If it's something lowered normally, it's expensive. */
+      unsigned cost = 1;
+      if (options->lower_doubles_options &
+          nir_lower_doubles_op_to_options_mask(alu->op))
+         cost *= 20;
+
+      /* If it's full software, it's even more expensive */
+      if (options->lower_doubles_options & nir_lower_fp64_full_software)
+         cost *= 100;
+
+      return cost;
+   } else {
+      if (options->lower_int64_options &
+          nir_lower_int64_op_to_options_mask(alu->op)) {
+         /* These require a doing the division algorithm. */
+         if (alu->op == nir_op_idiv || alu->op == nir_op_udiv ||
+             alu->op == nir_op_imod || alu->op == nir_op_umod ||
+             alu->op == nir_op_irem)
+            return 100;
+
+         /* Other int64 lowering isn't usually all that expensive */
+         return 5;
+      }
+
+      return 1;
+   }
+}
+
 static bool
 init_loop_block(nir_block *block, loop_info_state *state,
-                bool in_control_flow)
+                bool in_if_branch, bool in_nested_loop,
+                const nir_shader_compiler_options *options)
 {
-   init_loop_state init_state = {.in_control_flow = in_control_flow,
+   init_loop_state init_state = {.in_if_branch = in_if_branch,
+                                 .in_nested_loop = in_nested_loop,
                                  .state = state };
 
    nir_foreach_instr(instr, block) {
-      if (instr->type == nir_instr_type_intrinsic ||
-          instr->type == nir_instr_type_alu ||
-          instr->type == nir_instr_type_tex) {
-         state->loop->info->num_instructions++;
-      }
-
+      state->loop->info->instr_cost += instr_cost(instr, options);
       nir_foreach_ssa_def(instr, init_loop_def, &init_state);
    }
 
@@ -134,12 +199,6 @@ is_var_alu(nir_loop_variable *var)
    return var->def->parent_instr->type == nir_instr_type_alu;
 }
 
-static inline bool
-is_var_constant(nir_loop_variable *var)
-{
-   return var->def->parent_instr->type == nir_instr_type_load_const;
-}
-
 static inline bool
 is_var_phi(nir_loop_variable *var)
 {
@@ -198,13 +257,51 @@ compute_invariance_information(loop_info_state *state)
     */
    list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
                             process_link) {
-      assert(!var->in_control_flow);
+      assert(!var->in_if_branch && !var->in_nested_loop);
 
       if (mark_invariant(var->def, state))
          list_del(&var->process_link);
    }
 }
 
+/* If all of the instruction sources point to identical ALU instructions (as
+ * per nir_instrs_equal), return one of the ALU instructions.  Otherwise,
+ * return NULL.
+ */
+static nir_alu_instr *
+phi_instr_as_alu(nir_phi_instr *phi)
+{
+   nir_alu_instr *first = NULL;
+   nir_foreach_phi_src(src, phi) {
+      assert(src->src.is_ssa);
+      if (src->src.ssa->parent_instr->type != nir_instr_type_alu)
+         return NULL;
+
+      nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr);
+      if (first == NULL) {
+         first = alu;
+      } else {
+         if (!nir_instrs_equal(&first->instr, &alu->instr))
+            return NULL;
+      }
+   }
+
+   return first;
+}
+
+static bool
+alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx)
+{
+   assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0);
+   assert(alu->dest.dest.is_ssa);
+   for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) {
+      if (alu->src[src_idx].swizzle[i] != i)
+         return false;
+   }
+
+   return true;
+}
+
 static bool
 compute_induction_information(loop_info_state *state)
 {
@@ -216,9 +313,10 @@ compute_induction_information(loop_info_state *state)
        * things in nested loops or conditionals should have been removed from
        * the list by compute_invariance_information().
        */
-      assert(!var->in_control_flow && var->type != invariant);
+      assert(!var->in_if_branch && !var->in_nested_loop &&
+             var->type != invariant);
 
-      /* We are only interested in checking phi's for the basic induction
+      /* We are only interested in checking phis for the basic induction
        * variable case as its simple to detect. All basic induction variables
        * have a phi node
        */
@@ -228,39 +326,60 @@ compute_induction_information(loop_info_state *state)
       nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
       nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);
 
+      nir_loop_variable *alu_src_var = NULL;
       nir_foreach_phi_src(src, phi) {
          nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
 
-         /* If one of the sources is in a conditional or nested block then
-          * panic.
+         /* If one of the sources is in an if branch or nested loop then don't
+          * attempt to go any further.
           */
-         if (src_var->in_control_flow)
+         if (src_var->in_if_branch || src_var->in_nested_loop)
             break;
 
-         if (!src_var->in_loop) {
-            biv->def_outside_loop = src_var;
-         } else if (is_var_alu(src_var)) {
+         /* Detect inductions variables that are incremented in both branches
+          * of an unnested if rather than in a loop block.
+          */
+         if (is_var_phi(src_var)) {
+            nir_phi_instr *src_phi =
+               nir_instr_as_phi(src_var->def->parent_instr);
+            nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi);
+            if (src_phi_alu) {
+               src_var = get_loop_var(&src_phi_alu->dest.dest.ssa, state);
+               if (!src_var->in_if_branch)
+                  break;
+            }
+         }
+
+         if (!src_var->in_loop && !biv->def_outside_loop) {
+            biv->def_outside_loop = src_var->def;
+         } else if (is_var_alu(src_var) && !biv->alu) {
+            alu_src_var = src_var;
             nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
 
             if (nir_op_infos[alu->op].num_inputs == 2) {
-               biv->alu_def = src_var;
-               biv->alu_op = alu->op;
-
                for (unsigned i = 0; i < 2; i++) {
-                  /* Is one of the operands const, and the other the phi */
-                  if (alu->src[i].src.ssa->parent_instr->type == nir_instr_type_load_const &&
-                      alu->src[1-i].src.ssa == &phi->dest.ssa)
-                     biv->invariant = get_loop_var(alu->src[i].src.ssa, state);
+                  /* Is one of the operands const, and the other the phi.  The
+                   * phi source can't be swizzled in any way.
+                   */
+                  if (nir_src_is_const(alu->src[i].src) &&
+                      alu->src[1-i].src.ssa == &phi->dest.ssa &&
+                      alu_src_has_identity_swizzle(alu, 1 - i))
+                     biv->alu = alu;
                }
             }
+
+            if (!biv->alu)
+               break;
+         } else {
+            biv->alu = NULL;
+            break;
          }
       }
 
-      if (biv->alu_def && biv->def_outside_loop && biv->invariant &&
-          is_var_constant(biv->def_outside_loop)) {
-         assert(is_var_constant(biv->invariant));
-         biv->alu_def->type = basic_induction;
-         biv->alu_def->ind = biv;
+      if (biv->alu && biv->def_outside_loop &&
+          biv->def_outside_loop->parent_instr->type == nir_instr_type_load_const) {
+         alu_src_var->type = basic_induction;
+         alu_src_var->ind = biv;
          var->type = basic_induction;
          var->ind = biv;
 
@@ -290,17 +409,6 @@ initialize_ssa_def(nir_ssa_def *def, void *void_state)
    return true;
 }
 
-static inline bool
-ends_in_break(nir_block *block)
-{
-   if (exec_list_is_empty(&block->instr_list))
-      return false;
-
-   nir_instr *instr = nir_block_last_instr(block);
-   return instr->type == nir_instr_type_jump &&
-      nir_instr_as_jump(instr)->type == nir_jump_break;
-}
-
 static bool
 find_loop_terminators(loop_info_state *state)
 {
@@ -315,11 +423,11 @@ find_loop_terminators(loop_info_state *state)
 
          nir_block *last_then = nir_if_last_then_block(nif);
          nir_block *last_else = nir_if_last_else_block(nif);
-         if (ends_in_break(last_then)) {
+         if (nir_block_ends_in_break(last_then)) {
             break_blk = last_then;
             continue_from_blk = last_else;
             continue_from_then = false;
-         } else if (ends_in_break(last_else)) {
+         } else if (nir_block_ends_in_break(last_else)) {
             break_blk = last_else;
             continue_from_blk = last_then;
          }
@@ -328,21 +436,25 @@ find_loop_terminators(loop_info_state *state)
           * not find a loop terminator, but there is a break-statement then
           * we should return false so that we do not try to find trip-count
           */
-         if (!nir_is_trivial_loop_if(nif, break_blk))
+         if (!nir_is_trivial_loop_if(nif, break_blk)) {
+            state->loop->info->complex_loop = true;
             return false;
+         }
 
          /* Continue if the if contained no jumps at all */
          if (!break_blk)
             continue;
 
-         if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi)
+         if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
+            state->loop->info->complex_loop = true;
             return false;
+         }
 
          nir_loop_terminator *terminator =
             rzalloc(state->loop->info, nir_loop_terminator);
 
-         list_add(&terminator->loop_terminator_link,
-                  &state->loop->info->loop_terminator_list);
+         list_addtail(&terminator->loop_terminator_link,
+                      &state->loop->info->loop_terminator_list);
 
          terminator->nif = nif;
          terminator->break_block = break_blk;
@@ -357,65 +469,247 @@ find_loop_terminators(loop_info_state *state)
    return success;
 }
 
+/* This function looks for an array access within a loop that uses an
+ * induction variable for the array index. If found it returns the size of the
+ * array, otherwise 0 is returned. If we find an induction var we pass it back
+ * to the caller via array_index_out.
+ */
+static unsigned
+find_array_access_via_induction(loop_info_state *state,
+                                nir_deref_instr *deref,
+                                nir_loop_variable **array_index_out)
+{
+   for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
+      if (d->deref_type != nir_deref_type_array)
+         continue;
+
+      assert(d->arr.index.is_ssa);
+      nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
+
+      if (array_index->type != basic_induction)
+         continue;
+
+      if (array_index_out)
+         *array_index_out = array_index;
+
+      nir_deref_instr *parent = nir_deref_instr_parent(d);
+      if (glsl_type_is_array_or_matrix(parent->type)) {
+         return glsl_get_length(parent->type);
+      } else {
+         assert(glsl_type_is_vector(parent->type));
+         return glsl_get_vector_elements(parent->type);
+      }
+   }
+
+   return 0;
+}
+
+static bool
+guess_loop_limit(loop_info_state *state, nir_const_value *limit_val,
+                 nir_ssa_scalar basic_ind)
+{
+   unsigned min_array_size = 0;
+
+   nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
+      nir_foreach_instr(instr, block) {
+         if (instr->type != nir_instr_type_intrinsic)
+            continue;
+
+         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+
+         /* Check for arrays variably-indexed by a loop induction variable. */
+         if (intrin->intrinsic == nir_intrinsic_load_deref ||
+             intrin->intrinsic == nir_intrinsic_store_deref ||
+             intrin->intrinsic == nir_intrinsic_copy_deref) {
+
+            nir_loop_variable *array_idx = NULL;
+            unsigned array_size =
+               find_array_access_via_induction(state,
+                                               nir_src_as_deref(intrin->src[0]),
+                                               &array_idx);
+            if (array_idx && basic_ind.def == array_idx->def &&
+                (min_array_size == 0 || min_array_size > array_size)) {
+               /* Array indices are scalars */
+               assert(basic_ind.def->num_components == 1);
+               min_array_size = array_size;
+            }
+
+            if (intrin->intrinsic != nir_intrinsic_copy_deref)
+               continue;
+
+            array_size =
+               find_array_access_via_induction(state,
+                                               nir_src_as_deref(intrin->src[1]),
+                                               &array_idx);
+            if (array_idx && basic_ind.def == array_idx->def &&
+                (min_array_size == 0 || min_array_size > array_size)) {
+               /* Array indices are scalars */
+               assert(basic_ind.def->num_components == 1);
+               min_array_size = array_size;
+            }
+         }
+      }
+   }
+
+   if (min_array_size) {
+      *limit_val = nir_const_value_for_uint(min_array_size,
+                                            basic_ind.def->bit_size);
+      return true;
+   }
+
+   return false;
+}
+
+static bool
+try_find_limit_of_alu(nir_ssa_scalar limit, nir_const_value *limit_val,
+                      nir_loop_terminator *terminator, loop_info_state *state)
+{
+   if (!nir_ssa_scalar_is_alu(limit))
+      return false;
+
+   nir_op limit_op = nir_ssa_scalar_alu_op(limit);
+   if (limit_op == nir_op_imin || limit_op == nir_op_fmin) {
+      for (unsigned i = 0; i < 2; i++) {
+         nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(limit, i);
+         if (nir_ssa_scalar_is_const(src)) {
+            *limit_val = nir_ssa_scalar_as_const_value(src);
+            terminator->exact_trip_count_unknown = true;
+            return true;
+         }
+      }
+   }
+
+   return false;
+}
+
+static nir_const_value
+eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0,
+                unsigned execution_mode)
+{
+   assert(nir_op_infos[op].num_inputs == 1);
+   nir_const_value dest;
+   nir_const_value *src[1] = { &src0 };
+   nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
+   return dest;
+}
+
+static nir_const_value
+eval_const_binop(nir_op op, unsigned bit_size,
+                 nir_const_value src0, nir_const_value src1,
+                 unsigned execution_mode)
+{
+   assert(nir_op_infos[op].num_inputs == 2);
+   nir_const_value dest;
+   nir_const_value *src[2] = { &src0, &src1 };
+   nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
+   return dest;
+}
+
 static int32_t
-get_iteration(nir_op cond_op, nir_const_value *initial, nir_const_value *step,
-              nir_const_value *limit, nir_alu_instr *alu)
+get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step,
+              nir_const_value limit, unsigned bit_size,
+              unsigned execution_mode)
 {
-   int32_t iter;
+   nir_const_value span, iter;
 
    switch (cond_op) {
    case nir_op_ige:
    case nir_op_ilt:
    case nir_op_ieq:
-   case nir_op_ine: {
-      int32_t initial_val = initial->i32[0];
-      int32_t span = limit->i32[0] - initial_val;
-      iter = span / step->i32[0];
+   case nir_op_ine:
+      span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
+                              execution_mode);
+      iter = eval_const_binop(nir_op_idiv, bit_size, span, step,
+                              execution_mode);
       break;
-   }
+
    case nir_op_uge:
-   case nir_op_ult: {
-      uint32_t initial_val = initial->u32[0];
-      uint32_t span = limit->u32[0] - initial_val;
-      iter = span / step->u32[0];
+   case nir_op_ult:
+      span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
+                              execution_mode);
+      iter = eval_const_binop(nir_op_udiv, bit_size, span, step,
+                              execution_mode);
       break;
-   }
+
    case nir_op_fge:
    case nir_op_flt:
    case nir_op_feq:
-   case nir_op_fne: {
-      int32_t initial_val = initial->f32[0];
-      int32_t span = limit->f32[0] - initial_val;
-      iter = span / step->f32[0];
+   case nir_op_fneu:
+      span = eval_const_binop(nir_op_fsub, bit_size, limit, initial,
+                              execution_mode);
+      iter = eval_const_binop(nir_op_fdiv, bit_size, span,
+                              step, execution_mode);
+      iter = eval_const_unop(nir_op_f2i64, bit_size, iter, execution_mode);
       break;
-   }
+
    default:
       return -1;
    }
 
-   return iter;
+   uint64_t iter_u64 = nir_const_value_as_uint(iter, bit_size);
+   return iter_u64 > INT_MAX ? -1 : (int)iter_u64;
 }
 
 static bool
-test_iterations(int32_t iter_int, nir_const_value *step,
-                nir_const_value *limit, nir_op cond_op, unsigned bit_size,
+will_break_on_first_iteration(nir_const_value step,
+                              nir_alu_type induction_base_type,
+                              unsigned trip_offset,
+                              nir_op cond_op, unsigned bit_size,
+                              nir_const_value initial,
+                              nir_const_value limit,
+                              bool limit_rhs, bool invert_cond,
+                              unsigned execution_mode)
+{
+   if (trip_offset == 1) {
+      nir_op add_op;
+      switch (induction_base_type) {
+      case nir_type_float:
+         add_op = nir_op_fadd;
+         break;
+      case nir_type_int:
+      case nir_type_uint:
+         add_op = nir_op_iadd;
+         break;
+      default:
+         unreachable("Unhandled induction variable base type!");
+      }
+
+      initial = eval_const_binop(add_op, bit_size, initial, step,
+                                 execution_mode);
+   }
+
+   nir_const_value *src[2];
+   src[limit_rhs ? 0 : 1] = &initial;
+   src[limit_rhs ? 1 : 0] = &limit;
+
+   /* Evaluate the loop exit condition */
+   nir_const_value result;
+   nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
+
+   return invert_cond ? !result.b : result.b;
+}
+
+static bool
+test_iterations(int32_t iter_int, nir_const_value step,
+                nir_const_value limit, nir_op cond_op, unsigned bit_size,
                 nir_alu_type induction_base_type,
-                nir_const_value *initial, bool limit_rhs, bool invert_cond)
+                nir_const_value initial, bool limit_rhs, bool invert_cond,
+                unsigned execution_mode)
 {
    assert(nir_op_infos[cond_op].num_inputs == 2);
 
-   nir_const_value iter_src = { {0, } };
+   nir_const_value iter_src;
    nir_op mul_op;
    nir_op add_op;
    switch (induction_base_type) {
    case nir_type_float:
-      iter_src.f32[0] = (float) iter_int;
+      iter_src = nir_const_value_for_float(iter_int, bit_size);
       mul_op = nir_op_fmul;
       add_op = nir_op_fadd;
       break;
    case nir_type_int:
    case nir_type_uint:
-      iter_src.i32[0] = iter_int;
+      iter_src = nir_const_value_for_int(iter_int, bit_size);
       mul_op = nir_op_imul;
       add_op = nir_op_iadd;
       break;
@@ -426,34 +720,30 @@ test_iterations(int32_t iter_int, nir_const_value *step,
    /* Multiple the iteration count we are testing by the number of times we
     * step the induction variable each iteration.
     */
-   nir_const_value mul_src[2] = { iter_src, *step };
    nir_const_value mul_result =
-      nir_eval_const_opcode(mul_op, 1, bit_size, mul_src);
+      eval_const_binop(mul_op, bit_size, iter_src, step, execution_mode);
 
    /* Add the initial value to the accumulated induction variable total */
-   nir_const_value add_src[2] = { mul_result, *initial };
    nir_const_value add_result =
-      nir_eval_const_opcode(add_op, 1, bit_size, add_src);
+      eval_const_binop(add_op, bit_size, mul_result, initial, execution_mode);
 
-   nir_const_value src[2] = { { {0, } }, { {0, } } };
-   src[limit_rhs ? 0 : 1] = add_result;
-   src[limit_rhs ? 1 : 0] = *limit;
+   nir_const_value *src[2];
+   src[limit_rhs ? 0 : 1] = &add_result;
+   src[limit_rhs ? 1 : 0] = &limit;
 
    /* Evaluate the loop exit condition */
-   nir_const_value result = nir_eval_const_opcode(cond_op, 1, bit_size, src);
+   nir_const_value result;
+   nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
 
-   return invert_cond ? (result.u32[0] == 0) : (result.u32[0] != 0);
+   return invert_cond ? !result.b : result.b;
 }
 
 static int
-calculate_iterations(nir_const_value *initial, nir_const_value *step,
-                     nir_const_value *limit, nir_loop_variable *alu_def,
-                     nir_alu_instr *cond_alu, bool limit_rhs, bool invert_cond)
+calculate_iterations(nir_const_value initial, nir_const_value step,
+                     nir_const_value limit, nir_alu_instr *alu,
+                     nir_ssa_scalar cond, nir_op alu_op, bool limit_rhs,
+                     bool invert_cond, unsigned execution_mode)
 {
-   assert(initial != NULL && step != NULL && limit != NULL);
-
-   nir_alu_instr *alu = nir_instr_as_alu(alu_def->def->parent_instr);
-
    /* nir_op_isub should have been lowered away by this point */
    assert(alu->op != nir_op_isub);
 
@@ -463,10 +753,10 @@ calculate_iterations(nir_const_value *initial, nir_const_value *step,
    nir_alu_type induction_base_type =
       nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
    if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
-      assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_int ||
-             nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_uint);
+      assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int ||
+             nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint);
    } else {
-      assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[0]) ==
+      assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) ==
              induction_base_type);
    }
 
@@ -485,12 +775,30 @@ calculate_iterations(nir_const_value *initial, nir_const_value *step,
     * condition and if so we assume we need to step the initial value.
     */
    unsigned trip_offset = 0;
-   if (cond_alu->src[0].src.ssa == alu_def->def ||
-       cond_alu->src[1].src.ssa == alu_def->def) {
+   nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr);
+   if (cond_alu->src[0].src.ssa == &alu->dest.dest.ssa ||
+       cond_alu->src[1].src.ssa == &alu->dest.dest.ssa) {
       trip_offset = 1;
    }
 
-   int iter_int = get_iteration(cond_alu->op, initial, step, limit, alu);
+   assert(nir_src_bit_size(alu->src[0].src) ==
+          nir_src_bit_size(alu->src[1].src));
+   unsigned bit_size = nir_src_bit_size(alu->src[0].src);
+
+   /* get_iteration works under assumption that iterator will be
+    * incremented or decremented until it hits the limit,
+    * however if the loop condition is false on the first iteration
+    * get_iteration's assumption is broken. Handle such loops first.
+    */
+   if (will_break_on_first_iteration(step, induction_base_type, trip_offset,
+                                     alu_op, bit_size, initial,
+                                     limit, limit_rhs, invert_cond,
+                                     execution_mode)) {
+      return 0;
+   }
+
+   int iter_int = get_iteration(alu_op, initial, step, limit, bit_size,
+                                execution_mode);
 
    /* If iter_int is negative the loop is ill-formed or is the conditional is
     * unsigned with a huge iteration count so don't bother going any further.
@@ -507,15 +815,12 @@ calculate_iterations(nir_const_value *initial, nir_const_value *step,
     *
     *    for (float x = 0.0; x != 0.9; x += 0.2);
     */
-   assert(nir_src_bit_size(alu->src[0].src) ==
-          nir_src_bit_size(alu->src[1].src));
-   unsigned bit_size = nir_src_bit_size(alu->src[0].src);
    for (int bias = -1; bias <= 1; bias++) {
       const int iter_bias = iter_int + bias;
 
-      if (test_iterations(iter_bias, step, limit, cond_alu->op, bit_size,
+      if (test_iterations(iter_bias, step, limit, alu_op, bit_size,
                           induction_base_type, initial,
-                          limit_rhs, invert_cond)) {
+                          limit_rhs, invert_cond, execution_mode)) {
          return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
       }
    }
@@ -523,6 +828,129 @@ calculate_iterations(nir_const_value *initial, nir_const_value *step,
    return -1;
 }
 
+static nir_op
+inverse_comparison(nir_op alu_op)
+{
+   switch (alu_op) {
+   case nir_op_fge:
+      return nir_op_flt;
+   case nir_op_ige:
+      return nir_op_ilt;
+   case nir_op_uge:
+      return nir_op_ult;
+   case nir_op_flt:
+      return nir_op_fge;
+   case nir_op_ilt:
+      return nir_op_ige;
+   case nir_op_ult:
+      return nir_op_uge;
+   case nir_op_feq:
+      return nir_op_fneu;
+   case nir_op_ieq:
+      return nir_op_ine;
+   case nir_op_fneu:
+      return nir_op_feq;
+   case nir_op_ine:
+      return nir_op_ieq;
+   default:
+      unreachable("Unsuported comparison!");
+   }
+}
+
+static bool
+is_supported_terminator_condition(nir_ssa_scalar cond)
+{
+   if (!nir_ssa_scalar_is_alu(cond))
+      return false;
+
+   nir_alu_instr *alu = nir_instr_as_alu(cond.def->parent_instr);
+   return nir_alu_instr_is_comparison(alu) &&
+          nir_op_infos[alu->op].num_inputs == 2;
+}
+
+static bool
+get_induction_and_limit_vars(nir_ssa_scalar cond,
+                             nir_ssa_scalar *ind,
+                             nir_ssa_scalar *limit,
+                             bool *limit_rhs,
+                             loop_info_state *state)
+{
+   nir_ssa_scalar rhs, lhs;
+   lhs = nir_ssa_scalar_chase_alu_src(cond, 0);
+   rhs = nir_ssa_scalar_chase_alu_src(cond, 1);
+
+   if (get_loop_var(lhs.def, state)->type == basic_induction) {
+      *ind = lhs;
+      *limit = rhs;
+      *limit_rhs = true;
+      return true;
+   } else if (get_loop_var(rhs.def, state)->type == basic_induction) {
+      *ind = rhs;
+      *limit = lhs;
+      *limit_rhs = false;
+      return true;
+   } else {
+      return false;
+   }
+}
+
+static bool
+try_find_trip_count_vars_in_iand(nir_ssa_scalar *cond,
+                                 nir_ssa_scalar *ind,
+                                 nir_ssa_scalar *limit,
+                                 bool *limit_rhs,
+                                 loop_info_state *state)
+{
+   const nir_op alu_op = nir_ssa_scalar_alu_op(*cond);
+   assert(alu_op == nir_op_ieq || alu_op == nir_op_inot);
+
+   nir_ssa_scalar iand = nir_ssa_scalar_chase_alu_src(*cond, 0);
+
+   if (alu_op == nir_op_ieq) {
+      nir_ssa_scalar zero = nir_ssa_scalar_chase_alu_src(*cond, 1);
+
+      if (!nir_ssa_scalar_is_alu(iand) || !nir_ssa_scalar_is_const(zero)) {
+         /* Maybe we had it the wrong way, flip things around */
+         nir_ssa_scalar tmp = zero;
+         zero = iand;
+         iand = tmp;
+
+         /* If we still didn't find what we need then return */
+         if (!nir_ssa_scalar_is_const(zero))
+            return false;
+      }
+
+      /* If the loop is not breaking on (x && y) == 0 then return */
+      if (nir_ssa_scalar_as_uint(zero) != 0)
+         return false;
+   }
+
+   if (!nir_ssa_scalar_is_alu(iand))
+      return false;
+
+   if (nir_ssa_scalar_alu_op(iand) != nir_op_iand)
+      return false;
+
+   /* Check if iand src is a terminator condition and try get induction var
+    * and trip limit var.
+    */
+   bool found_induction_var = false;
+   for (unsigned i = 0; i < 2; i++) {
+      nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(iand, i);
+      if (is_supported_terminator_condition(src) &&
+          get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) {
+         *cond = src;
+         found_induction_var = true;
+
+         /* If we've found one with a constant limit, stop. */
+         if (nir_ssa_scalar_is_const(*limit))
+            return true;
+      }
+   }
+
+   return found_induction_var;
+}
+
 /* Run through each of the terminators of the loop and try to infer a possible
  * trip-count. We need to check them all, and set the lowest trip-count as the
  * trip-count of our loop. If one of the terminators has an undecidable
@@ -530,17 +958,20 @@ calculate_iterations(nir_const_value *initial, nir_const_value *step,
  * loop.
  */
 static void
-find_trip_count(loop_info_state *state)
+find_trip_count(loop_info_state *state, unsigned execution_mode)
 {
    bool trip_count_known = true;
+   bool guessed_trip_count = false;
    nir_loop_terminator *limiting_terminator = NULL;
-   int min_trip_count = -1;
+   int max_trip_count = -1;
 
    list_for_each_entry(nir_loop_terminator, terminator,
                        &state->loop->info->loop_terminator_list,
                        loop_terminator_link) {
+      assert(terminator->nif->condition.is_ssa);
+      nir_ssa_scalar cond = { terminator->nif->condition.ssa, 0 };
 
-      if (terminator->conditional_instr->type != nir_instr_type_alu) {
+      if (!nir_ssa_scalar_is_alu(cond)) {
          /* If we get here the loop is dead and will get cleaned up by the
           * nir_opt_dead_cf pass.
           */
@@ -548,136 +979,150 @@ find_trip_count(loop_info_state *state)
          continue;
       }
 
-      nir_alu_instr *alu = nir_instr_as_alu(terminator->conditional_instr);
-      nir_loop_variable *basic_ind = NULL;
-      nir_loop_variable *limit = NULL;
-      bool limit_rhs = true;
-
-      switch (alu->op) {
-      case nir_op_fge:      case nir_op_ige:      case nir_op_uge:
-      case nir_op_flt:      case nir_op_ilt:      case nir_op_ult:
-      case nir_op_feq:      case nir_op_ieq:
-      case nir_op_fne:      case nir_op_ine:
-
-         /* We assume that the limit is the "right" operand */
-         basic_ind = get_loop_var(alu->src[0].src.ssa, state);
-         limit = get_loop_var(alu->src[1].src.ssa, state);
-
-         if (basic_ind->type != basic_induction) {
-            /* We had it the wrong way, flip things around */
-            basic_ind = get_loop_var(alu->src[1].src.ssa, state);
-            limit = get_loop_var(alu->src[0].src.ssa, state);
-            limit_rhs = false;
-         }
+      nir_op alu_op = nir_ssa_scalar_alu_op(cond);
 
-         /* The comparison has to have a basic induction variable
-          * and a constant for us to be able to find trip counts
-          */
-         if (basic_ind->type != basic_induction || !is_var_constant(limit)) {
-            trip_count_known = false;
-            continue;
-         }
+      bool limit_rhs;
+      nir_ssa_scalar basic_ind = { NULL, 0 };
+      nir_ssa_scalar limit;
+      if ((alu_op == nir_op_inot || alu_op == nir_op_ieq) &&
+          try_find_trip_count_vars_in_iand(&cond, &basic_ind, &limit,
+                                           &limit_rhs, state)) {
 
-         /* We have determined that we have the following constants:
-          * (With the typical int i = 0; i < x; i++; as an example)
-          *    - Upper limit.
-          *    - Starting value
-          *    - Step / iteration size
-          * Thats all thats needed to calculate the trip-count
+         /* The loop is exiting on (x && y) == 0 so we need to get the
+          * inverse of x or y (i.e. which ever contained the induction var) in
+          * order to compute the trip count.
           */
+         alu_op = inverse_comparison(nir_ssa_scalar_alu_op(cond));
+         trip_count_known = false;
+         terminator->exact_trip_count_unknown = true;
+      }
+
+      if (!basic_ind.def) {
+         if (is_supported_terminator_condition(cond)) {
+            get_induction_and_limit_vars(cond, &basic_ind,
+                                         &limit, &limit_rhs, state);
+         }
+      }
 
-         nir_const_value initial_val =
-            nir_instr_as_load_const(basic_ind->ind->def_outside_loop->
-                                       def->parent_instr)->value;
+      /* The comparison has to have a basic induction variable for us to be
+       * able to find trip counts.
+       */
+      if (!basic_ind.def) {
+         trip_count_known = false;
+         continue;
+      }
 
-         nir_const_value step_val =
-            nir_instr_as_load_const(basic_ind->ind->invariant->def->
-                                       parent_instr)->value;
+      terminator->induction_rhs = !limit_rhs;
 
-         nir_const_value limit_val =
-            nir_instr_as_load_const(limit->def->parent_instr)->value;
+      /* Attempt to find a constant limit for the loop */
+      nir_const_value limit_val;
+      if (nir_ssa_scalar_is_const(limit)) {
+         limit_val = nir_ssa_scalar_as_const_value(limit);
+      } else {
+         trip_count_known = false;
 
-         int iterations = calculate_iterations(&initial_val, &step_val,
-                                               &limit_val,
-                                               basic_ind->ind->alu_def, alu,
-                                               limit_rhs,
-                                               terminator->continue_from_then);
+         if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) {
+            /* Guess loop limit based on array access */
+            if (!guess_loop_limit(state, &limit_val, basic_ind)) {
+               continue;
+            }
 
-         /* Where we not able to calculate the iteration count */
-         if (iterations == -1) {
-            trip_count_known = false;
-            continue;
+            guessed_trip_count = true;
          }
+      }
 
-         /* If this is the first run or we have found a smaller amount of
-          * iterations than previously (we have identified a more limiting
-          * terminator) set the trip count and limiting terminator.
-          */
-         if (min_trip_count == -1 || iterations < min_trip_count) {
-            min_trip_count = iterations;
-            limiting_terminator = terminator;
+      /* We have determined that we have the following constants:
+       * (With the typical int i = 0; i < x; i++; as an example)
+       *    - Upper limit.
+       *    - Starting value
+       *    - Step / iteration size
+       * Thats all thats needed to calculate the trip-count
+       */
+
+      nir_basic_induction_var *ind_var =
+         get_loop_var(basic_ind.def, state)->ind;
+
+      /* The basic induction var might be a vector but, because we guarantee
+       * earlier that the phi source has a scalar swizzle, we can take the
+       * component from basic_ind.
+       */
+      nir_ssa_scalar initial_s = { ind_var->def_outside_loop, basic_ind.comp };
+      nir_ssa_scalar alu_s = { &ind_var->alu->dest.dest.ssa, basic_ind.comp };
+
+      nir_const_value initial_val = nir_ssa_scalar_as_const_value(initial_s);
+
+      /* We are guaranteed by earlier code that at least one of these sources
+       * is a constant but we don't know which.
+       */
+      nir_const_value step_val;
+      memset(&step_val, 0, sizeof(step_val));
+      UNUSED bool found_step_value = false;
+      assert(nir_op_infos[ind_var->alu->op].num_inputs == 2);
+      for (unsigned i = 0; i < 2; i++) {
+         nir_ssa_scalar alu_src = nir_ssa_scalar_chase_alu_src(alu_s, i);
+         if (nir_ssa_scalar_is_const(alu_src)) {
+            found_step_value = true;
+            step_val = nir_ssa_scalar_as_const_value(alu_src);
+            break;
          }
-         break;
+      }
+      assert(found_step_value);
 
-      default:
+      int iterations = calculate_iterations(initial_val, step_val, limit_val,
+                                            ind_var->alu, cond,
+                                            alu_op, limit_rhs,
+                                            terminator->continue_from_then,
+                                            execution_mode);
+
+      /* Where we not able to calculate the iteration count */
+      if (iterations == -1) {
          trip_count_known = false;
+         guessed_trip_count = false;
+         continue;
+      }
+
+      if (guessed_trip_count) {
+         guessed_trip_count = false;
+         if (state->loop->info->guessed_trip_count == 0 ||
+             state->loop->info->guessed_trip_count > iterations)
+            state->loop->info->guessed_trip_count = iterations;
+
+         continue;
+      }
+
+      /* If this is the first run or we have found a smaller amount of
+       * iterations than previously (we have identified a more limiting
+       * terminator) set the trip count and limiting terminator.
+       */
+      if (max_trip_count == -1 || iterations < max_trip_count) {
+         max_trip_count = iterations;
+         limiting_terminator = terminator;
       }
    }
 
-   state->loop->info->is_trip_count_known = trip_count_known;
-   if (min_trip_count > -1)
-      state->loop->info->trip_count = min_trip_count;
+   state->loop->info->exact_trip_count_known = trip_count_known;
+   if (max_trip_count > -1)
+      state->loop->info->max_trip_count = max_trip_count;
    state->loop->info->limiting_terminator = limiting_terminator;
 }
 
-/* Checks if we should force the loop to be unrolled regardless of size
- * due to array access heuristics.
- */
 static bool
-force_unroll_array_access(loop_info_state *state, nir_shader *ns,
-                          nir_deref_var *variable)
+force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref)
 {
-   nir_deref *tail = &variable->deref;
-
-   while (tail->child != NULL) {
-      tail = tail->child;
-
-      if (tail->deref_type == nir_deref_type_array) {
+   unsigned array_size = find_array_access_via_induction(state, deref, NULL);
+   if (array_size) {
+      if (array_size == state->loop->info->max_trip_count)
+         return true;
 
-         nir_deref_array *deref_array = nir_deref_as_array(tail);
-         if (deref_array->deref_array_type != nir_deref_array_type_indirect)
-            continue;
-
-         nir_loop_variable *array_index =
-            get_loop_var(deref_array->indirect.ssa, state);
-
-         if (array_index->type != basic_induction)
-            continue;
-
-         /* If an array is indexed by a loop induction variable, and the
-          * array size is exactly the number of loop iterations, this is
-          * probably a simple for-loop trying to access each element in
-          * turn; the application may expect it to be unrolled.
-          */
-         if (glsl_get_length(variable->deref.type) ==
-             state->loop->info->trip_count) {
-            state->loop->info->force_unroll = true;
-            return state->loop->info->force_unroll;
-         }
-
-         if (variable->var->data.mode & state->indirect_mask) {
-            state->loop->info->force_unroll = true;
-            return state->loop->info->force_unroll;
-         }
-      }
+      if (deref->mode & state->indirect_mask)
+         return true;
    }
 
    return false;
 }
 
 static bool
-force_unroll_heuristics(loop_info_state *state, nir_shader *ns,
-                        nir_block *block)
+force_unroll_heuristics(loop_info_state *state, nir_block *block)
 {
    nir_foreach_instr(instr, block) {
       if (instr->type != nir_instr_type_intrinsic)
@@ -688,15 +1133,17 @@ force_unroll_heuristics(loop_info_state *state, nir_shader *ns,
       /* Check for arrays variably-indexed by a loop induction variable.
        * Unrolling the loop may convert that access into constant-indexing.
        */
-      if (intrin->intrinsic == nir_intrinsic_load_var ||
-          intrin->intrinsic == nir_intrinsic_store_var ||
-          intrin->intrinsic == nir_intrinsic_copy_var) {
-         unsigned num_vars =
-            nir_intrinsic_infos[intrin->intrinsic].num_variables;
-         for (unsigned i = 0; i < num_vars; i++) {
-            if (force_unroll_array_access(state, ns, intrin->variables[i]))
-               return true;
-         }
+      if (intrin->intrinsic == nir_intrinsic_load_deref ||
+          intrin->intrinsic == nir_intrinsic_store_deref ||
+          intrin->intrinsic == nir_intrinsic_copy_deref) {
+         if (force_unroll_array_access(state,
+                                       nir_src_as_deref(intrin->src[0])))
+            return true;
+
+         if (intrin->intrinsic == nir_intrinsic_copy_deref &&
+             force_unroll_array_access(state,
+                                       nir_src_as_deref(intrin->src[1])))
+            return true;
       }
    }
 
@@ -706,8 +1153,11 @@ force_unroll_heuristics(loop_info_state *state, nir_shader *ns,
 static void
 get_loop_info(loop_info_state *state, nir_function_impl *impl)
 {
+   nir_shader *shader = impl->function->shader;
+   const nir_shader_compiler_options *options = shader->options;
+
    /* Initialize all variables to "outside_loop". This also marks defs
-    * invariant and constant if they are nir_instr_type_load_const's
+    * invariant and constant if they are nir_instr_type_load_consts
     */
    nir_foreach_block(block, impl) {
       nir_foreach_instr(instr, block)
@@ -721,17 +1171,18 @@ get_loop_info(loop_info_state *state, nir_function_impl *impl)
       switch (node->type) {
 
       case nir_cf_node_block:
-         init_loop_block(nir_cf_node_as_block(node), state, false);
+         init_loop_block(nir_cf_node_as_block(node), state,
+                         false, false, options);
          break;
 
       case nir_cf_node_if:
          nir_foreach_block_in_cf_node(block, node)
-            init_loop_block(block, state, true);
+            init_loop_block(block, state, true, false, options);
          break;
 
       case nir_cf_node_loop:
          nir_foreach_block_in_cf_node(block, node) {
-            init_loop_block(block, state, true);
+            init_loop_block(block, state, false, true, options);
          }
          break;
 
@@ -740,13 +1191,6 @@ get_loop_info(loop_info_state *state, nir_function_impl *impl)
       }
    }
 
-   /* Induction analysis needs invariance information so get that first */
-   compute_invariance_information(state);
-
-   /* We have invariance information so try to find induction variables */
-   if (!compute_induction_information(state))
-      return;
-
    /* Try to find all simple terminators of the loop. If we can't find any,
     * or we find possible terminators that have side effects then bail.
     */
@@ -760,19 +1204,20 @@ get_loop_info(loop_info_state *state, nir_function_impl *impl)
       return;
    }
 
+   /* Induction analysis needs invariance information so get that first */
+   compute_invariance_information(state);
+
+   /* We have invariance information so try to find induction variables */
+   if (!compute_induction_information(state))
+      return;
+
    /* Run through each of the terminators and try to compute a trip-count */
-   find_trip_count(state);
+   find_trip_count(state, impl->function->shader->info.float_controls_execution_mode);
 
-   nir_shader *ns = impl->function->shader;
-   foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
-      if (node->type == nir_cf_node_block) {
-         if (force_unroll_heuristics(state, ns, nir_cf_node_as_block(node)))
-            break;
-      } else {
-         nir_foreach_block_in_cf_node(block, node) {
-            if (force_unroll_heuristics(state, ns, block))
-               break;
-         }
+   nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
+      if (force_unroll_heuristics(state, block)) {
+         state->loop->info->force_unroll = true;
+         break;
       }
    }
 }