nir: Add fisnormal op
[mesa.git] / src / compiler / nir / nir_opcodes.py
index ac7333fe78186b104885b027f758ea102cbe9f07..d880c51eebce7d0af7b60796f156128e31501303 100644 (file)
@@ -23,6 +23,7 @@
 # Authors:
 #    Connor Abbott (cwabbott0@gmail.com)
 
+import re
 
 # Class that represents all the information we have about the opcode
 # NOTE: this must be kept in sync with nir_op_info
@@ -32,12 +33,13 @@ class Opcode(object):
    NOTE: this must be kept in sync with nir_op_info
    """
    def __init__(self, name, output_size, output_type, input_sizes,
-                input_types, algebraic_properties, const_expr):
+                input_types, is_conversion, algebraic_properties, const_expr):
       """Parameters:
 
       - name is the name of the opcode (prepend nir_op_ for the enum name)
       - all types are strings that get nir_type_ prepended to them
       - input_types is a list of types
+      - is_conversion is true if this opcode represents a type conversion
       - algebraic_properties is a space-seperated string, where nir_op_is_ is
         prepended before each entry
       - const_expr is an expression or series of statements that computes the
@@ -69,12 +71,13 @@ class Opcode(object):
       assert isinstance(input_sizes[0], int)
       assert isinstance(input_types, list)
       assert isinstance(input_types[0], str)
+      assert isinstance(is_conversion, bool)
       assert isinstance(algebraic_properties, str)
       assert isinstance(const_expr, str)
       assert len(input_sizes) == len(input_types)
-      assert 0 <= output_size <= 4
+      assert 0 <= output_size <= 4 or (output_size == 8) or (output_size == 16)
       for size in input_sizes:
-         assert 0 <= size <= 4
+         assert 0 <= size <= 4 or (size == 8) or (size == 16)
          if output_size != 0:
             assert size != 0
       self.name = name
@@ -83,14 +86,23 @@ class Opcode(object):
       self.output_type = output_type
       self.input_sizes = input_sizes
       self.input_types = input_types
+      self.is_conversion = is_conversion
       self.algebraic_properties = algebraic_properties
       self.const_expr = const_expr
 
 # helper variables for strings
 tfloat = "float"
 tint = "int"
-tbool = "bool32"
+tbool = "bool"
+tbool1 = "bool1"
+tbool8 = "bool8"
+tbool16 = "bool16"
+tbool32 = "bool32"
 tuint = "uint"
+tuint8 = "uint8"
+tint16 = "int16"
+tuint16 = "uint16"
+tfloat16 = "float16"
 tfloat32 = "float32"
 tint32 = "int32"
 tuint32 = "uint32"
@@ -98,28 +110,63 @@ tint64 = "int64"
 tuint64 = "uint64"
 tfloat64 = "float64"
 
-commutative = "commutative "
+_TYPE_SPLIT_RE = re.compile(r'(?P<type>int|uint|float|bool)(?P<bits>\d+)?')
+
+def type_has_size(type_):
+    m = _TYPE_SPLIT_RE.match(type_)
+    assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
+    return m.group('bits') is not None
+
+def type_size(type_):
+    m = _TYPE_SPLIT_RE.match(type_)
+    assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
+    assert m.group('bits') is not None, \
+           'NIR type string has no bit size: "{}"'.format(type_)
+    return int(m.group('bits'))
+
+def type_sizes(type_):
+    if type_has_size(type_):
+        return [type_size(type_)]
+    elif type_ == 'bool':
+        return [1, 8, 16, 32]
+    elif type_ == 'float':
+        return [16, 32, 64]
+    else:
+        return [1, 8, 16, 32, 64]
+
+def type_base_type(type_):
+    m = _TYPE_SPLIT_RE.match(type_)
+    assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
+    return m.group('type')
+
+# Operation where the first two sources are commutative.
+#
+# For 2-source operations, this just mathematical commutativity.  Some
+# 3-source operations, like ffma, are only commutative in the first two
+# sources.
+_2src_commutative = "2src_commutative "
 associative = "associative "
 
 # global dictionary of opcodes
 opcodes = {}
 
 def opcode(name, output_size, output_type, input_sizes, input_types,
-           algebraic_properties, const_expr):
+           is_conversion, algebraic_properties, const_expr):
    assert name not in opcodes
    opcodes[name] = Opcode(name, output_size, output_type, input_sizes,
-                          input_types, algebraic_properties, const_expr)
+                          input_types, is_conversion, algebraic_properties,
+                          const_expr)
 
 def unop_convert(name, out_type, in_type, const_expr):
-   opcode(name, 0, out_type, [0], [in_type], "", const_expr)
+   opcode(name, 0, out_type, [0], [in_type], False, "", const_expr)
 
 def unop(name, ty, const_expr):
-   opcode(name, 0, ty, [0], [ty], "", const_expr)
+   opcode(name, 0, ty, [0], [ty], False, "", const_expr)
 
 def unop_horiz(name, output_size, output_type, input_size, input_type,
                const_expr):
-   opcode(name, output_size, output_type, [input_size], [input_type], "",
-          const_expr)
+   opcode(name, output_size, output_type, [input_size], [input_type],
+          False, "", const_expr)
 
 def unop_reduce(name, output_size, output_type, input_type, prereduce_expr,
                 reduce_expr, final_expr):
@@ -140,26 +187,23 @@ def unop_reduce(name, output_size, output_type, input_type, prereduce_expr,
    unop_horiz(name + "4", output_size, output_type, 4, input_type,
               final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
 
+def unop_numeric_convert(name, out_type, in_type, const_expr):
+   opcode(name, 0, out_type, [0], [in_type], True, "", const_expr)
 
-# These two move instructions differ in what modifiers they support and what
-# the negate modifier means. Otherwise, they are identical.
-unop("fmov", tfloat, "src0")
-unop("imov", tint, "src0")
+unop("mov", tuint, "src0")
 
 unop("ineg", tint, "-src0")
 unop("fneg", tfloat, "-src0")
 unop("inot", tint, "~src0") # invert every bit of the integer
-unop("fnot", tfloat, ("bit_size == 64 ? ((src0 == 0.0) ? 1.0 : 0.0f) : " +
-                      "((src0 == 0.0f) ? 1.0f : 0.0f)"))
 unop("fsign", tfloat, ("bit_size == 64 ? " +
                        "((src0 == 0.0) ? 0.0 : ((src0 > 0.0) ? 1.0 : -1.0)) : " +
                        "((src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f))"))
 unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)")
 unop("iabs", tint, "(src0 < 0) ? -src0 : src0")
 unop("fabs", tfloat, "fabs(src0)")
-unop("fsat", tfloat, ("bit_size == 64 ? " +
-                      "((src0 > 1.0) ? 1.0 : ((src0 <= 0.0) ? 0.0 : src0)) : " +
-                      "((src0 > 1.0f) ? 1.0f : ((src0 <= 0.0f) ? 0.0f : src0))"))
+unop("fsat", tfloat, ("fmin(fmax(src0, 0.0), 1.0)"))
+unop("fsat_signed", tfloat, ("fmin(fmax(src0, -1.0), 1.0)"))
+unop("fclamp_pos", tfloat, ("fmax(src0, 0.0)"))
 unop("frcp", tfloat, "bit_size == 64 ? 1.0 / src0 : 1.0f / src0")
 unop("frsq", tfloat, "bit_size == 64 ? 1.0 / sqrt(src0) : 1.0f / sqrtf(src0)")
 unop("fsqrt", tfloat, "bit_size == 64 ? sqrt(src0) : sqrtf(src0)")
@@ -167,35 +211,70 @@ unop("fexp2", tfloat, "exp2f(src0)")
 unop("flog2", tfloat, "log2f(src0)")
 
 # Generate all of the numeric conversion opcodes
-for src_t in [tint, tuint, tfloat]:
-   if src_t in (tint, tuint):
-      dst_types = [tfloat, src_t]
+for src_t in [tint, tuint, tfloat, tbool]:
+   if src_t == tbool:
+      dst_types = [tfloat, tint, tbool]
+   elif src_t == tint:
+      dst_types = [tfloat, tint, tbool]
+   elif src_t == tuint:
+      dst_types = [tfloat, tuint]
    elif src_t == tfloat:
-      dst_types = [tint, tuint, tfloat]
+      dst_types = [tint, tuint, tfloat, tbool]
 
    for dst_t in dst_types:
-      if dst_t == tfloat:
-         bit_sizes = [16, 32, 64]
-      else:
-         bit_sizes = [8, 16, 32, 64]
-      for bit_size in bit_sizes:
-          if bit_size == 16 and dst_t == tfloat and src_t == tfloat:
-              rnd_modes = ['rtne', 'rtz', 'undef']
+      for dst_bit_size in type_sizes(dst_t):
+          if dst_bit_size == 16 and dst_t == tfloat and src_t == tfloat:
+              rnd_modes = ['_rtne', '_rtz', '']
               for rnd_mode in rnd_modes:
-                  unop_convert("{0}2{1}{2}_{3}".format(src_t[0], dst_t[0],
-                                                       bit_size, rnd_mode),
-                               dst_t + str(bit_size), src_t, "src0")
+                  if rnd_mode == '_rtne':
+                      conv_expr = """
+                      if (bit_size > 16) {
+                         dst = _mesa_half_to_float(_mesa_float_to_float16_rtne(src0));
+                      } else {
+                         dst = src0;
+                      }
+                      """
+                  elif rnd_mode == '_rtz':
+                      conv_expr = """
+                      if (bit_size > 16) {
+                         dst = _mesa_half_to_float(_mesa_float_to_float16_rtz(src0));
+                      } else {
+                         dst = src0;
+                      }
+                      """
+                  else:
+                      conv_expr = "src0"
+
+                  unop_numeric_convert("{0}2{1}{2}{3}".format(src_t[0],
+                                                              dst_t[0],
+                                                              dst_bit_size,
+                                                              rnd_mode),
+                                       dst_t + str(dst_bit_size),
+                                       src_t, conv_expr)
+          elif dst_bit_size == 32 and dst_t == tfloat and src_t == tfloat:
+              conv_expr = """
+              if (bit_size > 32 && nir_is_rounding_mode_rtz(execution_mode, 32)) {
+                 dst = _mesa_double_to_float_rtz(src0);
+              } else {
+                 dst = src0;
+              }
+              """
+              unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0],
+                                                       dst_bit_size),
+                                   dst_t + str(dst_bit_size), src_t, conv_expr)
           else:
-              unop_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], bit_size),
-                           dst_t + str(bit_size), src_t, "src0")
-
-# We'll hand-code the to/from bool conversion opcodes.  Because bool doesn't
-# have multiple bit-sizes, we can always infer the size from the other type.
-unop_convert("f2b", tbool, tfloat, "src0 != 0.0")
-unop_convert("i2b", tbool, tint, "src0 != 0")
-unop_convert("b2f", tfloat, tbool, "src0 ? 1.0 : 0.0")
-unop_convert("b2i", tint, tbool, "src0 ? 1 : 0")
-
+              conv_expr = "src0 != 0" if dst_t == tbool else "src0"
+              unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0],
+                                                       dst_bit_size),
+                                   dst_t + str(dst_bit_size), src_t, conv_expr)
+
+# Special opcode that is the same as f2f16, i2i16, u2u16 except that it is safe
+# to remove it if the result is immediately converted back to 32 bits again.
+# This is generated as part of the precision lowering pass. mp stands for medium
+# precision.
+unop_numeric_convert("f2fmp", tfloat16, tfloat, opcodes["f2f16"].const_expr)
+unop_numeric_convert("i2imp", tint16, tint, opcodes["i2i16"].const_expr)
+unop_numeric_convert("u2ump", tuint16, tuint, opcodes["u2u16"].const_expr)
 
 # Unary floating-point rounding operations.
 
@@ -214,6 +293,9 @@ unop("fquantize2f16", tfloat, "(fabs(src0) < ldexpf(1.0, -14)) ? copysignf(0.0f,
 unop("fsin", tfloat, "bit_size == 64 ? sin(src0) : sinf(src0)")
 unop("fcos", tfloat, "bit_size == 64 ? cos(src0) : cosf(src0)")
 
+# dfrexp
+unop_convert("frexp_exp", tint32, tfloat, "frexp(src0, &dst);")
+unop_convert("frexp_sig", tfloat, tfloat, "int n; dst = frexp(src0, &n);")
 
 # Partial derivatives.
 
@@ -279,19 +361,49 @@ dst.x = (src0.x <<  0) |
         (src0.w << 24);
 """)
 
+unop_horiz("pack_32_4x8", 1, tuint32, 4, tuint8,
+           "dst.x = src0.x | ((uint32_t)src0.y << 8) | ((uint32_t)src0.z << 16) | ((uint32_t)src0.w << 24);")
+
+unop_horiz("pack_32_2x16", 1, tuint32, 2, tuint16,
+           "dst.x = src0.x | ((uint32_t)src0.y << 16);")
+
 unop_horiz("pack_64_2x32", 1, tuint64, 2, tuint32,
            "dst.x = src0.x | ((uint64_t)src0.y << 32);")
 
+unop_horiz("pack_64_4x16", 1, tuint64, 4, tuint16,
+           "dst.x = src0.x | ((uint64_t)src0.y << 16) | ((uint64_t)src0.z << 32) | ((uint64_t)src0.w << 48);")
+
 unop_horiz("unpack_64_2x32", 2, tuint32, 1, tuint64,
            "dst.x = src0.x; dst.y = src0.x >> 32;")
 
+unop_horiz("unpack_64_4x16", 4, tuint16, 1, tuint64,
+           "dst.x = src0.x; dst.y = src0.x >> 16; dst.z = src0.x >> 32; dst.w = src0.w >> 48;")
+
+unop_horiz("unpack_32_2x16", 2, tuint16, 1, tuint32,
+           "dst.x = src0.x; dst.y = src0.x >> 16;")
+
+unop_horiz("unpack_32_4x8", 4, tuint8, 1, tuint32,
+           "dst.x = src0.x; dst.y = src0.x >> 8; dst.z = src0.x >> 16; dst.w = src0.x >> 24;")
+
+unop_horiz("unpack_half_2x16_flush_to_zero", 2, tfloat32, 1, tuint32, """
+dst.x = unpack_half_1x16_flush_to_zero((uint16_t)(src0.x & 0xffff));
+dst.y = unpack_half_1x16_flush_to_zero((uint16_t)(src0.x << 16));
+""")
+
 # Lowered floating point unpacking operations.
 
+unop_convert("unpack_half_2x16_split_x", tfloat32, tuint32,
+             "unpack_half_1x16((uint16_t)(src0 & 0xffff))")
+unop_convert("unpack_half_2x16_split_y", tfloat32, tuint32,
+             "unpack_half_1x16((uint16_t)(src0 >> 16))")
+
+unop_convert("unpack_half_2x16_split_x_flush_to_zero", tfloat32, tuint32,
+             "unpack_half_1x16_flush_to_zero((uint16_t)(src0 & 0xffff))")
+unop_convert("unpack_half_2x16_split_y_flush_to_zero", tfloat32, tuint32,
+             "unpack_half_1x16_flush_to_zero((uint16_t)(src0 >> 16))")
 
-unop_horiz("unpack_half_2x16_split_x", 1, tfloat32, 1, tuint32,
-           "unpack_half_1x16((uint16_t)(src0.x & 0xffff))")
-unop_horiz("unpack_half_2x16_split_y", 1, tfloat32, 1, tuint32,
-           "unpack_half_1x16((uint16_t)(src0.x >> 16))")
+unop_convert("unpack_32_2x16_split_x", tuint16, tuint32, "src0")
+unop_convert("unpack_32_2x16_split_y", tuint16, tuint32, "src0 >> 16")
 
 unop_convert("unpack_64_2x32_split_x", tuint32, tuint64, "src0")
 unop_convert("unpack_64_2x32_split_y", tuint32, tuint64, "src0 >> 32")
@@ -305,17 +417,17 @@ dst = 0;
 for (unsigned bit = 0; bit < 32; bit++)
    dst |= ((src0 >> bit) & 1) << (31 - bit);
 """)
-unop("bit_count", tuint32, """
+unop_convert("bit_count", tuint32, tuint, """
 dst = 0;
-for (unsigned bit = 0; bit < 32; bit++) {
+for (unsigned bit = 0; bit < bit_size; bit++) {
    if ((src0 >> bit) & 1)
       dst++;
 }
 """)
 
-unop_convert("ufind_msb", tint32, tuint32, """
+unop_convert("ufind_msb", tint32, tuint, """
 dst = -1;
-for (int bit = 31; bit >= 0; bit--) {
+for (int bit = bit_size - 1; bit >= 0; bit--) {
    if ((src0 >> bit) & 1) {
       dst = bit;
       break;
@@ -323,6 +435,15 @@ for (int bit = 31; bit >= 0; bit--) {
 }
 """)
 
+unop("uclz", tuint32, """
+int bit;
+for (bit = bit_size - 1; bit >= 0; bit--) {
+   if ((src0 & (1u << bit)) != 0)
+      break;
+}
+dst = (unsigned)(31 - bit);
+""")
+
 unop("ifind_msb", tint32, """
 dst = -1;
 for (int bit = 31; bit >= 0; bit--) {
@@ -337,9 +458,9 @@ for (int bit = 31; bit >= 0; bit--) {
 }
 """)
 
-unop("find_lsb", tint32, """
+unop_convert("find_lsb", tint32, tint, """
 dst = -1;
-for (unsigned bit = 0; bit < 32; bit++) {
+for (unsigned bit = 0; bit < bit_size; bit++) {
    if ((src0 >> bit) & 1) {
       dst = bit;
       break;
@@ -347,24 +468,73 @@ for (unsigned bit = 0; bit < 32; bit++) {
 }
 """)
 
+# AMD_gcn_shader extended instructions
+unop_horiz("cube_face_coord", 2, tfloat32, 3, tfloat32, """
+dst.x = dst.y = 0.0;
+float absX = fabsf(src0.x);
+float absY = fabsf(src0.y);
+float absZ = fabsf(src0.z);
+
+float ma = 0.0;
+if (absX >= absY && absX >= absZ) { ma = 2 * src0.x; }
+if (absY >= absX && absY >= absZ) { ma = 2 * src0.y; }
+if (absZ >= absX && absZ >= absY) { ma = 2 * src0.z; }
+
+if (src0.x >= 0 && absX >= absY && absX >= absZ) { dst.x = -src0.z; dst.y = -src0.y; }
+if (src0.x < 0 && absX >= absY && absX >= absZ) { dst.x = src0.z; dst.y = -src0.y; }
+if (src0.y >= 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = src0.z; }
+if (src0.y < 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = -src0.z; }
+if (src0.z >= 0 && absZ >= absX && absZ >= absY) { dst.x = src0.x; dst.y = -src0.y; }
+if (src0.z < 0 && absZ >= absX && absZ >= absY) { dst.x = -src0.x; dst.y = -src0.y; }
+
+dst.x = dst.x * (1.0f / ma) + 0.5f;
+dst.y = dst.y * (1.0f / ma) + 0.5f;
+""")
+
+unop_horiz("cube_face_index", 1, tfloat32, 3, tfloat32, """
+float absX = fabsf(src0.x);
+float absY = fabsf(src0.y);
+float absZ = fabsf(src0.z);
+if (src0.x >= 0 && absX >= absY && absX >= absZ) dst.x = 0;
+if (src0.x < 0 && absX >= absY && absX >= absZ) dst.x = 1;
+if (src0.y >= 0 && absY >= absX && absY >= absZ) dst.x = 2;
+if (src0.y < 0 && absY >= absX && absY >= absZ) dst.x = 3;
+if (src0.z >= 0 && absZ >= absX && absZ >= absY) dst.x = 4;
+if (src0.z < 0 && absZ >= absX && absZ >= absY) dst.x = 5;
+""")
 
-for i in xrange(1, 5):
-   for j in xrange(1, 5):
-      unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f")
+# Sum of vector components
+unop_reduce("fsum", 1, tfloat, tfloat, "{src}", "{src0} + {src1}", "{src}")
 
 def binop_convert(name, out_type, in_type, alg_props, const_expr):
-   opcode(name, 0, out_type, [0, 0], [in_type, in_type], alg_props, const_expr)
+   opcode(name, 0, out_type, [0, 0], [in_type, in_type],
+          False, alg_props, const_expr)
 
 def binop(name, ty, alg_props, const_expr):
    binop_convert(name, ty, ty, alg_props, const_expr)
 
 def binop_compare(name, ty, alg_props, const_expr):
-   binop_convert(name, tbool, ty, alg_props, const_expr)
+   binop_convert(name, tbool1, ty, alg_props, const_expr)
+
+def binop_compare8(name, ty, alg_props, const_expr):
+   binop_convert(name, tbool8, ty, alg_props, const_expr)
+
+def binop_compare16(name, ty, alg_props, const_expr):
+   binop_convert(name, tbool16, ty, alg_props, const_expr)
+
+def binop_compare32(name, ty, alg_props, const_expr):
+   binop_convert(name, tbool32, ty, alg_props, const_expr)
+
+def binop_compare_all_sizes(name, ty, alg_props, const_expr):
+   binop_compare(name, ty, alg_props, const_expr)
+   binop_compare8(name + "8", ty, alg_props, const_expr)
+   binop_compare16(name + "16", ty, alg_props, const_expr)
+   binop_compare32(name + "32", ty, alg_props, const_expr)
 
 def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size,
                 src2_type, const_expr):
    opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type],
-          "", const_expr)
+          False, "", const_expr)
 
 def binop_reduce(name, output_size, output_type, src_type, prereduce_expr,
                  reduce_expr, final_expr):
@@ -374,49 +544,182 @@ def binop_reduce(name, output_size, output_type, src_type, prereduce_expr,
       return reduce_expr.format(src0=src0, src1=src1)
    def prereduce(src0, src1):
       return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")"
-   src0 = prereduce("src0.x", "src1.x")
-   src1 = prereduce("src0.y", "src1.y")
-   src2 = prereduce("src0.z", "src1.z")
-   src3 = prereduce("src0.w", "src1.w")
-   opcode(name + "2", output_size, output_type,
-          [2, 2], [src_type, src_type], commutative,
-          final(reduce_(src0, src1)))
+   srcs = [prereduce("src0." + letter, "src1." + letter) for letter in "xyzwefghijklmnop"]
+   def pairwise_reduce(start, size):
+      if (size == 1):
+         return srcs[start]
+      return reduce_(pairwise_reduce(start, size // 2), pairwise_reduce(start + size // 2, size // 2))
+   for size in [2, 4, 8, 16]:
+      opcode(name + str(size), output_size, output_type,
+             [size, size], [src_type, src_type], False, _2src_commutative,
+             final(pairwise_reduce(0, size)))
    opcode(name + "3", output_size, output_type,
-          [3, 3], [src_type, src_type], commutative,
-          final(reduce_(reduce_(src0, src1), src2)))
-   opcode(name + "4", output_size, output_type,
-          [4, 4], [src_type, src_type], commutative,
-          final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
-
-binop("fadd", tfloat, commutative + associative, "src0 + src1")
-binop("iadd", tint, commutative + associative, "src0 + src1")
-binop("fsub", tfloat, "", "src0 - src1")
+          [3, 3], [src_type, src_type], False, _2src_commutative,
+          final(reduce_(reduce_(srcs[0], srcs[1]), srcs[2])))
+
+def binop_reduce_all_sizes(name, output_size, src_type, prereduce_expr,
+                           reduce_expr, final_expr):
+   binop_reduce(name, output_size, tbool1, src_type,
+                prereduce_expr, reduce_expr, final_expr)
+   binop_reduce("b8" + name[1:], output_size, tbool8, src_type,
+                prereduce_expr, reduce_expr, final_expr)
+   binop_reduce("b16" + name[1:], output_size, tbool16, src_type,
+                prereduce_expr, reduce_expr, final_expr)
+   binop_reduce("b32" + name[1:], output_size, tbool32, src_type,
+                prereduce_expr, reduce_expr, final_expr)
+
+binop("fadd", tfloat, _2src_commutative + associative,"""
+if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
+   if (bit_size == 64)
+      dst = _mesa_double_add_rtz(src0, src1);
+   else
+      dst = _mesa_double_to_float_rtz((double)src0 + (double)src1);
+} else {
+   dst = src0 + src1;
+}
+""")
+binop("iadd", tint, _2src_commutative + associative, "src0 + src1")
+binop("iadd_sat", tint, _2src_commutative, """
+      src1 > 0 ?
+         (src0 + src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 + src1) :
+         (src0 < src0 + src1 ? (1ull << (bit_size - 1))     : src0 + src1)
+""")
+binop("uadd_sat", tuint, _2src_commutative,
+      "(src0 + src1) < src0 ? MAX_UINT_FOR_SIZE(sizeof(src0) * 8) : (src0 + src1)")
+binop("isub_sat", tint, "", """
+      src1 < 0 ?
+         (src0 - src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 - src1) :
+         (src0 < src0 - src1 ? (1ull << (bit_size - 1))     : src0 - src1)
+""")
+binop("usub_sat", tuint, "", "src0 < src1 ? 0 : src0 - src1")
+
+binop("fsub", tfloat, "", """
+if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
+   if (bit_size == 64)
+      dst = _mesa_double_sub_rtz(src0, src1);
+   else
+      dst = _mesa_double_to_float_rtz((double)src0 - (double)src1);
+} else {
+   dst = src0 - src1;
+}
+""")
 binop("isub", tint, "", "src0 - src1")
-
-binop("fmul", tfloat, commutative + associative, "src0 * src1")
+binop_convert("uabs_isub", tuint, tint, "", """
+              src1 > src0 ? (uint64_t) src1 - (uint64_t) src0
+                          : (uint64_t) src0 - (uint64_t) src1
+""")
+binop("uabs_usub", tuint, "", "(src1 > src0) ? (src1 - src0) : (src0 - src1)")
+
+binop("fmul", tfloat, _2src_commutative + associative, """
+if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
+   if (bit_size == 64)
+      dst = _mesa_double_mul_rtz(src0, src1);
+   else
+      dst = _mesa_double_to_float_rtz((double)src0 * (double)src1);
+} else {
+   dst = src0 * src1;
+}
+""")
 # low 32-bits of signed/unsigned integer multiply
-binop("imul", tint, commutative + associative, "src0 * src1")
+binop("imul", tint, _2src_commutative + associative, "src0 * src1")
+
+# Generate 64 bit result from 2 32 bits quantity
+binop_convert("imul_2x32_64", tint64, tint32, _2src_commutative,
+              "(int64_t)src0 * (int64_t)src1")
+binop_convert("umul_2x32_64", tuint64, tuint32, _2src_commutative,
+              "(uint64_t)src0 * (uint64_t)src1")
+
 # high 32-bits of signed integer multiply
-binop("imul_high", tint32, commutative,
-      "(int32_t)(((int64_t) src0 * (int64_t) src1) >> 32)")
+binop("imul_high", tint, _2src_commutative, """
+if (bit_size == 64) {
+   /* We need to do a full 128-bit x 128-bit multiply in order for the sign
+    * extension to work properly.  The casts are kind-of annoying but needed
+    * to prevent compiler warnings.
+    */
+   uint32_t src0_u32[4] = {
+      src0,
+      (int64_t)src0 >> 32,
+      (int64_t)src0 >> 63,
+      (int64_t)src0 >> 63,
+   };
+   uint32_t src1_u32[4] = {
+      src1,
+      (int64_t)src1 >> 32,
+      (int64_t)src1 >> 63,
+      (int64_t)src1 >> 63,
+   };
+   uint32_t prod_u32[4];
+   ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
+   dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
+} else {
+   dst = ((int64_t)src0 * (int64_t)src1) >> bit_size;
+}
+""")
+
 # high 32-bits of unsigned integer multiply
-binop("umul_high", tuint32, commutative,
-      "(uint32_t)(((uint64_t) src0 * (uint64_t) src1) >> 32)")
+binop("umul_high", tuint, _2src_commutative, """
+if (bit_size == 64) {
+   /* The casts are kind-of annoying but needed to prevent compiler warnings. */
+   uint32_t src0_u32[2] = { src0, (uint64_t)src0 >> 32 };
+   uint32_t src1_u32[2] = { src1, (uint64_t)src1 >> 32 };
+   uint32_t prod_u32[4];
+   ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
+   dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
+} else {
+   dst = ((uint64_t)src0 * (uint64_t)src1) >> bit_size;
+}
+""")
+
+# low 32-bits of unsigned integer multiply
+binop("umul_low", tuint32, _2src_commutative, """
+uint64_t mask = (1 << (bit_size / 2)) - 1;
+dst = ((uint64_t)src0 & mask) * ((uint64_t)src1 & mask);
+""")
+
+# Multiply 32-bits with low 16-bits.
+binop("imul_32x16", tint32, "", "src0 * (int16_t) src1")
+binop("umul_32x16", tuint32, "", "src0 * (uint16_t) src1")
 
 binop("fdiv", tfloat, "", "src0 / src1")
-binop("idiv", tint, "", "src0 / src1")
-binop("udiv", tuint, "", "src0 / src1")
+binop("idiv", tint, "", "src1 == 0 ? 0 : (src0 / src1)")
+binop("udiv", tuint, "", "src1 == 0 ? 0 : (src0 / src1)")
 
 # returns a boolean representing the carry resulting from the addition of
 # the two unsigned arguments.
 
-binop_convert("uadd_carry", tuint, tuint, commutative, "src0 + src1 < src0")
+binop_convert("uadd_carry", tuint, tuint, _2src_commutative, "src0 + src1 < src0")
 
 # returns a boolean representing the borrow resulting from the subtraction
 # of the two unsigned arguments.
 
 binop_convert("usub_borrow", tuint, tuint, "", "src0 < src1")
 
+# hadd: (a + b) >> 1 (without overflow)
+# x + y = x - (x & ~y) + (x & ~y) + y - (~x & y) + (~x & y)
+#       =      (x & y) + (x & ~y) +      (x & y) + (~x & y)
+#       = 2 *  (x & y) + (x & ~y) +                (~x & y)
+#       =     ((x & y) << 1) + (x ^ y)
+#
+# Since we know that the bottom bit of (x & y) << 1 is zero,
+#
+# (x + y) >> 1 = (((x & y) << 1) + (x ^ y)) >> 1
+#              =   (x & y) +      ((x ^ y)  >> 1)
+binop("ihadd", tint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
+binop("uhadd", tuint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
+
+# rhadd: (a + b + 1) >> 1 (without overflow)
+# x + y + 1 = x + (~x & y) - (~x & y) + y + (x & ~y) - (x & ~y) + 1
+#           =      (x | y) - (~x & y) +      (x | y) - (x & ~y) + 1
+#           = 2 *  (x | y) - ((~x & y) +               (x & ~y)) + 1
+#           =     ((x | y) << 1) - (x ^ y) + 1
+#
+# Since we know that the bottom bit of (x & y) << 1 is zero,
+#
+# (x + y + 1) >> 1 = (x | y) + (-(x ^ y) + 1) >> 1)
+#                  = (x | y) -  ((x ^ y)      >> 1)
+binop("irhadd", tint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
+binop("urhadd", tuint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
+
 binop("umod", tuint, "", "src1 == 0 ? 0 : src0 % src1")
 
 # For signed integers, there are several different possible definitions of
@@ -441,27 +744,27 @@ binop("frem", tfloat, "", "src0 - src1 * truncf(src0 / src1)")
 
 # these integer-aware comparisons return a boolean (0 or ~0)
 
-binop_compare("flt", tfloat, "", "src0 < src1")
-binop_compare("fge", tfloat, "", "src0 >= src1")
-binop_compare("feq", tfloat, commutative, "src0 == src1")
-binop_compare("fne", tfloat, commutative, "src0 != src1")
-binop_compare("ilt", tint, "", "src0 < src1")
-binop_compare("ige", tint, "", "src0 >= src1")
-binop_compare("ieq", tint, commutative, "src0 == src1")
-binop_compare("ine", tint, commutative, "src0 != src1")
-binop_compare("ult", tuint, "", "src0 < src1")
-binop_compare("uge", tuint, "", "src0 >= src1")
+binop_compare_all_sizes("flt", tfloat, "", "src0 < src1")
+binop_compare_all_sizes("fge", tfloat, "", "src0 >= src1")
+binop_compare_all_sizes("feq", tfloat, _2src_commutative, "src0 == src1")
+binop_compare_all_sizes("fne", tfloat, _2src_commutative, "src0 != src1")
+binop_compare_all_sizes("ilt", tint, "", "src0 < src1")
+binop_compare_all_sizes("ige", tint, "", "src0 >= src1")
+binop_compare_all_sizes("ieq", tint, _2src_commutative, "src0 == src1")
+binop_compare_all_sizes("ine", tint, _2src_commutative, "src0 != src1")
+binop_compare_all_sizes("ult", tuint, "", "src0 < src1")
+binop_compare_all_sizes("uge", tuint, "", "src0 >= src1")
 
 # integer-aware GLSL-style comparisons that compare floats and ints
 
-binop_reduce("ball_fequal",  1, tbool, tfloat, "{src0} == {src1}",
-             "{src0} && {src1}", "{src}")
-binop_reduce("bany_fnequal", 1, tbool, tfloat, "{src0} != {src1}",
-             "{src0} || {src1}", "{src}")
-binop_reduce("ball_iequal",  1, tbool, tint, "{src0} == {src1}",
-             "{src0} && {src1}", "{src}")
-binop_reduce("bany_inequal", 1, tbool, tint, "{src0} != {src1}",
-             "{src0} || {src1}", "{src}")
+binop_reduce_all_sizes("ball_fequal",  1, tfloat, "{src0} == {src1}",
+                       "{src0} && {src1}", "{src}")
+binop_reduce_all_sizes("bany_fnequal", 1, tfloat, "{src0} != {src1}",
+                       "{src0} || {src1}", "{src}")
+binop_reduce_all_sizes("ball_iequal",  1, tint, "{src0} == {src1}",
+                       "{src0} && {src1}", "{src}")
+binop_reduce_all_sizes("bany_inequal", 1, tint, "{src0} != {src1}",
+                       "{src0} || {src1}", "{src}")
 
 # non-integer-aware GLSL-style comparisons that return 0.0 or 1.0
 
@@ -475,13 +778,29 @@ binop_reduce("fany_nequal", 1, tfloat32, tfloat32, "{src0} != {src1}",
 
 binop("slt", tfloat32, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than
 binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal
-binop("seq", tfloat32, commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal
-binop("sne", tfloat32, commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal
-
-
-opcode("ishl", 0, tint, [0, 0], [tint, tuint32], "", "src0 << src1")
-opcode("ishr", 0, tint, [0, 0], [tint, tuint32], "", "src0 >> src1")
-opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], "", "src0 >> src1")
+binop("seq", tfloat32, _2src_commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal
+binop("sne", tfloat32, _2src_commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal
+
+# SPIRV shifts are undefined for shift-operands >= bitsize,
+# but SM5 shifts are defined to use the least significant bits, only
+# The NIR definition is according to the SM5 specification.
+opcode("ishl", 0, tint, [0, 0], [tint, tuint32], False, "",
+       "src0 << (src1 & (sizeof(src0) * 8 - 1))")
+opcode("ishr", 0, tint, [0, 0], [tint, tuint32], False, "",
+       "src0 >> (src1 & (sizeof(src0) * 8 - 1))")
+opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], False, "",
+       "src0 >> (src1 & (sizeof(src0) * 8 - 1))")
+
+opcode("urol", 0, tuint, [0, 0], [tuint, tuint32], False, "", """
+   uint32_t rotate_mask = sizeof(src0) * 8 - 1;
+   dst = (src0 << (src1 & rotate_mask)) |
+         (src0 >> (-src1 & rotate_mask));
+""")
+opcode("uror", 0, tuint, [0, 0], [tuint, tuint32], False, "", """
+   uint32_t rotate_mask = sizeof(src0) * 8 - 1;
+   dst = (src0 >> (src1 & rotate_mask)) |
+         (src0 << (-src1 & rotate_mask));
+""")
 
 # bitwise logic operators
 #
@@ -489,22 +808,10 @@ opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], "", "src0 >> src1")
 # integers.
 
 
-binop("iand", tuint, commutative + associative, "src0 & src1")
-binop("ior", tuint, commutative + associative, "src0 | src1")
-binop("ixor", tuint, commutative + associative, "src0 ^ src1")
-
+binop("iand", tuint, _2src_commutative + associative, "src0 & src1")
+binop("ior", tuint, _2src_commutative + associative, "src0 | src1")
+binop("ixor", tuint, _2src_commutative + associative, "src0 ^ src1")
 
-# floating point logic operators
-#
-# These use (src != 0.0) for testing the truth of the input, and output 1.0
-# for true and 0.0 for false
-
-binop("fand", tfloat32, commutative,
-      "((src0 != 0.0f) && (src1 != 0.0f)) ? 1.0f : 0.0f")
-binop("for", tfloat32, commutative,
-      "((src0 != 0.0f) || (src1 != 0.0f)) ? 1.0f : 0.0f")
-binop("fxor", tfloat32, commutative,
-      "(src0 != 0.0f && src1 == 0.0f) || (src0 == 0.0f && src1 != 0.0f) ? 1.0f : 0.0f")
 
 binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}",
              "{src}")
@@ -512,20 +819,20 @@ binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}",
 binop_reduce("fdot_replicated", 4, tfloat, tfloat,
              "{src0} * {src1}", "{src0} + {src1}", "{src}")
 
-opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], "",
+opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], False, "",
        "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
-opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], "",
+opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], False, "",
        "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
 
-binop("fmin", tfloat, "", "fminf(src0, src1)")
-binop("imin", tint, commutative + associative, "src1 > src0 ? src0 : src1")
-binop("umin", tuint, commutative + associative, "src1 > src0 ? src0 : src1")
-binop("fmax", tfloat, "", "fmaxf(src0, src1)")
-binop("imax", tint, commutative + associative, "src1 > src0 ? src1 : src0")
-binop("umax", tuint, commutative + associative, "src1 > src0 ? src1 : src0")
+binop("fmin", tfloat, _2src_commutative + associative, "fmin(src0, src1)")
+binop("imin", tint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
+binop("umin", tuint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
+binop("fmax", tfloat, _2src_commutative + associative, "fmax(src0, src1)")
+binop("imax", tint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")
+binop("umax", tuint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")
 
 # Saturated vector add for 4 8bit ints.
-binop("usadd_4x8", tint32, commutative + associative, """
+binop("usadd_4x8", tint32, _2src_commutative + associative, """
 dst = 0;
 for (int i = 0; i < 32; i += 8) {
    dst |= MIN2(((src0 >> i) & 0xff) + ((src1 >> i) & 0xff), 0xff) << i;
@@ -544,7 +851,7 @@ for (int i = 0; i < 32; i += 8) {
 """)
 
 # vector min for 4 8bit ints.
-binop("umin_4x8", tint32, commutative + associative, """
+binop("umin_4x8", tint32, _2src_commutative + associative, """
 dst = 0;
 for (int i = 0; i < 32; i += 8) {
    dst |= MIN2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
@@ -552,7 +859,7 @@ for (int i = 0; i < 32; i += 8) {
 """)
 
 # vector max for 4 8bit ints.
-binop("umax_4x8", tint32, commutative + associative, """
+binop("umax_4x8", tint32, _2src_commutative + associative, """
 dst = 0;
 for (int i = 0; i < 32; i += 8) {
    dst |= MAX2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
@@ -560,7 +867,7 @@ for (int i = 0; i < 32; i += 8) {
 """)
 
 # unorm multiply: (a * b) / 255.
-binop("umul_unorm_4x8", tint32, commutative + associative, """
+binop("umul_unorm_4x8", tint32, _2src_commutative + associative, """
 dst = 0;
 for (int i = 0; i < 32; i += 8) {
    int src0_chan = (src0 >> i) & 0xff;
@@ -577,18 +884,19 @@ binop_horiz("pack_half_2x16_split", 1, tuint32, 1, tfloat32, 1, tfloat32,
 binop_convert("pack_64_2x32_split", tuint64, tuint32, "",
               "src0 | ((uint64_t)src1 << 32)")
 
+binop_convert("pack_32_2x16_split", tuint32, tuint16, "",
+              "src0 | ((uint32_t)src1 << 16)")
+
 # bfm implements the behavior of the first operation of the SM5 "bfi" assembly
-# and that of the "bfi1" i965 instruction. That is, it has undefined behavior
-# if either of its arguments are 32.
+# and that of the "bfi1" i965 instruction. That is, the bits and offset values
+# are from the low five bits of src0 and src1, respectively.
 binop_convert("bfm", tuint32, tint32, "", """
-int bits = src0, offset = src1;
-if (offset < 0 || bits < 0 || offset > 31 || bits > 31 || offset + bits > 32)
-   dst = 0; /* undefined */
-else
-   dst = ((1u << bits) - 1) << offset;
+int bits = src0 & 0x1F;
+int offset = src1 & 0x1F;
+dst = ((1u << bits) - 1) << offset;
 """)
 
-opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], "", """
+opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], False, "", """
 dst = (bit_size == 64) ? ldexp(src0, src1) : ldexpf(src0, src1);
 /* flush denormals to zero. */
 if (!isnormal(dst))
@@ -611,16 +919,30 @@ binop("extract_u16", tuint, "", "(uint16_t)(src0 >> (src1 * 16))")
 binop("extract_i16", tint, "", "(int16_t)(src0 >> (src1 * 16))")
 
 
-def triop(name, ty, const_expr):
-   opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], "", const_expr)
+def triop(name, ty, alg_props, const_expr):
+   opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], False, alg_props, const_expr)
 def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr):
    opcode(name, output_size, tuint,
    [src1_size, src2_size, src3_size],
-   [tuint, tuint, tuint], "", const_expr)
-
-triop("ffma", tfloat, "src0 * src1 + src2")
+   [tuint, tuint, tuint], False, "", const_expr)
+
+triop("ffma", tfloat, _2src_commutative, """
+if (nir_is_rounding_mode_rtz(execution_mode, bit_size)) {
+   if (bit_size == 64)
+      dst = _mesa_double_fma_rtz(src0, src1, src2);
+   else if (bit_size == 32)
+      dst = _mesa_float_fma_rtz(src0, src1, src2);
+   else
+      dst = _mesa_double_to_float_rtz(_mesa_double_fma_rtz(src0, src1, src2));
+} else {
+   if (bit_size == 32)
+      dst = fmaf(src0, src1, src2);
+   else
+      dst = fma(src0, src1, src2);
+}
+""")
 
-triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2")
+triop("flrp", tfloat, "", "src0 * (1 - src2) + src1 * src2")
 
 # Conditional Select
 #
@@ -629,12 +951,32 @@ triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2")
 # bools (0.0 vs 1.0) and one for integer bools (0 vs ~0).
 
 
-triop("fcsel", tfloat32, "(src0 != 0.0f) ? src1 : src2")
+triop("fcsel", tfloat32, "", "(src0 != 0.0f) ? src1 : src2")
+
+# 3 way min/max/med
+triop("fmin3", tfloat, "", "fminf(src0, fminf(src1, src2))")
+triop("imin3", tint, "", "MIN2(src0, MIN2(src1, src2))")
+triop("umin3", tuint, "", "MIN2(src0, MIN2(src1, src2))")
+
+triop("fmax3", tfloat, "", "fmaxf(src0, fmaxf(src1, src2))")
+triop("imax3", tint, "", "MAX2(src0, MAX2(src1, src2))")
+triop("umax3", tuint, "", "MAX2(src0, MAX2(src1, src2))")
+
+triop("fmed3", tfloat, "", "fmaxf(fminf(fmaxf(src0, src1), src2), fminf(src0, src1))")
+triop("imed3", tint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
+triop("umed3", tuint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
+
 opcode("bcsel", 0, tuint, [0, 0, 0],
-      [tbool, tuint, tuint], "", "src0 ? src1 : src2")
+       [tbool1, tuint, tuint], False, "", "src0 ? src1 : src2")
+opcode("b8csel", 0, tuint, [0, 0, 0],
+       [tbool8, tuint, tuint], False, "", "src0 ? src1 : src2")
+opcode("b16csel", 0, tuint, [0, 0, 0],
+       [tbool16, tuint, tuint], False, "", "src0 ? src1 : src2")
+opcode("b32csel", 0, tuint, [0, 0, 0],
+       [tbool32, tuint, tuint], False, "", "src0 ? src1 : src2")
 
 # SM5 bfi assembly
-triop("bfi", tuint32, """
+triop("bfi", tuint32, "", """
 unsigned mask = src0, insert = src1, base = src2;
 if (mask == 0) {
    dst = base;
@@ -648,15 +990,17 @@ if (mask == 0) {
 }
 """)
 
-# SM5 ubfe/ibfe assembly
+
+triop("bitfield_select", tuint, "", "(src0 & src1) | (~src0 & src2)")
+
+# SM5 ubfe/ibfe assembly: only the 5 least significant bits of offset and bits are used.
 opcode("ubfe", 0, tuint32,
-       [0, 0, 0], [tuint32, tint32, tint32], "", """
+       [0, 0, 0], [tuint32, tuint32, tuint32], False, "", """
 unsigned base = src0;
-int offset = src1, bits = src2;
+unsigned offset = src1 & 0x1F;
+unsigned bits = src2 & 0x1F;
 if (bits == 0) {
    dst = 0;
-} else if (bits < 0 || offset < 0) {
-   dst = 0; /* undefined */
 } else if (offset + bits < 32) {
    dst = (base << (32 - bits - offset)) >> (32 - bits);
 } else {
@@ -664,13 +1008,12 @@ if (bits == 0) {
 }
 """)
 opcode("ibfe", 0, tint32,
-       [0, 0, 0], [tint32, tint32, tint32], "", """
+       [0, 0, 0], [tint32, tuint32, tuint32], False, "", """
 int base = src0;
-int offset = src1, bits = src2;
+unsigned offset = src1 & 0x1F;
+unsigned bits = src2 & 0x1F;
 if (bits == 0) {
    dst = 0;
-} else if (bits < 0 || offset < 0) {
-   dst = 0; /* undefined */
 } else if (offset + bits < 32) {
    dst = (base << (32 - bits - offset)) >> (32 - bits);
 } else {
@@ -680,7 +1023,7 @@ if (bits == 0) {
 
 # GLSL bitfieldExtract()
 opcode("ubitfield_extract", 0, tuint32,
-       [0, 0, 0], [tuint32, tint32, tint32], "", """
+       [0, 0, 0], [tuint32, tint32, tint32], False, "", """
 unsigned base = src0;
 int offset = src1, bits = src2;
 if (bits == 0) {
@@ -692,7 +1035,7 @@ if (bits == 0) {
 }
 """)
 opcode("ibitfield_extract", 0, tint32,
-       [0, 0, 0], [tint32, tint32, tint32], "", """
+       [0, 0, 0], [tint32, tint32, tint32], False, "", """
 int base = src0;
 int offset = src1, bits = src2;
 if (bits == 0) {
@@ -717,19 +1060,19 @@ def quadop_horiz(name, output_size, src1_size, src2_size, src3_size,
    opcode(name, output_size, tuint,
           [src1_size, src2_size, src3_size, src4_size],
           [tuint, tuint, tuint, tuint],
-          "", const_expr)
+          False, "", const_expr)
 
 opcode("bitfield_insert", 0, tuint32, [0, 0, 0, 0],
-       [tuint32, tuint32, tint32, tint32], "", """
+       [tuint32, tuint32, tint32, tint32], False, "", """
 unsigned base = src0, insert = src1;
 int offset = src2, bits = src3;
 if (bits == 0) {
-   dst = 0;
+   dst = base;
 } else if (offset < 0 || bits < 0 || bits + offset > 32) {
    dst = 0;
 } else {
    unsigned mask = ((1ull << bits) - 1) << offset;
-   dst = (base & ~mask) | ((insert << bits) & mask);
+   dst = (base & ~mask) | ((insert << offset) & mask);
 }
 """)
 
@@ -740,4 +1083,76 @@ dst.z = src2.x;
 dst.w = src3.x;
 """)
 
+opcode("vec8", 8, tuint,
+       [1] * 8, [tuint] * 8,
+       False, "", """
+dst.x = src0.x;
+dst.y = src1.x;
+dst.z = src2.x;
+dst.w = src3.x;
+dst.e = src4.x;
+dst.f = src5.x;
+dst.g = src6.x;
+dst.h = src7.x;
+""")
+
+opcode("vec16", 16, tuint,
+       [1] * 16, [tuint] * 16,
+       False, "", """
+dst.x = src0.x;
+dst.y = src1.x;
+dst.z = src2.x;
+dst.w = src3.x;
+dst.e = src4.x;
+dst.f = src5.x;
+dst.g = src6.x;
+dst.h = src7.x;
+dst.i = src8.x;
+dst.j = src9.x;
+dst.k = src10.x;
+dst.l = src11.x;
+dst.m = src12.x;
+dst.n = src13.x;
+dst.o = src14.x;
+dst.p = src15.x;
+""")
+
+# An integer multiply instruction for address calculation.  This is
+# similar to imul, except that the results are undefined in case of
+# overflow.  Overflow is defined according to the size of the variable
+# being dereferenced.
+#
+# This relaxed definition, compared to imul, allows an optimization
+# pass to propagate bounds (ie, from an load/store intrinsic) to the
+# sources, such that lower precision integer multiplies can be used.
+# This is useful on hw that has 24b or perhaps 16b integer multiply
+# instructions.
+binop("amul", tint, _2src_commutative + associative, "src0 * src1")
+
+# ir3-specific instruction that maps directly to mul-add shift high mix,
+# (IMADSH_MIX16 i.e. ah * bl << 16 + c). It is used for lowering integer
+# multiplication (imul) on Freedreno backend..
+opcode("imadsh_mix16", 0, tint32,
+       [0, 0, 0], [tint32, tint32, tint32], False, "", """
+dst = ((((src0 & 0xffff0000) >> 16) * (src1 & 0x0000ffff)) << 16) + src2;
+""")
+
+# ir3-specific instruction that maps directly to ir3 mad.s24.
+#
+# 24b multiply into 32b result (with sign extension) plus 32b int
+triop("imad24_ir3", tint32, _2src_commutative,
+      "(((int32_t)src0 << 8) >> 8) * (((int32_t)src1 << 8) >> 8) + src2")
+
+# 24b multiply into 32b result (with sign extension)
+binop("imul24", tint32, _2src_commutative + associative,
+      "(((int32_t)src0 << 8) >> 8) * (((int32_t)src1 << 8) >> 8)")
+
+# unsigned 24b multiply into 32b result plus 32b int
+triop("umad24", tuint32, _2src_commutative,
+      "(((uint32_t)src0 << 8) >> 8) * (((uint32_t)src1 << 8) >> 8) + src2")
+
+# unsigned 24b multiply into 32b result uint
+binop("umul24", tint32, _2src_commutative + associative,
+      "(((uint32_t)src0 << 8) >> 8) * (((uint32_t)src1 << 8) >> 8)")
 
+unop_convert("fisnormal", tbool1, tfloat, "isnormal(src0)")