llvmpipe: support 8bit subpixel precision
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
index 7e432503c126028d33c8034c59d3fbdf06dab686..53ab1f1f0c0bfabd09b065e2e9ea19b029a883d7 100644 (file)
 
 #include "util/u_math.h"
 #include "util/u_memory.h"
+#include "util/u_rect.h"
+#include "util/u_sse.h"
 #include "lp_perf.h"
 #include "lp_setup_context.h"
 #include "lp_rast.h"
 #include "lp_state_fs.h"
+#include "lp_state_setup.h"
+#include "lp_context.h"
 
-#define NUM_CHANNELS 4
-
-struct tri_info {
-
-   float pixel_offset;
-
-   /* fixed point vertex coordinates */
-   int x[3];
-   int y[3];
-
-   /* float x,y deltas - all from the original coordinates
-    */
-   float dy01, dy20;
-   float dx01, dx20;
-   float oneoverarea;
-
-   const float (*v0)[4];
-   const float (*v1)[4];
-   const float (*v2)[4];
-
-   boolean frontfacing;
-};
-
-
-
-static const int step_scissor_minx[16] = {
-   0, 1, 0, 1,
-   2, 3, 2, 3,
-   0, 1, 0, 1,
-   2, 3, 2, 3
-};
-
-static const int step_scissor_maxx[16] = {
-    0, -1,  0, -1,
-   -2, -3, -2, -3,
-    0, -1,  0, -1,
-   -2, -3, -2, -3
-};
-
-static const int step_scissor_miny[16] = {
-   0, 0, 1, 1,
-   0, 0, 1, 1,
-   2, 2, 3, 3,
-   2, 2, 3, 3
-};
-
-static const int step_scissor_maxy[16] = {
-    0,  0, -1, -1,
-    0,  0, -1, -1,
-   -2, -2, -3, -3,
-   -2, -2, -3, -3
-};
+#include <inttypes.h>
 
+#define NUM_CHANNELS 4
 
+#if defined(PIPE_ARCH_SSE)
+#include <emmintrin.h>
+#endif
 
-   
 static INLINE int
 subpixel_snap(float a)
 {
@@ -101,383 +57,245 @@ subpixel_snap(float a)
 static INLINE float
 fixed_to_float(int a)
 {
-   return a * (1.0 / FIXED_ONE);
+   return a * (1.0f / FIXED_ONE);
 }
 
 
+/* Position and area in fixed point coordinates */
+struct fixed_position {
+   int32_t x[4];
+   int32_t y[4];
+   int64_t area;
+   int32_t dx01;
+   int32_t dy01;
+   int32_t dx20;
+   int32_t dy20;
+};
+
 
 /**
- * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
+ * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
+ * immediately after it.
+ * The memory is allocated from the per-scene pool, not per-tile.
+ * \param tri_size  returns number of bytes allocated
+ * \param num_inputs  number of fragment shader inputs
+ * \return pointer to triangle space
  */
-static void constant_coef( struct lp_rast_triangle *tri,
-                           unsigned slot,
-                          const float value,
-                           unsigned i )
+struct lp_rast_triangle *
+lp_setup_alloc_triangle(struct lp_scene *scene,
+                        unsigned nr_inputs,
+                        unsigned nr_planes,
+                        unsigned *tri_size)
 {
-   tri->inputs.a0[slot][i] = value;
-   tri->inputs.dadx[slot][i] = 0.0f;
-   tri->inputs.dady[slot][i] = 0.0f;
-}
+   unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
+   unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
+   struct lp_rast_triangle *tri;
 
+   *tri_size = (sizeof(struct lp_rast_triangle) +
+                3 * input_array_sz +
+                plane_sz);
 
+   tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
+   if (tri == NULL)
+      return NULL;
 
-static void linear_coef( struct lp_rast_triangle *tri,
-                         const struct tri_info *info,
-                         unsigned slot,
-                         unsigned vert_attr,
-                         unsigned i)
-{
-   float a0 = info->v0[vert_attr][i];
-   float a1 = info->v1[vert_attr][i];
-   float a2 = info->v2[vert_attr][i];
+   tri->inputs.stride = input_array_sz;
 
-   float da01 = a0 - a1;
-   float da20 = a2 - a0;
-   float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
-   float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
-
-   tri->inputs.dadx[slot][i] = dadx;
-   tri->inputs.dady[slot][i] = dady;
+   {
+      char *a = (char *)tri;
+      char *b = (char *)&GET_PLANES(tri)[nr_planes];
+      assert(b - a == *tri_size);
+   }
 
-   /* calculate a0 as the value which would be sampled for the
-    * fragment at (0,0), taking into account that we want to sample at
-    * pixel centers, in other words (0.5, 0.5).
-    *
-    * this is neat but unfortunately not a good way to do things for
-    * triangles with very large values of dadx or dady as it will
-    * result in the subtraction and re-addition from a0 of a very
-    * large number, which means we'll end up loosing a lot of the
-    * fractional bits and precision from a0.  the way to fix this is
-    * to define a0 as the sample at a pixel center somewhere near vmin
-    * instead - i'll switch to this later.
-    */
-   tri->inputs.a0[slot][i] = (a0 -
-                              (dadx * (info->v0[0][0] - info->pixel_offset) +
-                               dady * (info->v0[0][1] - info->pixel_offset)));
+   return tri;
 }
 
-
-/**
- * Compute a0, dadx and dady for a perspective-corrected interpolant,
- * for a triangle.
- * We basically multiply the vertex value by 1/w before computing
- * the plane coefficients (a0, dadx, dady).
- * Later, when we compute the value at a particular fragment position we'll
- * divide the interpolated value by the interpolated W at that fragment.
- */
-static void perspective_coef( struct lp_rast_triangle *tri,
-                              const struct tri_info *info,
-                              unsigned slot,
-                             unsigned vert_attr,
-                              unsigned i)
+void
+lp_setup_print_vertex(struct lp_setup_context *setup,
+                      const char *name,
+                      const float (*v)[4])
 {
-   /* premultiply by 1/w  (v[0][3] is always 1/w):
-    */
-   float a0 = info->v0[vert_attr][i] * info->v0[0][3];
-   float a1 = info->v1[vert_attr][i] * info->v1[0][3];
-   float a2 = info->v2[vert_attr][i] * info->v2[0][3];
-   float da01 = a0 - a1;
-   float da20 = a2 - a0;
-   float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
-   float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
-
-   tri->inputs.dadx[slot][i] = dadx;
-   tri->inputs.dady[slot][i] = dady;
-   tri->inputs.a0[slot][i] = (a0 -
-                              (dadx * (info->v0[0][0] - info->pixel_offset) +
-                               dady * (info->v0[0][1] - info->pixel_offset)));
-}
+   const struct lp_setup_variant_key *key = &setup->setup.variant->key;
+   int i, j;
 
+   debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
+                name,
+                v[0][0], v[0][1], v[0][2], v[0][3]);
 
-/**
- * Special coefficient setup for gl_FragCoord.
- * X and Y are trivial
- * Z and W are copied from position_coef which should have already been computed.
- * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
- */
-static void
-setup_fragcoord_coef(struct lp_rast_triangle *tri,
-                     const struct tri_info *info,
-                     unsigned slot,
-                     unsigned usage_mask)
-{
-   /*X*/
-   if (usage_mask & TGSI_WRITEMASK_X) {
-      tri->inputs.a0[slot][0] = 0.0;
-      tri->inputs.dadx[slot][0] = 1.0;
-      tri->inputs.dady[slot][0] = 0.0;
-   }
+   for (i = 0; i < key->num_inputs; i++) {
+      const float *in = v[key->inputs[i].src_index];
 
-   /*Y*/
-   if (usage_mask & TGSI_WRITEMASK_Y) {
-      tri->inputs.a0[slot][1] = 0.0;
-      tri->inputs.dadx[slot][1] = 0.0;
-      tri->inputs.dady[slot][1] = 1.0;
-   }
+      debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
+                   i, 
+                   name, key->inputs[i].src_index,
+                   (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
+                   (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
+                   (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
+                   (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
 
-   /*Z*/
-   if (usage_mask & TGSI_WRITEMASK_Z) {
-      linear_coef(tri, info, slot, 0, 2);
-   }
+      for (j = 0; j < 4; j++)
+         if (key->inputs[i].usage_mask & (1<<j))
+            debug_printf("%.5f ", in[j]);
 
-   /*W*/
-   if (usage_mask & TGSI_WRITEMASK_W) {
-      linear_coef(tri, info, slot, 0, 3);
+      debug_printf("\n");
    }
 }
 
 
 /**
- * Setup the fragment input attribute with the front-facing value.
- * \param frontface  is the triangle front facing?
- */
-static void setup_facing_coef( struct lp_rast_triangle *tri,
-                               unsigned slot,
-                               boolean frontface,
-                               unsigned usage_mask)
-{
-   /* convert TRUE to 1.0 and FALSE to -1.0 */
-   if (usage_mask & TGSI_WRITEMASK_X)
-      constant_coef( tri, slot, 2.0f * frontface - 1.0f, 0 );
-
-   if (usage_mask & TGSI_WRITEMASK_Y)
-      constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
-
-   if (usage_mask & TGSI_WRITEMASK_Z)
-      constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
-
-   if (usage_mask & TGSI_WRITEMASK_W)
-      constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
-}
-
-
-/**
- * Compute the tri->coef[] array dadx, dady, a0 values.
+ * Print triangle vertex attribs (for debug).
  */
-static void setup_tri_coefficients( struct lp_setup_context *setup,
-                                   struct lp_rast_triangle *tri,
-                                    const struct tri_info *info)
+void
+lp_setup_print_triangle(struct lp_setup_context *setup,
+                        const float (*v0)[4],
+                        const float (*v1)[4],
+                        const float (*v2)[4])
 {
-   unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
-   unsigned slot;
-
-   /* setup interpolation for all the remaining attributes:
-    */
-   for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
-      unsigned vert_attr = setup->fs.input[slot].src_index;
-      unsigned usage_mask = setup->fs.input[slot].usage_mask;
-      unsigned i;
-
-      switch (setup->fs.input[slot].interp) {
-      case LP_INTERP_CONSTANT:
-         if (setup->flatshade_first) {
-            for (i = 0; i < NUM_CHANNELS; i++)
-               if (usage_mask & (1 << i))
-                  constant_coef(tri, slot+1, info->v0[vert_attr][i], i);
-         }
-         else {
-            for (i = 0; i < NUM_CHANNELS; i++)
-               if (usage_mask & (1 << i))
-                  constant_coef(tri, slot+1, info->v2[vert_attr][i], i);
-         }
-         break;
-
-      case LP_INTERP_LINEAR:
-         for (i = 0; i < NUM_CHANNELS; i++)
-            if (usage_mask & (1 << i))
-               linear_coef(tri, info, slot+1, vert_attr, i);
-         break;
-
-      case LP_INTERP_PERSPECTIVE:
-         for (i = 0; i < NUM_CHANNELS; i++)
-            if (usage_mask & (1 << i))
-               perspective_coef(tri, info, slot+1, vert_attr, i);
-         fragcoord_usage_mask |= TGSI_WRITEMASK_W;
-         break;
-
-      case LP_INTERP_POSITION:
-         /*
-          * The generated pixel interpolators will pick up the coeffs from
-          * slot 0, so all need to ensure that the usage mask is covers all
-          * usages.
-          */
-         fragcoord_usage_mask |= usage_mask;
-         break;
+   debug_printf("triangle\n");
 
-      case LP_INTERP_FACING:
-         setup_facing_coef(tri, slot+1, info->frontfacing, usage_mask);
-         break;
-
-      default:
-         assert(0);
-      }
+   {
+      const float ex = v0[0][0] - v2[0][0];
+      const float ey = v0[0][1] - v2[0][1];
+      const float fx = v1[0][0] - v2[0][0];
+      const float fy = v1[0][1] - v2[0][1];
+
+      /* det = cross(e,f).z */
+      const float det = ex * fy - ey * fx;
+      if (det < 0.0f) 
+         debug_printf("   - ccw\n");
+      else if (det > 0.0f)
+         debug_printf("   - cw\n");
+      else
+         debug_printf("   - zero area\n");
    }
 
-   /* The internal position input is in slot zero:
-    */
-   setup_fragcoord_coef(tri, info, 0, fragcoord_usage_mask);
+   lp_setup_print_vertex(setup, "v0", v0);
+   lp_setup_print_vertex(setup, "v1", v1);
+   lp_setup_print_vertex(setup, "v2", v2);
 }
 
 
+#define MAX_PLANES 8
+static unsigned
+lp_rast_tri_tab[MAX_PLANES+1] = {
+   0,               /* should be impossible */
+   LP_RAST_OP_TRIANGLE_1,
+   LP_RAST_OP_TRIANGLE_2,
+   LP_RAST_OP_TRIANGLE_3,
+   LP_RAST_OP_TRIANGLE_4,
+   LP_RAST_OP_TRIANGLE_5,
+   LP_RAST_OP_TRIANGLE_6,
+   LP_RAST_OP_TRIANGLE_7,
+   LP_RAST_OP_TRIANGLE_8
+};
 
+static unsigned
+lp_rast_32_tri_tab[MAX_PLANES+1] = {
+   0,               /* should be impossible */
+   LP_RAST_OP_TRIANGLE_32_1,
+   LP_RAST_OP_TRIANGLE_32_2,
+   LP_RAST_OP_TRIANGLE_32_3,
+   LP_RAST_OP_TRIANGLE_32_4,
+   LP_RAST_OP_TRIANGLE_32_5,
+   LP_RAST_OP_TRIANGLE_32_6,
+   LP_RAST_OP_TRIANGLE_32_7,
+   LP_RAST_OP_TRIANGLE_32_8
+};
 
 
 
 /**
- * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
- * immediately after it.
- * The memory is allocated from the per-scene pool, not per-tile.
- * \param tri_size  returns number of bytes allocated
- * \param nr_inputs  number of fragment shader inputs
- * \return pointer to triangle space
- */
-static INLINE struct lp_rast_triangle *
-alloc_triangle(struct lp_scene *scene,
-               unsigned nr_inputs,
-               unsigned nr_planes,
-               unsigned *tri_size)
-{
-   unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
-   struct lp_rast_triangle *tri;
-   unsigned tri_bytes, bytes;
-   char *inputs;
-
-   tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
-   bytes = tri_bytes + (3 * input_array_sz);
-
-   tri = lp_scene_alloc_aligned( scene, bytes, 16 );
-
-   if (tri) {
-      inputs = ((char *)tri) + tri_bytes;
-      tri->inputs.a0   = (float (*)[4]) inputs;
-      tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
-      tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
-
-      *tri_size = bytes;
-   }
-
-   return tri;
-}
-
-
-/**
- * Print triangle vertex attribs (for debug).
+ * The primitive covers the whole tile- shade whole tile.
+ *
+ * \param tx, ty  the tile position in tiles, not pixels
  */
-static void
-print_triangle(struct lp_setup_context *setup,
-               const float (*v1)[4],
-               const float (*v2)[4],
-               const float (*v3)[4])
+static boolean
+lp_setup_whole_tile(struct lp_setup_context *setup,
+                    const struct lp_rast_shader_inputs *inputs,
+                    int tx, int ty)
 {
-   uint i;
+   struct lp_scene *scene = setup->scene;
+
+   LP_COUNT(nr_fully_covered_64);
+
+   /* if variant is opaque and scissor doesn't effect the tile */
+   if (inputs->opaque) {
+      /* Several things prevent this optimization from working:
+       * - For layered rendering we can't determine if this covers the same layer
+       * as previous rendering (or in case of clears those actually always cover
+       * all layers so optimization is impossible). Need to use fb_max_layer and
+       * not setup->layer_slot to determine this since even if there's currently
+       * no slot assigned previous rendering could have used one.
+       * - If there were any Begin/End query commands in the scene then those
+       * would get removed which would be very wrong. Furthermore, if queries
+       * were just active we also can't do the optimization since to get
+       * accurate query results we unfortunately need to execute the rendering
+       * commands.
+       */
+      if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) {
+         /*
+          * All previous rendering will be overwritten so reset the bin.
+          */
+         lp_scene_bin_reset( scene, tx, ty );
+      }
 
-   debug_printf("llvmpipe triangle\n");
-   for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
-      debug_printf("  v1[%d]:  %f %f %f %f\n", i,
-                   v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
-   }
-   for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
-      debug_printf("  v2[%d]:  %f %f %f %f\n", i,
-                   v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
-   }
-   for (i = 0; i < 1 + setup->fs.nr_inputs; i++) {
-      debug_printf("  v3[%d]:  %f %f %f %f\n", i,
-                   v3[i][0], v3[i][1], v3[i][2], v3[i][3]);
+      LP_COUNT(nr_shade_opaque_64);
+      return lp_scene_bin_cmd_with_state( scene, tx, ty,
+                                          setup->fs.stored,
+                                          LP_RAST_OP_SHADE_TILE_OPAQUE,
+                                          lp_rast_arg_inputs(inputs) );
+   } else {
+      LP_COUNT(nr_shade_64);
+      return lp_scene_bin_cmd_with_state( scene, tx, ty,
+                                          setup->fs.stored, 
+                                          LP_RAST_OP_SHADE_TILE,
+                                          lp_rast_arg_inputs(inputs) );
    }
 }
 
 
-lp_rast_cmd lp_rast_tri_tab[8] = {
-   NULL,               /* should be impossible */
-   lp_rast_triangle_1,
-   lp_rast_triangle_2,
-   lp_rast_triangle_3,
-   lp_rast_triangle_4,
-   lp_rast_triangle_5,
-   lp_rast_triangle_6,
-   lp_rast_triangle_7
-};
-
 /**
  * Do basic setup for triangle rasterization and determine which
  * framebuffer tiles are touched.  Put the triangle in the scene's
  * bins for the tiles which we overlap.
  */
-static void
+static boolean
 do_triangle_ccw(struct lp_setup_context *setup,
-               const float (*v1)[4],
-               const float (*v2)[4],
-               const float (*v3)[4],
-               boolean frontfacing )
+                struct fixed_position* position,
+                const float (*v0)[4],
+                const float (*v1)[4],
+                const float (*v2)[4],
+                boolean frontfacing )
 {
-
-   struct lp_scene *scene = lp_setup_get_current_scene(setup);
-   struct lp_fragment_shader_variant *variant = setup->fs.current.variant;
+   struct lp_scene *scene = setup->scene;
+   const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    struct lp_rast_triangle *tri;
-   struct tri_info info;
-   int area;
-   int minx, maxx, miny, maxy;
-   int ix0, ix1, iy0, iy1;
+   struct lp_rast_plane *plane;
+   struct u_rect bbox;
    unsigned tri_bytes;
-   int i;
    int nr_planes = 3;
-      
+   unsigned scissor_index = 0;
+   unsigned layer = 0;
+
+   /* Area should always be positive here */
+   assert(position->area > 0);
+
    if (0)
-      print_triangle(setup, v1, v2, v3);
+      lp_setup_print_triangle(setup, v0, v1, v2);
 
    if (setup->scissor_test) {
       nr_planes = 7;
+      if (setup->viewport_index_slot > 0) {
+         unsigned *udata = (unsigned*)v0[setup->viewport_index_slot];
+         scissor_index = lp_clamp_scissor_idx(*udata);
+      }
    }
    else {
       nr_planes = 3;
    }
-
-
-   tri = alloc_triangle(scene,
-                        setup->fs.nr_inputs,
-                        nr_planes,
-                        &tri_bytes);
-   if (!tri)
-      return;
-
-#ifdef DEBUG
-   tri->v[0][0] = v1[0][0];
-   tri->v[1][0] = v2[0][0];
-   tri->v[2][0] = v3[0][0];
-   tri->v[0][1] = v1[0][1];
-   tri->v[1][1] = v2[0][1];
-   tri->v[2][1] = v3[0][1];
-#endif
-
-   /* x/y positions in fixed point */
-   info.x[0] = subpixel_snap(v1[0][0] - setup->pixel_offset);
-   info.x[1] = subpixel_snap(v2[0][0] - setup->pixel_offset);
-   info.x[2] = subpixel_snap(v3[0][0] - setup->pixel_offset);
-   info.y[0] = subpixel_snap(v1[0][1] - setup->pixel_offset);
-   info.y[1] = subpixel_snap(v2[0][1] - setup->pixel_offset);
-   info.y[2] = subpixel_snap(v3[0][1] - setup->pixel_offset);
-
-   tri->plane[0].dcdy = info.x[0] - info.x[1];
-   tri->plane[1].dcdy = info.x[1] - info.x[2];
-   tri->plane[2].dcdy = info.x[2] - info.x[0];
-
-   tri->plane[0].dcdx = info.y[0] - info.y[1];
-   tri->plane[1].dcdx = info.y[1] - info.y[2];
-   tri->plane[2].dcdx = info.y[2] - info.y[0];
-
-   area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
-           tri->plane[2].dcdy * tri->plane[0].dcdx);
-
-   LP_COUNT(nr_tris);
-
-   /* Cull non-ccw and zero-sized triangles. 
-    *
-    * XXX: subject to overflow??
-    */
-   if (area <= 0) {
-      lp_scene_putback_data( scene, tri_bytes );
-      LP_COUNT(nr_culled_tris);
-      return;
+   if (setup->layer_slot > 0) {
+      layer = *(unsigned*)v1[setup->layer_slot];
+      layer = MIN2(layer, scene->fb_max_layer);
    }
 
    /* Bounding rectangle (in pixels) */
@@ -489,136 +307,224 @@ do_triangle_ccw(struct lp_setup_context *setup,
        */
       int adj = (setup->pixel_offset != 0) ? 1 : 0;
 
-      minx = (MIN3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
-      maxx = (MAX3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
-      miny = (MIN3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
-      maxy = (MAX3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
-   }
+      /* Inclusive x0, exclusive x1 */
+      bbox.x0 =  MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
+      bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
 
-   if (setup->scissor_test) {
-      minx = MAX2(minx, setup->scissor.current.minx);
-      maxx = MIN2(maxx, setup->scissor.current.maxx);
-      miny = MAX2(miny, setup->scissor.current.miny);
-      maxy = MIN2(maxy, setup->scissor.current.maxy);
-   }
-   else {
-      minx = MAX2(minx, 0);
-      miny = MAX2(miny, 0);
-      maxx = MIN2(maxx, scene->fb.width);
-      maxy = MIN2(maxy, scene->fb.height);
+      /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
+      bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
+      bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
    }
 
+   if (bbox.x1 < bbox.x0 ||
+       bbox.y1 < bbox.y0) {
+      if (0) debug_printf("empty bounding box\n");
+      LP_COUNT(nr_culled_tris);
+      return TRUE;
+   }
 
-   if (miny >= maxy || minx >= maxx) {
-      lp_scene_putback_data( scene, tri_bytes );
+   if (!u_rect_test_intersection(&setup->draw_regions[scissor_index], &bbox)) {
+      if (0) debug_printf("offscreen\n");
       LP_COUNT(nr_culled_tris);
-      return;
+      return TRUE;
    }
 
-   /* 
+   /* Can safely discard negative regions, but need to keep hold of
+    * information about when the triangle extends past screen
+    * boundaries.  See trimmed_box in lp_setup_bin_triangle().
     */
-   info.pixel_offset = setup->pixel_offset;
-   info.v0 = v1;
-   info.v1 = v2;
-   info.v2 = v3;
-   info.dx01 = info.v0[0][0] - info.v1[0][0];
-   info.dx20 = info.v2[0][0] - info.v0[0][0];
-   info.dy01 = info.v0[0][1] - info.v1[0][1];
-   info.dy20 = info.v2[0][1] - info.v0[0][1];
-   info.oneoverarea = 1.0 / (info.dx01 * info.dy20 - info.dx20 * info.dy01);
-   info.frontfacing = frontfacing;
+   bbox.x0 = MAX2(bbox.x0, 0);
+   bbox.y0 = MAX2(bbox.y0, 0);
+
+   tri = lp_setup_alloc_triangle(scene,
+                                 key->num_inputs,
+                                 nr_planes,
+                                 &tri_bytes);
+   if (!tri)
+      return FALSE;
+
+#if 0
+   tri->v[0][0] = v0[0][0];
+   tri->v[1][0] = v1[0][0];
+   tri->v[2][0] = v2[0][0];
+   tri->v[0][1] = v0[0][1];
+   tri->v[1][1] = v1[0][1];
+   tri->v[2][1] = v2[0][1];
+#endif
+
+   LP_COUNT(nr_tris);
 
    /* Setup parameter interpolants:
     */
-   setup_tri_coefficients( setup, tri, &info );
+   setup->setup.variant->jit_function( v0,
+                                      v1,
+                                      v2,
+                                      frontfacing,
+                                      GET_A0(&tri->inputs),
+                                      GET_DADX(&tri->inputs),
+                                      GET_DADY(&tri->inputs) );
+
+   tri->inputs.frontfacing = frontfacing;
+   tri->inputs.disable = FALSE;
+   tri->inputs.opaque = setup->fs.current.variant->opaque;
+   tri->inputs.layer = layer;
 
-   tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
-   tri->inputs.state = setup->fs.stored;
+   if (0)
+      lp_dump_setup_coef(&setup->setup.variant->key,
+                        (const float (*)[4])GET_A0(&tri->inputs),
+                        (const float (*)[4])GET_DADX(&tri->inputs),
+                        (const float (*)[4])GET_DADY(&tri->inputs));
+
+   plane = GET_PLANES(tri);
+
+#if defined(PIPE_ARCH_SSE)
+   if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
+       setup->fb.height <= MAX_FIXED_LENGTH32 &&
+       (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
+       (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
+      __m128i vertx, verty;
+      __m128i shufx, shufy;
+      __m128i dcdx, dcdy, c;
+      __m128i unused;
+      __m128i dcdx_neg_mask;
+      __m128i dcdy_neg_mask;
+      __m128i dcdx_zero_mask;
+      __m128i top_left_flag;
+      __m128i c_inc_mask, c_inc;
+      __m128i eo, p0, p1, p2;
+      __m128i zero = _mm_setzero_si128();
+      PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
+
+      vertx = _mm_loadu_si128((__m128i *)position->x); /* vertex x coords */
+      verty = _mm_loadu_si128((__m128i *)position->y); /* vertex y coords */
+
+      shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
+      shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
+
+      dcdx = _mm_sub_epi32(verty, shufy);
+      dcdy = _mm_sub_epi32(vertx, shufx);
+
+      dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
+      dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
+      dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
+
+      top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
+
+      c_inc_mask = _mm_or_si128(dcdx_neg_mask,
+                                _mm_and_si128(dcdx_zero_mask,
+                                              _mm_xor_si128(dcdy_neg_mask,
+                                                            top_left_flag)));
+
+      c_inc = _mm_srli_epi32(c_inc_mask, 31);
+
+      c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
+                        mm_mullo_epi32(dcdy, verty));
+
+      c = _mm_add_epi32(c, c_inc);
+
+      /* Scale up to match c:
+       */
+      dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
+      dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
 
+      /* Calculate trivial reject values:
+       */
+      eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
+                         _mm_and_si128(dcdx_neg_mask, dcdx));
 
-  
-   for (i = 0; i < 3; i++) {
-      struct lp_rast_plane *plane = &tri->plane[i];
+      /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
 
-      /* half-edge constants, will be interated over the whole render
-       * target.
+      /* Pointless transpose which gets undone immediately in
+       * rasterization:
        */
-      plane->c = plane->dcdx * info.x[i] - plane->dcdy * info.y[i];
-
-      /* correct for top-left vs. bottom-left fill convention.  
-       *
-       * note that we're overloading gl_rasterization_rules to mean
-       * both (0.5,0.5) pixel centers *and* bottom-left filling
-       * convention.
-       *
-       * GL actually has a top-left filling convention, but GL's
-       * notion of "top" differs from gallium's...
-       *
-       * Also, sometimes (in FBO cases) GL will render upside down
-       * to its usual method, in which case it will probably want
-       * to use the opposite, top-left convention.
-       */         
-      if (plane->dcdx < 0) {
-         /* both fill conventions want this - adjust for left edges */
-         plane->c++;            
-      }
-      else if (plane->dcdx == 0) {
-         if (setup->pixel_offset == 0) {
-            /* correct for top-left fill convention:
-             */
-            if (plane->dcdy > 0) plane->c++;
+      transpose4_epi32(&c, &dcdx, &dcdy, &eo,
+                       &p0, &p1, &p2, &unused);
+
+#define STORE_PLANE(plane, vec) do {                 \
+         _mm_store_si128((__m128i *)&temp_vec, vec); \
+         plane.c    = (int64_t)temp_vec[0];          \
+         plane.dcdx = temp_vec[1];                   \
+         plane.dcdy = temp_vec[2];                   \
+         plane.eo   = temp_vec[3];                   \
+      } while(0)
+
+      STORE_PLANE(plane[0], p0);
+      STORE_PLANE(plane[1], p1);
+      STORE_PLANE(plane[2], p2);
+#undef STORE_PLANE
+   } else
+#endif
+   {
+      int i;
+      plane[0].dcdy = position->dx01;
+      plane[1].dcdy = position->x[1] - position->x[2];
+      plane[2].dcdy = position->dx20;
+      plane[0].dcdx = position->dy01;
+      plane[1].dcdx = position->y[1] - position->y[2];
+      plane[2].dcdx = position->dy20;
+  
+      for (i = 0; i < 3; i++) {
+         /* half-edge constants, will be interated over the whole render
+          * target.
+          */
+         plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
+               IMUL64(plane[i].dcdy, position->y[i]);
+
+         /* correct for top-left vs. bottom-left fill convention.
+          */         
+         if (plane[i].dcdx < 0) {
+            /* both fill conventions want this - adjust for left edges */
+            plane[i].c++;            
          }
-         else {
-            /* correct for bottom-left fill convention:
-             */
-            if (plane->dcdy < 0) plane->c++;
+         else if (plane[i].dcdx == 0) {
+            if (setup->bottom_edge_rule == 0){
+               /* correct for top-left fill convention:
+                */
+               if (plane[i].dcdy > 0) plane[i].c++;
+            }
+            else {
+               /* correct for bottom-left fill convention:
+                */
+               if (plane[i].dcdy < 0) plane[i].c++;
+            }
          }
-      }
 
-      plane->dcdx *= FIXED_ONE;
-      plane->dcdy *= FIXED_ONE;
-
-      /* find trivial reject offsets for each edge for a single-pixel
-       * sized block.  These will be scaled up at each recursive level to
-       * match the active blocksize.  Scaling in this way works best if
-       * the blocks are square.
-       */
-      plane->eo = 0;
-      if (plane->dcdx < 0) plane->eo -= plane->dcdx;
-      if (plane->dcdy > 0) plane->eo += plane->dcdy;
-
-      /* Calculate trivial accept offsets from the above.
-       */
-      plane->ei = plane->dcdy - plane->dcdx - plane->eo;
-
-      plane->step = tri->step[i];
+         /* Scale up to match c:
+          */
+         assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
+         assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
+         plane[i].dcdx <<= FIXED_ORDER;
+         plane[i].dcdy <<= FIXED_ORDER;
+
+         /* find trivial reject offsets for each edge for a single-pixel
+          * sized block.  These will be scaled up at each recursive level to
+          * match the active blocksize.  Scaling in this way works best if
+          * the blocks are square.
+          */
+         plane[i].eo = 0;
+         if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
+         if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
+      }
+   }
 
-      /* Fill in the inputs.step[][] arrays.
-       * We've manually unrolled some loops here.
-       */
-#define SETUP_STEP(j, x, y) \
-      tri->step[i][j] = y * plane->dcdy - x * plane->dcdx
+   if (0) {
+      debug_printf("p0: %"PRIx64"/%08x/%08x/%"PRIx64"\n",
+                   plane[0].c,
+                   plane[0].dcdx,
+                   plane[0].dcdy,
+                   plane[0].eo);
+      
+      debug_printf("p1: %"PRIx64"/%08x/%08x/%"PRIx64"\n",
+                   plane[1].c,
+                   plane[1].dcdx,
+                   plane[1].dcdy,
+                   plane[1].eo);
       
-      SETUP_STEP(0, 0, 0);
-      SETUP_STEP(1, 1, 0);
-      SETUP_STEP(2, 0, 1);
-      SETUP_STEP(3, 1, 1);
-
-      SETUP_STEP(4, 2, 0);
-      SETUP_STEP(5, 3, 0);
-      SETUP_STEP(6, 2, 1);
-      SETUP_STEP(7, 3, 1);
-
-      SETUP_STEP(8, 0, 2);
-      SETUP_STEP(9, 1, 2);
-      SETUP_STEP(10, 0, 3);
-      SETUP_STEP(11, 1, 3);
-
-      SETUP_STEP(12, 2, 2);
-      SETUP_STEP(13, 3, 2);
-      SETUP_STEP(14, 2, 3);
-      SETUP_STEP(15, 3, 3);
-#undef STEP
+      debug_printf("p2: %"PRIx64"/%08x/%08x/%"PRIx64"\n",
+                   plane[2].c,
+                   plane[2].dcdx,
+                   plane[2].dcdy,
+                   plane[2].eo);
    }
 
 
@@ -641,84 +547,193 @@ do_triangle_ccw(struct lp_setup_context *setup,
     * these planes elsewhere.
     */
    if (nr_planes == 7) {
-      tri->plane[3].step = step_scissor_minx;
-      tri->plane[3].dcdx = -1;
-      tri->plane[3].dcdy = 0;
-      tri->plane[3].c = 1-minx;
-      tri->plane[3].ei = 0;
-      tri->plane[3].eo = 1;
-
-      tri->plane[4].step = step_scissor_maxx;
-      tri->plane[4].dcdx = 1;
-      tri->plane[4].dcdy = 0;
-      tri->plane[4].c = maxx;
-      tri->plane[4].ei = -1;
-      tri->plane[4].eo = 0;
-
-      tri->plane[5].step = step_scissor_miny;
-      tri->plane[5].dcdx = 0;
-      tri->plane[5].dcdy = 1;
-      tri->plane[5].c = 1-miny;
-      tri->plane[5].ei = 0;
-      tri->plane[5].eo = 1;
-
-      tri->plane[6].step = step_scissor_maxy;
-      tri->plane[6].dcdx = 0;
-      tri->plane[6].dcdy = -1;
-      tri->plane[6].c = maxy;
-      tri->plane[6].ei = -1;
-      tri->plane[6].eo = 0;
+      const struct u_rect *scissor = &setup->scissors[scissor_index];
+
+      plane[3].dcdx = -1;
+      plane[3].dcdy = 0;
+      plane[3].c = 1-scissor->x0;
+      plane[3].eo = 1;
+
+      plane[4].dcdx = 1;
+      plane[4].dcdy = 0;
+      plane[4].c = scissor->x1+1;
+      plane[4].eo = 0;
+
+      plane[5].dcdx = 0;
+      plane[5].dcdy = 1;
+      plane[5].c = 1-scissor->y0;
+      plane[5].eo = 1;
+
+      plane[6].dcdx = 0;
+      plane[6].dcdy = -1;
+      plane[6].c = scissor->y1+1;
+      plane[6].eo = 0;
    }
 
+   return lp_setup_bin_triangle(setup, tri, &bbox, nr_planes, scissor_index);
+}
 
-   /*
-    * All fields of 'tri' are now set.  The remaining code here is
-    * concerned with binning.
-    */
+/*
+ * Round to nearest less or equal power of two of the input.
+ *
+ * Undefined if no bit set exists, so code should check against 0 first.
+ */
+static INLINE uint32_t 
+floor_pot(uint32_t n)
+{
+#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
+   if (n == 0)
+      return 0;
+
+   __asm__("bsr %1,%0"
+          : "=r" (n)
+          : "rm" (n));
+   return 1 << n;
+#else
+   n |= (n >>  1);
+   n |= (n >>  2);
+   n |= (n >>  4);
+   n |= (n >>  8);
+   n |= (n >> 16);
+   return n - (n >> 1);
+#endif
+}
 
-   /* Convert to tile coordinates, and inclusive ranges:
+
+boolean
+lp_setup_bin_triangle( struct lp_setup_context *setup,
+                       struct lp_rast_triangle *tri,
+                       const struct u_rect *bbox,
+                       int nr_planes,
+                       unsigned scissor_index )
+{
+   struct lp_scene *scene = setup->scene;
+   struct u_rect trimmed_box = *bbox;   
+   int i;
+   /* What is the largest power-of-two boundary this triangle crosses:
     */
-   ix0 = minx / TILE_SIZE;
-   iy0 = miny / TILE_SIZE;
-   ix1 = (maxx-1) / TILE_SIZE;
-   iy1 = (maxy-1) / TILE_SIZE;
+   int dx = floor_pot((bbox->x0 ^ bbox->x1) |
+                     (bbox->y0 ^ bbox->y1));
 
-   /*
-    * Clamp to framebuffer size
+   /* The largest dimension of the rasterized area of the triangle
+    * (aligned to a 4x4 grid), rounded down to the nearest power of two:
+    */
+   int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
+                 (bbox->y1 - (bbox->y0 & ~3)));
+   int sz = floor_pot(max_sz);
+   boolean use_32bits = max_sz <= MAX_FIXED_LENGTH32;
+
+   /* Now apply scissor, etc to the bounding box.  Could do this
+    * earlier, but it confuses the logic for tri-16 and would force
+    * the rasterizer to also respect scissor, etc, just for the rare
+    * cases where a small triangle extends beyond the scissor.
     */
-   assert(ix0 == MAX2(ix0, 0));
-   assert(iy0 == MAX2(iy0, 0));
-   assert(ix1 == MIN2(ix1, scene->tiles_x - 1));
-   assert(iy1 == MIN2(iy1, scene->tiles_y - 1));
+   u_rect_find_intersection(&setup->draw_regions[scissor_index],
+                            &trimmed_box);
 
    /* Determine which tile(s) intersect the triangle's bounding box
     */
-   if (iy0 == iy1 && ix0 == ix1)
+   if (dx < TILE_SIZE)
    {
+      int ix0 = bbox->x0 / TILE_SIZE;
+      int iy0 = bbox->y0 / TILE_SIZE;
+      unsigned px = bbox->x0 & 63 & ~3;
+      unsigned py = bbox->y0 & 63 & ~3;
+
+      assert(iy0 == bbox->y1 / TILE_SIZE &&
+            ix0 == bbox->x1 / TILE_SIZE);
+
+      if (nr_planes == 3) {
+         if (sz < 4)
+         {
+            /* Triangle is contained in a single 4x4 stamp:
+             */
+            assert(px + 4 <= TILE_SIZE);
+            assert(py + 4 <= TILE_SIZE);
+            return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
+                                                setup->fs.stored,
+                                                use_32bits ?
+                                                LP_RAST_OP_TRIANGLE_32_3_4 :
+                                                LP_RAST_OP_TRIANGLE_3_4,
+                                                lp_rast_arg_triangle_contained(tri, px, py) );
+         }
+
+         if (sz < 16)
+         {
+            /* Triangle is contained in a single 16x16 block:
+             */
+
+            /*
+             * The 16x16 block is only 4x4 aligned, and can exceed the tile
+             * dimensions if the triangle is 16 pixels in one dimension but 4
+             * in the other. So budge the 16x16 back inside the tile.
+             */
+            px = MIN2(px, TILE_SIZE - 16);
+            py = MIN2(py, TILE_SIZE - 16);
+
+            assert(px + 16 <= TILE_SIZE);
+            assert(py + 16 <= TILE_SIZE);
+
+            return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
+                                                setup->fs.stored,
+                                                use_32bits ?
+                                                LP_RAST_OP_TRIANGLE_32_3_16 :
+                                                LP_RAST_OP_TRIANGLE_3_16,
+                                                lp_rast_arg_triangle_contained(tri, px, py) );
+         }
+      }
+      else if (nr_planes == 4 && sz < 16) 
+      {
+         px = MIN2(px, TILE_SIZE - 16);
+         py = MIN2(py, TILE_SIZE - 16);
+
+         assert(px + 16 <= TILE_SIZE);
+         assert(py + 16 <= TILE_SIZE);
+
+         return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
+                                            setup->fs.stored,
+                                            use_32bits ?
+                                            LP_RAST_OP_TRIANGLE_32_4_16 :
+                                            LP_RAST_OP_TRIANGLE_4_16,
+                                            lp_rast_arg_triangle_contained(tri, px, py));
+      }
+
+
       /* Triangle is contained in a single tile:
        */
-      lp_scene_bin_command( scene, ix0, iy0,
-                            lp_rast_tri_tab[nr_planes], 
-                           lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
+      return lp_scene_bin_cmd_with_state(
+         scene, ix0, iy0, setup->fs.stored,
+         use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes],
+         lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
    }
    else
    {
-      int c[7];
-      int ei[7];
-      int eo[7];
-      int xstep[7];
-      int ystep[7];
+      struct lp_rast_plane *plane = GET_PLANES(tri);
+      int64_t c[MAX_PLANES];
+      int64_t ei[MAX_PLANES];
+
+      int64_t eo[MAX_PLANES];
+      int64_t xstep[MAX_PLANES];
+      int64_t ystep[MAX_PLANES];
       int x, y;
+
+      int ix0 = trimmed_box.x0 / TILE_SIZE;
+      int iy0 = trimmed_box.y0 / TILE_SIZE;
+      int ix1 = trimmed_box.x1 / TILE_SIZE;
+      int iy1 = trimmed_box.y1 / TILE_SIZE;
       
       for (i = 0; i < nr_planes; i++) {
-         c[i] = (tri->plane[i].c + 
-                 tri->plane[i].dcdy * iy0 * TILE_SIZE - 
-                 tri->plane[i].dcdx * ix0 * TILE_SIZE);
-
-         ei[i] = tri->plane[i].ei << TILE_ORDER;
-         eo[i] = tri->plane[i].eo << TILE_ORDER;
-         xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
-         ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
+         c[i] = (plane[i].c + 
+                 IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
+                 IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
+
+         ei[i] = (plane[i].dcdy - 
+                  plane[i].dcdx - 
+                  plane[i].eo) << TILE_ORDER;
+
+         eo[i] = plane[i].eo << TILE_ORDER;
+         xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
+         ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
       }
 
 
@@ -730,22 +745,22 @@ do_triangle_ccw(struct lp_setup_context *setup,
        */
       for (y = iy0; y <= iy1; y++)
       {
-        boolean in = FALSE;  /* are we inside the triangle? */
-        int cx[7];
+         boolean in = FALSE;  /* are we inside the triangle? */
+         int64_t cx[MAX_PLANES];
 
          for (i = 0; i < nr_planes; i++)
             cx[i] = c[i];
 
-        for (x = ix0; x <= ix1; x++)
-        {
+         for (x = ix0; x <= ix1; x++)
+         {
             int out = 0;
             int partial = 0;
 
             for (i = 0; i < nr_planes; i++) {
-               int planeout = cx[i] + eo[i];
-               int planepartial = cx[i] + ei[i] - 1;
-               out |= (planeout >> 31);
-               partial |= (planepartial >> 31) & (1<<i);
+               int64_t planeout = cx[i] + eo[i];
+               int64_t planepartial = cx[i] + ei[i] - 1;
+               out |= (planeout >> 63);
+               partial |= (planepartial >> 63) & (1<<i);
             }
 
             if (out) {
@@ -755,14 +770,19 @@ do_triangle_ccw(struct lp_setup_context *setup,
                LP_COUNT(nr_empty_64);
             }
             else if (partial) {
-               /* Not trivially accepted by at least one plane - 
+               /* Not trivially accepted by at least one plane -
                 * rasterize/shade partial tile
                 */
                int count = util_bitcount(partial);
                in = TRUE;
-               lp_scene_bin_command( scene, x, y,
-                                     lp_rast_tri_tab[count], 
-                                     lp_rast_arg_triangle(tri, partial) );
+               
+               if (!lp_scene_bin_cmd_with_state( scene, x, y,
+                                                 setup->fs.stored,
+                                                 use_32bits ?
+                                                 lp_rast_32_tri_tab[count] :
+                                                 lp_rast_tri_tab[count],
+                                                 lp_rast_arg_triangle(tri, partial) ))
+                  goto fail;
 
                LP_COUNT(nr_partially_covered_64);
             }
@@ -770,54 +790,342 @@ do_triangle_ccw(struct lp_setup_context *setup,
                /* triangle covers the whole tile- shade whole tile */
                LP_COUNT(nr_fully_covered_64);
                in = TRUE;
-              if (variant->opaque &&
-                  !setup->fb.zsbuf) {
-                 lp_scene_bin_reset( scene, x, y );
-              }
-               lp_scene_bin_command( scene, x, y,
-                                    lp_rast_shade_tile,
-                                    lp_rast_arg_inputs(&tri->inputs) );
+               if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
+                  goto fail;
             }
 
-           /* Iterate cx values across the region:
-            */
+            /* Iterate cx values across the region: */
             for (i = 0; i < nr_planes; i++)
                cx[i] += xstep[i];
-        }
-      
-        /* Iterate c values down the region:
-         */
+         }
+
+         /* Iterate c values down the region: */
          for (i = 0; i < nr_planes; i++)
             c[i] += ystep[i];
       }
    }
+
+   return TRUE;
+
+fail:
+   /* Need to disable any partially binned triangle.  This is easier
+    * than trying to locate all the triangle, shade-tile, etc,
+    * commands which may have been binned.
+    */
+   tri->inputs.disable = TRUE;
+   return FALSE;
 }
 
 
 /**
- * Draw triangle if it's CW, cull otherwise.
+ * Try to draw the triangle, restart the scene on failure.
  */
-static void triangle_cw( struct lp_setup_context *setup,
-                        const float (*v0)[4],
-                        const float (*v1)[4],
-                        const float (*v2)[4] )
+static void retry_triangle_ccw( struct lp_setup_context *setup,
+                                struct fixed_position* position,
+                                const float (*v0)[4],
+                                const float (*v1)[4],
+                                const float (*v2)[4],
+                                boolean front)
+{
+   if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
+   {
+      if (!lp_setup_flush_and_restart(setup))
+         return;
+
+      if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
+         return;
+   }
+}
+
+/**
+ * Calculate fixed position data for a triangle
+ */
+static INLINE void
+calc_fixed_position( struct lp_setup_context *setup,
+                     struct fixed_position* position,
+                     const float (*v0)[4],
+                     const float (*v1)[4],
+                     const float (*v2)[4])
 {
-   do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
+   position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
+   position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
+   position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
+   position->x[3] = 0;
+
+   position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
+   position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
+   position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
+   position->y[3] = 0;
+
+   position->dx01 = position->x[0] - position->x[1];
+   position->dy01 = position->y[0] - position->y[1];
+
+   position->dx20 = position->x[2] - position->x[0];
+   position->dy20 = position->y[2] - position->y[0];
+
+   position->area = IMUL64(position->dx01, position->dy20) -
+         IMUL64(position->dx20, position->dy01);
 }
 
 
 /**
- * Draw triangle if it's CCW, cull otherwise.
+ * Rotate a triangle, flipping its clockwise direction,
+ * Swaps values for xy[0] and xy[1]
  */
-static void triangle_ccw( struct lp_setup_context *setup,
+static INLINE void
+rotate_fixed_position_01( struct fixed_position* position )
+{
+   int x, y;
+
+   x = position->x[1];
+   y = position->y[1];
+   position->x[1] = position->x[0];
+   position->y[1] = position->y[0];
+   position->x[0] = x;
+   position->y[0] = y;
+
+   position->dx01 = -position->dx01;
+   position->dy01 = -position->dy01;
+   position->dx20 = position->x[2] - position->x[0];
+   position->dy20 = position->y[2] - position->y[0];
+
+   position->area = -position->area;
+}
+
+
+/**
+ * Rotate a triangle, flipping its clockwise direction,
+ * Swaps values for xy[1] and xy[2]
+ */
+static INLINE void
+rotate_fixed_position_12( struct fixed_position* position )
+{
+   int x, y;
+
+   x = position->x[2];
+   y = position->y[2];
+   position->x[2] = position->x[1];
+   position->y[2] = position->y[1];
+   position->x[1] = x;
+   position->y[1] = y;
+
+   x = position->dx01;
+   y = position->dy01;
+   position->dx01 = -position->dx20;
+   position->dy01 = -position->dy20;
+   position->dx20 = -x;
+   position->dy20 = -y;
+
+   position->area = -position->area;
+}
+
+
+typedef void (*triangle_func_t)(struct lp_setup_context *setup,
+                                const float (*v0)[4],
+                                const float (*v1)[4],
+                                const float (*v2)[4]);
+
+
+/**
+ * Subdivide this triangle by bisecting edge (v0, v1).
+ * \param pv  the provoking vertex (must = v0 or v1 or v2)
+ * TODO: should probably think about non-overflowing arithmetic elsewhere.
+ * This will definitely screw with pipeline counters for instance.
+ */
+static void
+subdiv_tri(struct lp_setup_context *setup,
+           const float (*v0)[4],
+           const float (*v1)[4],
+           const float (*v2)[4],
+           const float (*pv)[4],
+           triangle_func_t tri)
+{
+   unsigned n = setup->fs.current.variant->shader->info.base.num_inputs + 1;
+   const struct lp_shader_input *inputs =
+      setup->fs.current.variant->shader->inputs;
+   PIPE_ALIGN_VAR(LP_MIN_VECTOR_ALIGN) float vmid[PIPE_MAX_ATTRIBS][4];
+   const float (*vm)[4] = (const float (*)[4]) vmid;
+   unsigned i;
+   float w0, w1, wm;
+   boolean flatshade = setup->fs.current.variant->key.flatshade;
+
+   /* find position midpoint (attrib[0] = position) */
+   vmid[0][0] = 0.5f * (v1[0][0] + v0[0][0]);
+   vmid[0][1] = 0.5f * (v1[0][1] + v0[0][1]);
+   vmid[0][2] = 0.5f * (v1[0][2] + v0[0][2]);
+   vmid[0][3] = 0.5f * (v1[0][3] + v0[0][3]);
+
+   w0 = v0[0][3];
+   w1 = v1[0][3];
+   wm = vmid[0][3];
+
+   /* interpolate other attributes */
+   for (i = 1; i < n; i++) {
+      if ((inputs[i - 1].interp == LP_INTERP_COLOR && flatshade) ||
+          inputs[i - 1].interp == LP_INTERP_CONSTANT) {
+         /* copy the provoking vertex's attribute */
+         vmid[i][0] = pv[i][0];
+         vmid[i][1] = pv[i][1];
+         vmid[i][2] = pv[i][2];
+         vmid[i][3] = pv[i][3];
+      }
+      else {
+         /* interpolate with perspective correction (for linear too) */
+         vmid[i][0] = 0.5f * (v1[i][0] * w1 + v0[i][0] * w0) / wm;
+         vmid[i][1] = 0.5f * (v1[i][1] * w1 + v0[i][1] * w0) / wm;
+         vmid[i][2] = 0.5f * (v1[i][2] * w1 + v0[i][2] * w0) / wm;
+         vmid[i][3] = 0.5f * (v1[i][3] * w1 + v0[i][3] * w0) / wm;
+      }
+   }
+
+   /* handling flat shading and first vs. last provoking vertex is a
+    * little tricky...
+    */
+   if (pv == v0) {
+      if (setup->flatshade_first) {
+         /* first vertex must be v0 or vm */
+         tri(setup, v0, vm, v2);
+         tri(setup, vm, v1, v2);
+      }
+      else {
+         /* last vertex must be v0 or vm */
+         tri(setup, vm, v2, v0);
+         tri(setup, v1, v2, vm);
+      }
+   }
+   else if (pv == v1) {
+      if (setup->flatshade_first) {
+         tri(setup, vm, v2, v0);
+         tri(setup, v1, v2, vm);
+      }
+      else {
+         tri(setup, v2, v0, vm);
+         tri(setup, v2, vm, v1);
+      }
+   }
+   else {
+      if (setup->flatshade_first) {
+         tri(setup, v2, v0, vm);
+         tri(setup, v2, vm, v1);
+      }
+      else {
+         tri(setup, v0, vm, v2);
+         tri(setup, vm, v1, v2);
+      }
+   }
+}
+
+
+/**
+ * Check the lengths of the edges of the triangle.  If any edge is too
+ * long, subdivide the longest edge and draw two sub-triangles.
+ * Note: this may be called recursively.
+ * \return TRUE if triangle was subdivided, FALSE otherwise
+ */
+static boolean
+check_subdivide_triangle(struct lp_setup_context *setup,
+                         const float (*v0)[4],
+                         const float (*v1)[4],
+                         const float (*v2)[4],
+                         triangle_func_t tri)
+{
+   const float maxLen = (float) MAX_FIXED_LENGTH;  /* longest permissible edge, in pixels */
+   float dx10, dy10, len10;
+   float dx21, dy21, len21;
+   float dx02, dy02, len02;
+   const float (*pv)[4] = setup->flatshade_first ? v0 : v2;
+
+   /* compute lengths of triangle edges, squared */
+   dx10 = v1[0][0] - v0[0][0];
+   dy10 = v1[0][1] - v0[0][1];
+   len10 = dx10 * dx10 + dy10 * dy10;
+
+   dx21 = v2[0][0] - v1[0][0];
+   dy21 = v2[0][1] - v1[0][1];
+   len21 = dx21 * dx21 + dy21 * dy21;
+
+   dx02 = v0[0][0] - v2[0][0];
+   dy02 = v0[0][1] - v2[0][1];
+   len02 = dx02 * dx02 + dy02 * dy02;
+
+   /* Look for longest the edge that's longer than maxLen.  If we find
+    * such an edge, split the triangle using the midpoint of that edge.
+    * Note: it's important to split the longest edge, not just any edge
+    * that's longer than maxLen.  Otherwise, we can get into a degenerate
+    * situation and recurse indefinitely.
+    */
+   if (len10 > maxLen * maxLen &&
+       len10 >= len21 &&
+       len10 >= len02) {
+      /* subdivide v0, v1 edge */
+      subdiv_tri(setup, v0, v1, v2, pv, tri);
+      return TRUE;
+   }
+
+   if (len21 > maxLen * maxLen &&
+       len21 >= len10 &&
+       len21 >= len02) {       
+      /* subdivide v1, v2 edge */
+      subdiv_tri(setup, v1, v2, v0, pv, tri);
+      return TRUE;
+   }
+
+   if (len02 > maxLen * maxLen &&
+       len02 >= len21 &&
+       len02 >= len10) {       
+      /* subdivide v2, v0 edge */
+      subdiv_tri(setup, v2, v0, v1, pv, tri);
+      return TRUE;
+   }
+
+   return FALSE;
+}
+
+
+/**
+ * Draw triangle if it's CW, cull otherwise.
+ */
+static void triangle_cw( struct lp_setup_context *setup,
                         const float (*v0)[4],
                         const float (*v1)[4],
                         const float (*v2)[4] )
 {
-   do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
+   struct fixed_position position;
+
+   if (setup->subdivide_large_triangles &&
+       check_subdivide_triangle(setup, v0, v1, v2, triangle_cw))
+      return;
+
+   calc_fixed_position(setup, &position, v0, v1, v2);
+
+   if (position.area < 0) {
+      if (setup->flatshade_first) {
+         rotate_fixed_position_12(&position);
+         retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
+      } else {
+         rotate_fixed_position_01(&position);
+         retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
+      }
+   }
 }
 
 
+static void triangle_ccw( struct lp_setup_context *setup,
+                          const float (*v0)[4],
+                          const float (*v1)[4],
+                          const float (*v2)[4])
+{
+   struct fixed_position position;
+
+   if (setup->subdivide_large_triangles &&
+       check_subdivide_triangle(setup, v0, v1, v2, triangle_ccw))
+      return;
+
+   calc_fixed_position(setup, &position, v0, v1, v2);
+
+   if (position.area > 0)
+      retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
+}
 
 /**
  * Draw triangle whether it's CW or CCW.
@@ -827,17 +1135,40 @@ static void triangle_both( struct lp_setup_context *setup,
                           const float (*v1)[4],
                           const float (*v2)[4] )
 {
-   /* edge vectors e = v0 - v2, f = v1 - v2 */
-   const float ex = v0[0][0] - v2[0][0];
-   const float ey = v0[0][1] - v2[0][1];
-   const float fx = v1[0][0] - v2[0][0];
-   const float fy = v1[0][1] - v2[0][1];
-
-   /* det = cross(e,f).z */
-   if (ex * fy - ey * fx < 0.0f) 
-      triangle_ccw( setup, v0, v1, v2 );
-   else
-      triangle_cw( setup, v0, v1, v2 );
+   struct fixed_position position;
+   struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
+
+   if (setup->subdivide_large_triangles &&
+       check_subdivide_triangle(setup, v0, v1, v2, triangle_both))
+      return;
+
+   if (lp_context->active_statistics_queries &&
+       !llvmpipe_rasterization_disabled(lp_context)) {
+      lp_context->pipeline_statistics.c_primitives++;
+   }
+
+   calc_fixed_position(setup, &position, v0, v1, v2);
+
+   if (0) {
+      assert(!util_is_inf_or_nan(v0[0][0]));
+      assert(!util_is_inf_or_nan(v0[0][1]));
+      assert(!util_is_inf_or_nan(v1[0][0]));
+      assert(!util_is_inf_or_nan(v1[0][1]));
+      assert(!util_is_inf_or_nan(v2[0][0]));
+      assert(!util_is_inf_or_nan(v2[0][1]));
+   }
+
+   if (position.area > 0)
+      retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
+   else if (position.area < 0) {
+      if (setup->flatshade_first) {
+         rotate_fixed_position_12( &position );
+         retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
+      } else {
+         rotate_fixed_position_01( &position );
+         retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
+      }
+   }
 }