radeonsi: replace TGSI_SEMANTIC with VARYING_SLOT and FRAG_RESULT
[mesa.git] / src / gallium / drivers / radeonsi / gfx10_shader_ngg.c
index 5aac4ceac256e6507734995094da85b267a10ecc..cc3ff50e8e06e2f6f51f9334a26cf7fdd3cd0c83 100644 (file)
  * USE OR OTHER DEALINGS IN THE SOFTWARE.
  */
 
+#include "ac_llvm_cull.h"
 #include "si_pipe.h"
 #include "si_shader_internal.h"
-
 #include "sid.h"
-
 #include "util/u_memory.h"
 #include "util/u_prim.h"
 
 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
 {
-       return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
+   return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
 }
 
 static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
 {
-       return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
+   return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
 }
 
 static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
 {
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef tmp;
-       tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
-                          LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
-       return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef tmp;
+   tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
+                      LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
+   return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
 }
 
 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
 {
-       return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
+   return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
 }
 
 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
 {
-       return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
+   return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
 }
 
 static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
 {
-       return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
+   return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
 }
 
 static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
 {
-       LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+   LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+
+   return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
+                                LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false));
+}
 
-       return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
-                                    LLVMConstInt(ctx->i32, GFX10_GS_QUERY_BUF, false));
+static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index)
+{
+   if (ctx->stage == MESA_SHADER_VERTEX) {
+      LLVMValueRef tmp;
+      tmp = LLVMBuildLShr(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
+                          LLVMConstInt(ctx->ac.i32, 8 + index, false), "");
+      return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
+   }
+   return ctx->ac.i1false;
 }
 
-/* Send GS Alloc Req message from the first wave of the group to SPI.
- * Message payload is:
- * - bits 0..10: vertices in group
- * - bits 12..22: primitives in group
+/**
+ * Return the number of vertices as a constant in \p num_vertices,
+ * and return a more precise value as LLVMValueRef from the function.
  */
-static void build_sendmsg_gs_alloc_req(struct si_shader_context *ctx,
-                                      LLVMValueRef vtx_cnt,
-                                      LLVMValueRef prim_cnt)
+static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx, unsigned *num_vertices)
 {
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef tmp;
+   const struct si_shader_info *info = &ctx->shader->selector->info;
+
+   if (ctx->stage == MESA_SHADER_VERTEX) {
+      if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
+         /* Blits always use axis-aligned rectangles with 3 vertices. */
+         *num_vertices = 3;
+         return LLVMConstInt(ctx->ac.i32, 3, 0);
+      } else {
+         /* We always build up all three indices for the prim export
+          * independent of the primitive type. The additional garbage
+          * data shouldn't hurt. This number doesn't matter with
+          * NGG passthrough.
+          */
+         *num_vertices = 3;
+
+         /* Extract OUTPRIM field. */
+         LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
+         return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
+      }
+   } else {
+      assert(ctx->stage == MESA_SHADER_TESS_EVAL);
+
+      if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
+         *num_vertices = 1;
+      else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
+         *num_vertices = 2;
+      else
+         *num_vertices = 3;
+
+      return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
+   }
+}
 
-       tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
-       ac_build_ifcc(&ctx->ac, tmp, 5020);
+bool gfx10_ngg_export_prim_early(struct si_shader *shader)
+{
+   struct si_shader_selector *sel = shader->selector;
 
-       tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
-       tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
-       ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
+   assert(shader->key.as_ngg && !shader->key.as_es);
 
-       ac_build_endif(&ctx->ac, 5020);
+   return sel->info.stage != MESA_SHADER_GEOMETRY && !sel->info.writes_edgeflag;
 }
 
-struct ngg_prim {
-       unsigned num_vertices;
-       LLVMValueRef isnull;
-       LLVMValueRef index[3];
-       LLVMValueRef edgeflag[3];
-       LLVMValueRef passthrough;
-};
+void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
+{
+   ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ngg_get_vtx_cnt(ctx),
+                                 ngg_get_prim_cnt(ctx));
+}
 
-static void build_export_prim(struct si_shader_context *ctx,
-                             const struct ngg_prim *prim)
+void gfx10_ngg_build_export_prim(struct si_shader_context *ctx, LLVMValueRef user_edgeflags[3],
+                                 LLVMValueRef prim_passthrough)
 {
-       LLVMBuilderRef builder = ctx->ac.builder;
-       struct ac_export_args args;
-       LLVMValueRef tmp;
-
-       if (prim->passthrough) {
-               args.out[0] = prim->passthrough;
-       } else {
-               tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
-               args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
-
-               for (unsigned i = 0; i < prim->num_vertices; ++i) {
-                       tmp = LLVMBuildShl(builder, prim->index[i],
-                                          LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
-                       args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
-                       tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
-                       tmp = LLVMBuildShl(builder, tmp,
-                                          LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
-                       args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
-               }
-       }
-
-       args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
-       args.out[1] = LLVMGetUndef(ctx->ac.f32);
-       args.out[2] = LLVMGetUndef(ctx->ac.f32);
-       args.out[3] = LLVMGetUndef(ctx->ac.f32);
-
-       args.target = V_008DFC_SQ_EXP_PRIM;
-       args.enabled_channels = 1;
-       args.done = true;
-       args.valid_mask = false;
-       args.compr = false;
-
-       ac_build_export(&ctx->ac, &args);
+   LLVMBuilderRef builder = ctx->ac.builder;
+
+   if (gfx10_is_ngg_passthrough(ctx->shader) || ctx->shader->key.opt.ngg_culling) {
+      ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
+      {
+         struct ac_ngg_prim prim = {};
+
+         if (prim_passthrough)
+            prim.passthrough = prim_passthrough;
+         else
+            prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
+
+         /* This is only used with NGG culling, which returns the NGG
+          * passthrough prim export encoding.
+          */
+         if (ctx->shader->selector->info.writes_edgeflag) {
+            unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
+            LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
+
+            unsigned num_vertices;
+            ngg_get_vertices_per_prim(ctx, &num_vertices);
+
+            for (unsigned i = 0; i < num_vertices; i++) {
+               unsigned shift = 9 + i * 10;
+               LLVMValueRef edge;
+
+               edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
+               edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
+               edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
+               edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
+            }
+            prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
+         }
+
+         ac_build_export_prim(&ctx->ac, &prim);
+      }
+      ac_build_endif(&ctx->ac, 6001);
+      return;
+   }
+
+   ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
+   {
+      struct ac_ngg_prim prim = {};
+
+      ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
+
+      prim.isnull = ctx->ac.i1false;
+      prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
+      prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
+      prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
+
+      for (unsigned i = 0; i < prim.num_vertices; ++i) {
+         prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i);
+
+         if (ctx->shader->selector->info.writes_edgeflag) {
+            LLVMValueRef edge;
+
+            edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
+            edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, "");
+            prim.edgeflag[i] = edge;
+         }
+      }
+
+      ac_build_export_prim(&ctx->ac, &prim);
+   }
+   ac_build_endif(&ctx->ac, 6001);
 }
 
-static void build_streamout_vertex(struct si_shader_context *ctx,
-                                  LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
-                                  unsigned stream, LLVMValueRef offset_vtx,
-                                  LLVMValueRef vertexptr)
+static void build_streamout_vertex(struct si_shader_context *ctx, LLVMValueRef *so_buffer,
+                                   LLVMValueRef *wg_offset_dw, unsigned stream,
+                                   LLVMValueRef offset_vtx, LLVMValueRef vertexptr)
 {
-       struct tgsi_shader_info *info = &ctx->shader->selector->info;
-       struct pipe_stream_output_info *so = &ctx->shader->selector->so;
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef offset[4] = {};
-       LLVMValueRef tmp;
-
-       for (unsigned buffer = 0; buffer < 4; ++buffer) {
-               if (!wg_offset_dw[buffer])
-                       continue;
-
-               tmp = LLVMBuildMul(builder, offset_vtx,
-                                  LLVMConstInt(ctx->i32, so->stride[buffer], false), "");
-               tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
-               offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->i32, 2, false), "");
-       }
-
-       for (unsigned i = 0; i < so->num_outputs; ++i) {
-               if (so->output[i].stream != stream)
-                       continue;
-
-               unsigned reg = so->output[i].register_index;
-               struct si_shader_output_values out;
-               out.semantic_name = info->output_semantic_name[reg];
-               out.semantic_index = info->output_semantic_index[reg];
-
-               for (unsigned comp = 0; comp < 4; comp++) {
-                       tmp = ac_build_gep0(&ctx->ac, vertexptr,
-                                           LLVMConstInt(ctx->i32, 4 * reg + comp, false));
-                       out.values[comp] = LLVMBuildLoad(builder, tmp, "");
-                       out.vertex_stream[comp] =
-                               (info->output_streams[reg] >> (2 * comp)) & 3;
-               }
-
-               si_emit_streamout_output(ctx, so_buffer, offset, &so->output[i], &out);
-       }
+   struct si_shader_info *info = &ctx->shader->selector->info;
+   struct pipe_stream_output_info *so = &ctx->shader->selector->so;
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef offset[4] = {};
+   LLVMValueRef tmp;
+
+   for (unsigned buffer = 0; buffer < 4; ++buffer) {
+      if (!wg_offset_dw[buffer])
+         continue;
+
+      tmp = LLVMBuildMul(builder, offset_vtx, LLVMConstInt(ctx->ac.i32, so->stride[buffer], false),
+                         "");
+      tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
+      offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
+   }
+
+   for (unsigned i = 0; i < so->num_outputs; ++i) {
+      if (so->output[i].stream != stream)
+         continue;
+
+      unsigned reg = so->output[i].register_index;
+      struct si_shader_output_values out;
+      out.semantic = info->output_semantic[reg];
+
+      for (unsigned comp = 0; comp < 4; comp++) {
+         tmp = ac_build_gep0(&ctx->ac, vertexptr, LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
+         out.values[comp] = LLVMBuildLoad(builder, tmp, "");
+         out.vertex_stream[comp] = (info->output_streams[reg] >> (2 * comp)) & 3;
+      }
+
+      si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
+   }
 }
 
 struct ngg_streamout {
-       LLVMValueRef num_vertices;
+   LLVMValueRef num_vertices;
 
-       /* per-thread data */
-       LLVMValueRef prim_enable[4]; /* i1 per stream */
-       LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
+   /* per-thread data */
+   LLVMValueRef prim_enable[4]; /* i1 per stream */
+   LLVMValueRef vertices[3];    /* [N x i32] addrspace(LDS)* */
 
-       /* Output */
-       LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
+   /* Output */
+   LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
 };
 
 /**
@@ -201,627 +264,1174 @@ struct ngg_streamout {
  *
  * Clobbers gs_ngg_scratch[8:].
  */
-static void build_streamout(struct si_shader_context *ctx,
-                           struct ngg_streamout *nggso)
+static void build_streamout(struct si_shader_context *ctx, struct ngg_streamout *nggso)
 {
-       struct tgsi_shader_info *info = &ctx->shader->selector->info;
-       struct pipe_stream_output_info *so = &ctx->shader->selector->so;
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
-       LLVMValueRef tid = get_thread_id_in_tg(ctx);
-       LLVMValueRef tmp, tmp2;
-       LLVMValueRef i32_2 = LLVMConstInt(ctx->i32, 2, false);
-       LLVMValueRef i32_4 = LLVMConstInt(ctx->i32, 4, false);
-       LLVMValueRef i32_8 = LLVMConstInt(ctx->i32, 8, false);
-       LLVMValueRef so_buffer[4] = {};
-       unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
-                                       (nggso->vertices[2] ? 1 : 0);
-       LLVMValueRef prim_stride_dw[4] = {};
-       LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->i32);
-       int stream_for_buffer[4] = { -1, -1, -1, -1 };
-       unsigned bufmask_for_stream[4] = {};
-       bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
-       unsigned scratch_emit_base = isgs ? 4 : 0;
-       LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->i32_0;
-       unsigned scratch_offset_base = isgs ? 8 : 4;
-       LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
-
-       ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
-
-       /* Determine the mapping of streamout buffers to vertex streams. */
-       for (unsigned i = 0; i < so->num_outputs; ++i) {
-               unsigned buf = so->output[i].output_buffer;
-               unsigned stream = so->output[i].stream;
-               assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
-               stream_for_buffer[buf] = stream;
-               bufmask_for_stream[stream] |= 1 << buf;
-       }
-
-       for (unsigned buffer = 0; buffer < 4; ++buffer) {
-               if (stream_for_buffer[buffer] == -1)
-                       continue;
-
-               assert(so->stride[buffer]);
-
-               tmp = LLVMConstInt(ctx->i32, so->stride[buffer], false);
-               prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
-               prim_stride_dw_vgpr = ac_build_writelane(
-                       &ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
-                       LLVMConstInt(ctx->i32, buffer, false));
-
-               so_buffer[buffer] = ac_build_load_to_sgpr(
-                       &ctx->ac, buf_ptr,
-                       LLVMConstInt(ctx->i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
-       }
-
-       tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->i32_0, "");
-       ac_build_ifcc(&ctx->ac, tmp, 5200);
-       {
-               LLVMTypeRef gdsptr = LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS);
-               LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->i32_0, gdsptr, "");
-
-               /* Advance the streamout offsets in GDS. */
-               LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
-               LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
-
-               tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
-               ac_build_ifcc(&ctx->ac, tmp, 5210);
-               {
-                       if (isgs) {
-                               tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
-                               tmp = LLVMBuildLoad(builder, tmp, "");
-                       } else {
-                               tmp = ac_build_writelane(&ctx->ac, ctx->i32_0,
-                                               ngg_get_prim_cnt(ctx), ctx->i32_0);
-                       }
-                       LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
-
-                       unsigned swizzle[4];
-                       int unused_stream = -1;
-                       for (unsigned stream = 0; stream < 4; ++stream) {
-                               if (!info->num_stream_output_components[stream]) {
-                                       unused_stream = stream;
-                                       break;
-                               }
-                       }
-                       for (unsigned buffer = 0; buffer < 4; ++buffer) {
-                               if (stream_for_buffer[buffer] >= 0) {
-                                       swizzle[buffer] = stream_for_buffer[buffer];
-                               } else {
-                                       assert(unused_stream >= 0);
-                                       swizzle[buffer] = unused_stream;
-                               }
-                       }
-
-                       tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
-                               swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
-                       tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
-
-                       LLVMValueRef args[] = {
-                               LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
-                               tmp,
-                               ctx->i32_0, // ordering
-                               ctx->i32_0, // scope
-                               ctx->ac.i1false, // isVolatile
-                               LLVMConstInt(ctx->i32, 4 << 24, false), // OA index
-                               ctx->ac.i1true, // wave release
-                               ctx->ac.i1true, // wave done
-                       };
-                       tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
-                                                ctx->i32, args, ARRAY_SIZE(args), 0);
-
-                       /* Keep offsets in a VGPR for quick retrieval via readlane by
-                        * the first wave for bounds checking, and also store in LDS
-                        * for retrieval by all waves later. */
-                       LLVMBuildStore(builder, tmp, offsets_vgpr);
-
-                       tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
-                                           scratch_offset_basev, "");
-                       tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
-                       LLVMBuildStore(builder, tmp, tmp2);
-               }
-               ac_build_endif(&ctx->ac, 5210);
-
-               /* Determine the max emit per buffer. This is done via the SALU, in part
-                * because LLVM can't generate divide-by-multiply if we try to do this
-                * via VALU with one lane per buffer.
-                */
-               LLVMValueRef max_emit[4] = {};
-               for (unsigned buffer = 0; buffer < 4; ++buffer) {
-                       if (stream_for_buffer[buffer] == -1)
-                               continue;
-
-                       LLVMValueRef bufsize_dw =
-                               LLVMBuildLShr(builder,
-                                       LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
-                                       i32_2, "");
-
-                       tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
-                       LLVMValueRef offset_dw =
-                               ac_build_readlane(&ctx->ac, tmp,
-                                               LLVMConstInt(ctx->i32, buffer, false));
-
-                       tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
-                       tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
-
-                       tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
-                       max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->i32_0, tmp, "");
-               }
-
-               /* Determine the number of emitted primitives per stream and fixup the
-                * GDS counter if necessary.
-                *
-                * This is complicated by the fact that a single stream can emit to
-                * multiple buffers (but luckily not vice versa).
-                */
-               LLVMValueRef emit_vgpr = ctx->i32_0;
-
-               for (unsigned stream = 0; stream < 4; ++stream) {
-                       if (!info->num_stream_output_components[stream])
-                               continue;
-
-                       tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
-                       LLVMValueRef generated =
-                               ac_build_readlane(&ctx->ac, tmp,
-                                                 LLVMConstInt(ctx->i32, stream, false));
-
-                       LLVMValueRef emit = generated;
-                       for (unsigned buffer = 0; buffer < 4; ++buffer) {
-                               if (stream_for_buffer[buffer] == stream)
-                                       emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
-                       }
-
-                       emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
-                                                      LLVMConstInt(ctx->i32, stream, false));
-
-                       /* Fixup the offset using a plain GDS atomic if we overflowed. */
-                       tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
-                       ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
-                       tmp = LLVMBuildLShr(builder,
-                                           LLVMConstInt(ctx->i32, bufmask_for_stream[stream], false),
-                                           ac_get_thread_id(&ctx->ac), "");
-                       tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
-                       ac_build_ifcc(&ctx->ac, tmp, 5222);
-                       {
-                               tmp = LLVMBuildSub(builder, generated, emit, "");
-                               tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
-                               tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
-                               LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
-                                                  LLVMAtomicOrderingMonotonic, false);
-                       }
-                       ac_build_endif(&ctx->ac, 5222);
-                       ac_build_endif(&ctx->ac, 5221);
-               }
-
-               tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
-               ac_build_ifcc(&ctx->ac, tmp, 5225);
-               {
-                       tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
-                                          scratch_emit_basev, "");
-                       tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
-                       LLVMBuildStore(builder, emit_vgpr, tmp);
-               }
-               ac_build_endif(&ctx->ac, 5225);
-       }
-       ac_build_endif(&ctx->ac, 5200);
-
-       /* Determine the workgroup-relative per-thread / primitive offset into
-        * the streamout buffers */
-       struct ac_wg_scan primemit_scan[4] = {};
-
-       if (isgs) {
-               for (unsigned stream = 0; stream < 4; ++stream) {
-                       if (!info->num_stream_output_components[stream])
-                               continue;
-
-                       primemit_scan[stream].enable_exclusive = true;
-                       primemit_scan[stream].op = nir_op_iadd;
-                       primemit_scan[stream].src = nggso->prim_enable[stream];
-                       primemit_scan[stream].scratch =
-                               ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
-                                       LLVMConstInt(ctx->i32, 12 + 8 * stream, false));
-                       primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
-                       primemit_scan[stream].numwaves = get_tgsize(ctx);
-                       primemit_scan[stream].maxwaves = 8;
-                       ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
-               }
-       }
-
-       ac_build_s_barrier(&ctx->ac);
-
-       /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
-       LLVMValueRef wgoffset_dw[4] = {};
-
-       {
-               LLVMValueRef scratch_vgpr;
-
-               tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
-               scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
-
-               for (unsigned buffer = 0; buffer < 4; ++buffer) {
-                       if (stream_for_buffer[buffer] >= 0) {
-                               wgoffset_dw[buffer] = ac_build_readlane(
-                                       &ctx->ac, scratch_vgpr,
-                                       LLVMConstInt(ctx->i32, scratch_offset_base + buffer, false));
-                       }
-               }
-
-               for (unsigned stream = 0; stream < 4; ++stream) {
-                       if (info->num_stream_output_components[stream]) {
-                               nggso->emit[stream] = ac_build_readlane(
-                                       &ctx->ac, scratch_vgpr,
-                                       LLVMConstInt(ctx->i32, scratch_emit_base + stream, false));
-                       }
-               }
-       }
-
-       /* Write out primitive data */
-       for (unsigned stream = 0; stream < 4; ++stream) {
-               if (!info->num_stream_output_components[stream])
-                       continue;
-
-               if (isgs) {
-                       ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
-               } else {
-                       primemit_scan[stream].result_exclusive = tid;
-               }
-
-               tmp = LLVMBuildICmp(builder, LLVMIntULT,
-                                   primemit_scan[stream].result_exclusive,
-                                   nggso->emit[stream], "");
-               tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
-               ac_build_ifcc(&ctx->ac, tmp, 5240);
-               {
-                       LLVMValueRef offset_vtx =
-                               LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
-                                            nggso->num_vertices, "");
-
-                       for (unsigned i = 0; i < max_num_vertices; ++i) {
-                               tmp = LLVMBuildICmp(builder, LLVMIntULT,
-                                                   LLVMConstInt(ctx->i32, i, false),
-                                                   nggso->num_vertices, "");
-                               ac_build_ifcc(&ctx->ac, tmp, 5241);
-                               build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
-                                                      stream, offset_vtx, nggso->vertices[i]);
-                               ac_build_endif(&ctx->ac, 5241);
-                               offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->i32_1, "");
-                       }
-               }
-               ac_build_endif(&ctx->ac, 5240);
-       }
+   struct si_shader_info *info = &ctx->shader->selector->info;
+   struct pipe_stream_output_info *so = &ctx->shader->selector->so;
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+   LLVMValueRef tid = get_thread_id_in_tg(ctx);
+   LLVMValueRef tmp, tmp2;
+   LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
+   LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
+   LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
+   LLVMValueRef so_buffer[4] = {};
+   unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + (nggso->vertices[2] ? 1 : 0);
+   LLVMValueRef prim_stride_dw[4] = {};
+   LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
+   int stream_for_buffer[4] = {-1, -1, -1, -1};
+   unsigned bufmask_for_stream[4] = {};
+   bool isgs = ctx->stage == MESA_SHADER_GEOMETRY;
+   unsigned scratch_emit_base = isgs ? 4 : 0;
+   LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
+   unsigned scratch_offset_base = isgs ? 8 : 4;
+   LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
+
+   ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
+
+   /* Determine the mapping of streamout buffers to vertex streams. */
+   for (unsigned i = 0; i < so->num_outputs; ++i) {
+      unsigned buf = so->output[i].output_buffer;
+      unsigned stream = so->output[i].stream;
+      assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
+      stream_for_buffer[buf] = stream;
+      bufmask_for_stream[stream] |= 1 << buf;
+   }
+
+   for (unsigned buffer = 0; buffer < 4; ++buffer) {
+      if (stream_for_buffer[buffer] == -1)
+         continue;
+
+      assert(so->stride[buffer]);
+
+      tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
+      prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
+      prim_stride_dw_vgpr =
+         ac_build_writelane(&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
+                            LLVMConstInt(ctx->ac.i32, buffer, false));
+
+      so_buffer[buffer] = ac_build_load_to_sgpr(
+         &ctx->ac, buf_ptr, LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
+   }
+
+   tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
+   ac_build_ifcc(&ctx->ac, tmp, 5200);
+   {
+      LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
+      LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
+
+      /* Advance the streamout offsets in GDS. */
+      LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+      LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+      tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
+      ac_build_ifcc(&ctx->ac, tmp, 5210);
+      {
+         if (isgs) {
+            tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
+            tmp = LLVMBuildLoad(builder, tmp, "");
+         } else {
+            tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0, ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
+         }
+         LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
+
+         unsigned swizzle[4];
+         int unused_stream = -1;
+         for (unsigned stream = 0; stream < 4; ++stream) {
+            if (!info->num_stream_output_components[stream]) {
+               unused_stream = stream;
+               break;
+            }
+         }
+         for (unsigned buffer = 0; buffer < 4; ++buffer) {
+            if (stream_for_buffer[buffer] >= 0) {
+               swizzle[buffer] = stream_for_buffer[buffer];
+            } else {
+               assert(unused_stream >= 0);
+               swizzle[buffer] = unused_stream;
+            }
+         }
+
+         tmp = ac_build_quad_swizzle(&ctx->ac, tmp, swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
+         tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
+
+         LLVMValueRef args[] = {
+            LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
+            tmp,
+            ctx->ac.i32_0,                             // ordering
+            ctx->ac.i32_0,                             // scope
+            ctx->ac.i1false,                           // isVolatile
+            LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
+            ctx->ac.i1true,                            // wave release
+            ctx->ac.i1true,                            // wave done
+         };
+         tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32, args,
+                                  ARRAY_SIZE(args), 0);
+
+         /* Keep offsets in a VGPR for quick retrieval via readlane by
+          * the first wave for bounds checking, and also store in LDS
+          * for retrieval by all waves later. */
+         LLVMBuildStore(builder, tmp, offsets_vgpr);
+
+         tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_offset_basev, "");
+         tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
+         LLVMBuildStore(builder, tmp, tmp2);
+      }
+      ac_build_endif(&ctx->ac, 5210);
+
+      /* Determine the max emit per buffer. This is done via the SALU, in part
+       * because LLVM can't generate divide-by-multiply if we try to do this
+       * via VALU with one lane per buffer.
+       */
+      LLVMValueRef max_emit[4] = {};
+      for (unsigned buffer = 0; buffer < 4; ++buffer) {
+         if (stream_for_buffer[buffer] == -1)
+            continue;
+
+         LLVMValueRef bufsize_dw = LLVMBuildLShr(
+            builder, LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), i32_2, "");
+
+         tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
+         LLVMValueRef offset_dw =
+            ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, buffer, false));
+
+         tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
+         tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
+
+         tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
+         max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
+      }
+
+      /* Determine the number of emitted primitives per stream and fixup the
+       * GDS counter if necessary.
+       *
+       * This is complicated by the fact that a single stream can emit to
+       * multiple buffers (but luckily not vice versa).
+       */
+      LLVMValueRef emit_vgpr = ctx->ac.i32_0;
+
+      for (unsigned stream = 0; stream < 4; ++stream) {
+         if (!info->num_stream_output_components[stream])
+            continue;
+
+         tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
+         LLVMValueRef generated =
+            ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, stream, false));
+
+         LLVMValueRef emit = generated;
+         for (unsigned buffer = 0; buffer < 4; ++buffer) {
+            if (stream_for_buffer[buffer] == stream)
+               emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
+         }
+
+         emit_vgpr =
+            ac_build_writelane(&ctx->ac, emit_vgpr, emit, LLVMConstInt(ctx->ac.i32, stream, false));
+
+         /* Fixup the offset using a plain GDS atomic if we overflowed. */
+         tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
+         ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
+         tmp = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
+                             ac_get_thread_id(&ctx->ac), "");
+         tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+         ac_build_ifcc(&ctx->ac, tmp, 5222);
+         {
+            tmp = LLVMBuildSub(builder, generated, emit, "");
+            tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
+            tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
+            LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
+                               LLVMAtomicOrderingMonotonic, false);
+         }
+         ac_build_endif(&ctx->ac, 5222);
+         ac_build_endif(&ctx->ac, 5221);
+      }
+
+      tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
+      ac_build_ifcc(&ctx->ac, tmp, 5225);
+      {
+         tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_emit_basev, "");
+         tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
+         LLVMBuildStore(builder, emit_vgpr, tmp);
+      }
+      ac_build_endif(&ctx->ac, 5225);
+   }
+   ac_build_endif(&ctx->ac, 5200);
+
+   /* Determine the workgroup-relative per-thread / primitive offset into
+    * the streamout buffers */
+   struct ac_wg_scan primemit_scan[4] = {};
+
+   if (isgs) {
+      for (unsigned stream = 0; stream < 4; ++stream) {
+         if (!info->num_stream_output_components[stream])
+            continue;
+
+         primemit_scan[stream].enable_exclusive = true;
+         primemit_scan[stream].op = nir_op_iadd;
+         primemit_scan[stream].src = nggso->prim_enable[stream];
+         primemit_scan[stream].scratch = ac_build_gep0(
+            &ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
+         primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
+         primemit_scan[stream].numwaves = get_tgsize(ctx);
+         primemit_scan[stream].maxwaves = 8;
+         ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
+      }
+   }
+
+   ac_build_s_barrier(&ctx->ac);
+
+   /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
+   LLVMValueRef wgoffset_dw[4] = {};
+
+   {
+      LLVMValueRef scratch_vgpr;
+
+      tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
+      scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
+
+      for (unsigned buffer = 0; buffer < 4; ++buffer) {
+         if (stream_for_buffer[buffer] >= 0) {
+            wgoffset_dw[buffer] =
+               ac_build_readlane(&ctx->ac, scratch_vgpr,
+                                 LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
+         }
+      }
+
+      for (unsigned stream = 0; stream < 4; ++stream) {
+         if (info->num_stream_output_components[stream]) {
+            nggso->emit[stream] =
+               ac_build_readlane(&ctx->ac, scratch_vgpr,
+                                 LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
+         }
+      }
+   }
+
+   /* Write out primitive data */
+   for (unsigned stream = 0; stream < 4; ++stream) {
+      if (!info->num_stream_output_components[stream])
+         continue;
+
+      if (isgs) {
+         ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
+      } else {
+         primemit_scan[stream].result_exclusive = tid;
+      }
+
+      tmp = LLVMBuildICmp(builder, LLVMIntULT, primemit_scan[stream].result_exclusive,
+                          nggso->emit[stream], "");
+      tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
+      ac_build_ifcc(&ctx->ac, tmp, 5240);
+      {
+         LLVMValueRef offset_vtx =
+            LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, nggso->num_vertices, "");
+
+         for (unsigned i = 0; i < max_num_vertices; ++i) {
+            tmp = LLVMBuildICmp(builder, LLVMIntULT, LLVMConstInt(ctx->ac.i32, i, false),
+                                nggso->num_vertices, "");
+            ac_build_ifcc(&ctx->ac, tmp, 5241);
+            build_streamout_vertex(ctx, so_buffer, wgoffset_dw, stream, offset_vtx,
+                                   nggso->vertices[i]);
+            ac_build_endif(&ctx->ac, 5241);
+            offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
+         }
+      }
+      ac_build_endif(&ctx->ac, 5240);
+   }
 }
 
-static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
+/* LDS layout of ES vertex data for NGG culling. */
+enum
 {
-       unsigned lds_vertex_size = 0;
+   /* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old
+    *         ES thread ID. After vertex compaction, compacted ES threads
+    *         store the old thread ID here to copy input VGPRs from uncompacted
+    *         ES threads.
+    * Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
+    * Byte 2: TES rel patch ID
+    * Byte 3: Unused
+    */
+   lds_byte0_accept_flag = 0,
+   lds_byte0_old_thread_id = 0,
+   lds_byte1_new_thread_id,
+   lds_byte2_tes_rel_patch_id,
+   lds_byte3_unused,
+
+   lds_packed_data = 0, /* lds_byteN_... */
+
+   lds_pos_x,
+   lds_pos_y,
+   lds_pos_z,
+   lds_pos_w,
+   lds_pos_x_div_w,
+   lds_pos_y_div_w,
+   /* If VS: */
+   lds_vertex_id,
+   lds_instance_id, /* optional */
+   /* If TES: */
+   lds_tes_u = lds_vertex_id,
+   lds_tes_v = lds_instance_id,
+   lds_tes_patch_id, /* optional */
+};
 
-       /* The edgeflag is always stored in the last element that's also
-        * used for padding to reduce LDS bank conflicts. */
-       if (shader->selector->so.num_outputs)
-               lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
-       if (shader->selector->info.writes_edgeflag)
-               lds_vertex_size = MAX2(lds_vertex_size, 1);
+static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx, LLVMValueRef ptr,
+                                    unsigned byte_index)
+{
+   assert(byte_index < 4);
+   LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
+   LLVMValueRef index = LLVMConstInt(ctx->ac.i32, byte_index, 0);
+
+   return LLVMBuildGEP(ctx->ac.builder, LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""), &index,
+                       1, "");
+}
 
-       return lds_vertex_size;
+static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
+{
+   unsigned lds_vertex_size = 0;
+
+   /* The edgeflag is always stored in the last element that's also
+    * used for padding to reduce LDS bank conflicts. */
+   if (shader->selector->so.num_outputs)
+      lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
+   if (shader->selector->info.writes_edgeflag)
+      lds_vertex_size = MAX2(lds_vertex_size, 1);
+
+   /* LDS size for passing data from GS to ES.
+    * GS stores Primitive IDs into LDS at the address corresponding
+    * to the ES thread of the provoking vertex. All ES threads
+    * load and export PrimitiveID for their thread.
+    */
+   if (shader->selector->info.stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id)
+      lds_vertex_size = MAX2(lds_vertex_size, 1);
+
+   if (shader->key.opt.ngg_culling) {
+      if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
+         STATIC_ASSERT(lds_instance_id + 1 == 9);
+         lds_vertex_size = MAX2(lds_vertex_size, 9);
+      } else {
+         assert(shader->selector->info.stage == MESA_SHADER_TESS_EVAL);
+
+         if (shader->selector->info.uses_primid || shader->key.mono.u.vs_export_prim_id) {
+            STATIC_ASSERT(lds_tes_patch_id + 2 == 11);
+            lds_vertex_size = MAX2(lds_vertex_size, 11);
+         } else {
+            STATIC_ASSERT(lds_tes_v + 1 == 9);
+            lds_vertex_size = MAX2(lds_vertex_size, 9);
+         }
+      }
+   }
+
+   return lds_vertex_size;
 }
 
 /**
  * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
  * for the vertex outputs.
  */
-static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx,
-                                       LLVMValueRef vtxid)
+static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vtxid)
 {
-       /* The extra dword is used to avoid LDS bank conflicts. */
-       unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
-       LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, vertex_size);
-       LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
-       LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
-       return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
+   /* The extra dword is used to avoid LDS bank conflicts. */
+   unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
+   LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
+   LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
+   LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
+   return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
+}
+
+static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx, LLVMValueRef ret,
+                                          struct ac_arg param, unsigned return_index)
+{
+   LLVMValueRef v = ac_get_arg(&ctx->ac, param);
+
+   for (unsigned i = 0; i < 4; i++) {
+      ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_llvm_extract_elem(&ctx->ac, v, i),
+                                 return_index + i, "");
+   }
+   return ret;
+}
+
+static void load_bitmasks_2x64(struct si_shader_context *ctx, LLVMValueRef lds_ptr,
+                               unsigned dw_offset, LLVMValueRef mask[2],
+                               LLVMValueRef *total_bitcount)
+{
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef ptr64 = LLVMBuildPointerCast(
+      builder, lds_ptr, LLVMPointerType(LLVMArrayType(ctx->ac.i64, 2), AC_ADDR_SPACE_LDS), "");
+   for (unsigned i = 0; i < 2; i++) {
+      LLVMValueRef index = LLVMConstInt(ctx->ac.i32, dw_offset / 2 + i, 0);
+      mask[i] = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ptr64, index), "");
+   }
+
+   /* We get better code if we don't use the 128-bit bitcount. */
+   *total_bitcount = LLVMBuildAdd(builder, ac_build_bit_count(&ctx->ac, mask[0]),
+                                  ac_build_bit_count(&ctx->ac, mask[1]), "");
+}
+
+/**
+ * Given a total thread count, update total and per-wave thread counts in input SGPRs
+ * and return the per-wave thread count.
+ *
+ * \param new_num_threads    Total thread count on the input, per-wave thread count on the output.
+ * \param tg_info            tg_info SGPR value
+ * \param tg_info_num_bits   the bit size of thread count field in tg_info
+ * \param tg_info_shift      the bit offset of the thread count field in tg_info
+ * \param wave_info          merged_wave_info SGPR value
+ * \param wave_info_num_bits the bit size of thread count field in merged_wave_info
+ * \param wave_info_shift    the bit offset of the thread count field in merged_wave_info
+ */
+static void update_thread_counts(struct si_shader_context *ctx, LLVMValueRef *new_num_threads,
+                                 LLVMValueRef *tg_info, unsigned tg_info_num_bits,
+                                 unsigned tg_info_shift, LLVMValueRef *wave_info,
+                                 unsigned wave_info_num_bits, unsigned wave_info_shift)
+{
+   LLVMBuilderRef builder = ctx->ac.builder;
+
+   /* Update the total thread count. */
+   unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
+   *tg_info = LLVMBuildAnd(builder, *tg_info, LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
+   *tg_info = LLVMBuildOr(
+      builder, *tg_info,
+      LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
+
+   /* Update the per-wave thread count. */
+   LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
+                                            LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
+   *new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
+   *new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
+   *new_num_threads =
+      ac_build_imin(&ctx->ac, *new_num_threads, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
+   unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
+   *wave_info = LLVMBuildAnd(builder, *wave_info, LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
+   *wave_info = LLVMBuildOr(
+      builder, *wave_info,
+      LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""),
+      "");
+}
+
+/**
+ * Cull primitives for NGG VS or TES, then compact vertices, which happens
+ * before the VS or TES main function. Return values for the main function.
+ * Also return the position, which is passed to the shader as an input,
+ * so that we don't compute it twice.
+ */
+void gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi *abi, unsigned max_outputs,
+                                     LLVMValueRef *addrs)
+{
+   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+   struct si_shader *shader = ctx->shader;
+   struct si_shader_selector *sel = shader->selector;
+   struct si_shader_info *info = &sel->info;
+   LLVMBuilderRef builder = ctx->ac.builder;
+   unsigned max_waves = ctx->ac.wave_size == 64 ? 2 : 4;
+   LLVMValueRef ngg_scratch = ctx->gs_ngg_scratch;
+
+   if (ctx->ac.wave_size == 64) {
+      ngg_scratch =  LLVMBuildPointerCast(builder, ngg_scratch,
+                                          LLVMPointerType(LLVMArrayType(ctx->ac.i64, max_waves),
+                                                          AC_ADDR_SPACE_LDS), "");
+   }
+
+   assert(shader->key.opt.ngg_culling);
+   assert(shader->key.as_ngg);
+   assert(sel->info.stage == MESA_SHADER_VERTEX ||
+          (sel->info.stage == MESA_SHADER_TESS_EVAL && !shader->key.as_es));
+
+   LLVMValueRef position[4] = {};
+   for (unsigned i = 0; i < info->num_outputs; i++) {
+      switch (info->output_semantic[i]) {
+      case VARYING_SLOT_POS:
+         for (unsigned j = 0; j < 4; j++) {
+            position[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
+         }
+         break;
+      }
+   }
+   assert(position[0]);
+
+   /* Store Position.XYZW into LDS. */
+   LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
+   for (unsigned chan = 0; chan < 4; chan++) {
+      LLVMBuildStore(
+         builder, ac_to_integer(&ctx->ac, position[chan]),
+         ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
+   }
+   /* Store Position.XY / W into LDS. */
+   for (unsigned chan = 0; chan < 2; chan++) {
+      LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
+      LLVMBuildStore(
+         builder, ac_to_integer(&ctx->ac, val),
+         ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x_div_w + chan, 0)));
+   }
+
+   /* Store VertexID and InstanceID. ES threads will have to load them
+    * from LDS after vertex compaction and use them instead of their own
+    * system values.
+    */
+   bool uses_instance_id = false;
+   bool uses_tes_prim_id = false;
+   LLVMValueRef packed_data = ctx->ac.i32_0;
+
+   if (ctx->stage == MESA_SHADER_VERTEX) {
+      uses_instance_id = sel->info.uses_instanceid ||
+                         shader->key.part.vs.prolog.instance_divisor_is_one ||
+                         shader->key.part.vs.prolog.instance_divisor_is_fetched;
+
+      LLVMBuildStore(
+         builder, ctx->abi.vertex_id,
+         ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
+      if (uses_instance_id) {
+         LLVMBuildStore(
+            builder, ctx->abi.instance_id,
+            ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
+      }
+   } else {
+      uses_tes_prim_id = sel->info.uses_primid || shader->key.mono.u.vs_export_prim_id;
+
+      assert(ctx->stage == MESA_SHADER_TESS_EVAL);
+      LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_u)),
+                     ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
+      LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_v)),
+                     ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
+      packed_data = LLVMBuildShl(builder, ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id),
+                                 LLVMConstInt(ctx->ac.i32, lds_byte2_tes_rel_patch_id * 8, 0), "");
+      if (uses_tes_prim_id) {
+         LLVMBuildStore(
+            builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
+            ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
+      }
+   }
+   /* Initialize the packed data. */
+   LLVMBuildStore(
+      builder, packed_data,
+      ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
+   ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
+
+   LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
+
+   /* Initialize all but the first element of ngg_scratch to 0, because we may have less
+    * than the maximum number of waves, but we always read all values. This is where
+    * the thread bitmasks of unculled threads will be stored.
+    *
+    * ngg_scratch layout: iN_wavemask esmask[0..n]
+    */
+   ac_build_ifcc(&ctx->ac,
+                 LLVMBuildICmp(builder, LLVMIntULT, get_thread_id_in_tg(ctx),
+                               LLVMConstInt(ctx->ac.i32, max_waves - 1, 0), ""),
+                 16101);
+   {
+      LLVMValueRef index = LLVMBuildAdd(builder, tid, ctx->ac.i32_1, "");
+      LLVMBuildStore(builder, LLVMConstInt(ctx->ac.iN_wavemask, 0, 0),
+                     ac_build_gep0(&ctx->ac, ngg_scratch, index));
+   }
+   ac_build_endif(&ctx->ac, 16101);
+   ac_build_s_barrier(&ctx->ac);
+
+   /* The hardware requires that there are no holes between unculled vertices,
+    * which means we have to pack ES threads, i.e. reduce the ES thread count
+    * and move ES input VGPRs to lower threads. The upside is that varyings
+    * are only fetched and computed for unculled vertices.
+    *
+    * Vertex compaction in GS threads:
+    *
+    * Part 1: Compute the surviving vertex mask in GS threads:
+    * - Compute 4 32-bit surviving vertex masks in LDS. (max 4 waves)
+    *   - In GS, notify ES threads whether the vertex survived.
+    *   - Barrier
+    *   - ES threads will create the mask and store it in LDS.
+    * - Barrier
+    * - Each GS thread loads the vertex masks from LDS.
+    *
+    * Part 2: Compact ES threads in GS threads:
+    * - Compute the prefix sum for all 3 vertices from the masks. These are the new
+    *   thread IDs for each vertex within the primitive.
+    * - Write the value of the old thread ID into the LDS address of the new thread ID.
+    *   The ES thread will load the old thread ID and use it to load the position, VertexID,
+    *   and InstanceID.
+    * - Update vertex indices and null flag in the GS input VGPRs.
+    * - Barrier
+    *
+    * Part 3: Update inputs GPRs
+    * - For all waves, update per-wave thread counts in input SGPRs.
+    * - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
+    */
+
+   LLVMValueRef vtxindex[3];
+   if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL) {
+      /* For the GS fast launch, the VS prologs simply puts the Vertex IDs
+       * into these VGPRs.
+       */
+      vtxindex[0] = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
+      vtxindex[1] = ac_get_arg(&ctx->ac, ctx->gs_vtx23_offset);
+      vtxindex[2] = ac_get_arg(&ctx->ac, ctx->gs_vtx45_offset);
+   } else {
+      vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
+      vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
+      vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
+   };
+   LLVMValueRef gs_vtxptr[] = {
+      ngg_nogs_vertex_ptr(ctx, vtxindex[0]),
+      ngg_nogs_vertex_ptr(ctx, vtxindex[1]),
+      ngg_nogs_vertex_ptr(ctx, vtxindex[2]),
+   };
+   es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
+
+   LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
+
+   /* Do culling in GS threads. */
+   ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
+   {
+      /* Load positions. */
+      LLVMValueRef pos[3][4] = {};
+      for (unsigned vtx = 0; vtx < 3; vtx++) {
+         for (unsigned chan = 0; chan < 4; chan++) {
+            unsigned index;
+            if (chan == 0 || chan == 1)
+               index = lds_pos_x_div_w + chan;
+            else if (chan == 3)
+               index = lds_pos_w;
+            else
+               continue;
+
+            LLVMValueRef addr =
+               ac_build_gep0(&ctx->ac, gs_vtxptr[vtx], LLVMConstInt(ctx->ac.i32, index, 0));
+            pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
+            pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
+         }
+      }
+
+      /* Load the viewport state for small prim culling. */
+      LLVMValueRef vp = ac_build_load_invariant(
+         &ctx->ac, ac_get_arg(&ctx->ac, ctx->small_prim_cull_info), ctx->ac.i32_0);
+      vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
+      LLVMValueRef vp_scale[2], vp_translate[2];
+      vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
+      vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
+      vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
+      vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
+
+      /* Get the small prim filter precision. */
+      LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
+      small_prim_precision =
+         LLVMBuildOr(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
+      small_prim_precision =
+         LLVMBuildShl(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 23, 0), "");
+      small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
+
+      /* Execute culling code. */
+      struct ac_cull_options options = {};
+      options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
+      options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
+      options.cull_view_xy = shader->key.opt.ngg_culling & SI_NGG_CULL_VIEW_SMALLPRIMS;
+      options.cull_small_prims = options.cull_view_xy;
+      options.cull_zero_area = options.cull_front || options.cull_back;
+      options.cull_w = true;
+
+      /* Tell ES threads whether their vertex survived. */
+      ac_build_ifcc(&ctx->ac,
+                    ac_cull_triangle(&ctx->ac, pos, ctx->ac.i1true, vp_scale, vp_translate,
+                                     small_prim_precision, &options),
+                    16003);
+      {
+         LLVMBuildStore(builder, ctx->ac.i32_1, gs_accepted);
+         for (unsigned vtx = 0; vtx < 3; vtx++) {
+            LLVMBuildStore(builder, ctx->ac.i8_1,
+                           si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
+         }
+      }
+      ac_build_endif(&ctx->ac, 16003);
+   }
+   ac_build_endif(&ctx->ac, 16002);
+   ac_build_s_barrier(&ctx->ac);
+
+   gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
+
+   LLVMValueRef es_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
+
+   /* Convert the per-vertex flag to a thread bitmask in ES threads and store it in LDS. */
+   ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
+   {
+      LLVMValueRef es_accepted_flag =
+         LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
+
+      LLVMValueRef es_accepted_bool =
+         LLVMBuildICmp(builder, LLVMIntNE, es_accepted_flag, ctx->ac.i8_0, "");
+      LLVMValueRef es_mask = ac_get_i1_sgpr_mask(&ctx->ac, es_accepted_bool);
+
+      LLVMBuildStore(builder, es_accepted_bool, es_accepted);
+
+      ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 16008);
+      {
+         LLVMBuildStore(builder, es_mask,
+                        ac_build_gep0(&ctx->ac, ngg_scratch, get_wave_id_in_tg(ctx)));
+      }
+      ac_build_endif(&ctx->ac, 16008);
+   }
+   ac_build_endif(&ctx->ac, 16007);
+   ac_build_s_barrier(&ctx->ac);
+
+   /* Load the vertex masks and compute the new ES thread count. */
+   LLVMValueRef es_mask[2], new_num_es_threads, kill_wave;
+   load_bitmasks_2x64(ctx, ngg_scratch, 0, es_mask, &new_num_es_threads);
+   new_num_es_threads = ac_build_readlane_no_opt_barrier(&ctx->ac, new_num_es_threads, NULL);
+
+   /* ES threads compute their prefix sum, which is the new ES thread ID.
+    * Then they write the value of the old thread ID into the LDS address
+    * of the new thread ID. It will be used it to load input VGPRs from
+    * the old thread's LDS location.
+    */
+   ac_build_ifcc(&ctx->ac, LLVMBuildLoad(builder, es_accepted, ""), 16009);
+   {
+      LLVMValueRef old_id = get_thread_id_in_tg(ctx);
+      LLVMValueRef new_id = ac_prefix_bitcount_2x64(&ctx->ac, es_mask, old_id);
+
+      LLVMBuildStore(
+         builder, LLVMBuildTrunc(builder, old_id, ctx->ac.i8, ""),
+         si_build_gep_i8(ctx, ngg_nogs_vertex_ptr(ctx, new_id), lds_byte0_old_thread_id));
+      LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
+                     si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
+   }
+   ac_build_endif(&ctx->ac, 16009);
+
+   /* Kill waves that have inactive threads. */
+   kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
+                             ac_build_imax(&ctx->ac, new_num_es_threads, ngg_get_prim_cnt(ctx)),
+                             LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
+                                          LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""),
+                             "");
+   ac_build_ifcc(&ctx->ac, kill_wave, 19202);
+   {
+      /* If we are killing wave 0, send that there are no primitives
+       * in this threadgroup.
+       */
+      ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ctx->ac.i32_0);
+      ac_build_s_endpgm(&ctx->ac);
+   }
+   ac_build_endif(&ctx->ac, 19202);
+   ac_build_s_barrier(&ctx->ac);
+
+   /* Send the final vertex and primitive counts. */
+   ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), new_num_es_threads,
+                                 ngg_get_prim_cnt(ctx));
+
+   /* Update thread counts in SGPRs. */
+   LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->gs_tg_info);
+   LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->merged_wave_info);
+
+   /* This also converts the thread count from the total count to the per-wave count. */
+   update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12, &new_merged_wave_info, 8,
+                        0);
+
+   /* Update vertex indices in VGPR0 (same format as NGG passthrough). */
+   LLVMValueRef new_vgpr0 = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+   /* Set the null flag at the beginning (culled), and then
+    * overwrite it for accepted primitives.
+    */
+   LLVMBuildStore(builder, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), new_vgpr0);
+
+   /* Get vertex indices after vertex compaction. */
+   ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
+   {
+      struct ac_ngg_prim prim = {};
+      prim.num_vertices = 3;
+      prim.isnull = ctx->ac.i1false;
+
+      for (unsigned vtx = 0; vtx < 3; vtx++) {
+         prim.index[vtx] = LLVMBuildLoad(
+            builder, si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte1_new_thread_id), "");
+         prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
+         prim.edgeflag[vtx] = ngg_get_initial_edgeflag(ctx, vtx);
+      }
+
+      /* Set the new GS input VGPR. */
+      LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
+   }
+   ac_build_endif(&ctx->ac, 16011);
+
+   if (gfx10_ngg_export_prim_early(shader))
+      gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
+
+   /* Set the new ES input VGPRs. */
+   LLVMValueRef es_data[4];
+   LLVMValueRef old_thread_id = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+   for (unsigned i = 0; i < 4; i++)
+      es_data[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+   ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, tid, new_num_es_threads, ""),
+                 16012);
+   {
+      LLVMValueRef old_id, old_es_vtxptr, tmp;
+
+      /* Load ES input VGPRs from the ES thread before compaction. */
+      old_id = LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_old_thread_id), "");
+      old_id = LLVMBuildZExt(builder, old_id, ctx->ac.i32, "");
+
+      LLVMBuildStore(builder, old_id, old_thread_id);
+      old_es_vtxptr = ngg_nogs_vertex_ptr(ctx, old_id);
+
+      for (unsigned i = 0; i < 2; i++) {
+         tmp = LLVMBuildLoad(
+            builder,
+            ac_build_gep0(&ctx->ac, old_es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id + i, 0)),
+            "");
+         LLVMBuildStore(builder, tmp, es_data[i]);
+      }
+
+      if (ctx->stage == MESA_SHADER_TESS_EVAL) {
+         tmp = LLVMBuildLoad(builder,
+                             si_build_gep_i8(ctx, old_es_vtxptr, lds_byte2_tes_rel_patch_id), "");
+         tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
+         LLVMBuildStore(builder, tmp, es_data[2]);
+
+         if (uses_tes_prim_id) {
+            tmp = LLVMBuildLoad(builder,
+                                ac_build_gep0(&ctx->ac, old_es_vtxptr,
+                                              LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)),
+                                "");
+            LLVMBuildStore(builder, tmp, es_data[3]);
+         }
+      }
+   }
+   ac_build_endif(&ctx->ac, 16012);
+
+   /* Return values for the main function. */
+   LLVMValueRef ret = ctx->return_value;
+   LLVMValueRef val;
+
+   ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
+   ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
+   if (ctx->stage == MESA_SHADER_TESS_EVAL)
+      ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 4);
+
+   ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers, 8 + SI_SGPR_RW_BUFFERS);
+   ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images,
+                             8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
+   ret = si_insert_input_ptr(ctx, ret, ctx->const_and_shader_buffers,
+                             8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
+   ret = si_insert_input_ptr(ctx, ret, ctx->samplers_and_images, 8 + SI_SGPR_SAMPLERS_AND_IMAGES);
+   ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS);
+
+   if (ctx->stage == MESA_SHADER_VERTEX) {
+      ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex, 8 + SI_SGPR_BASE_VERTEX);
+      ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance, 8 + SI_SGPR_START_INSTANCE);
+      ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id, 8 + SI_SGPR_DRAWID);
+      ret = si_insert_input_ptr(ctx, ret, ctx->vertex_buffers, 8 + SI_VS_NUM_USER_SGPR);
+
+      for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
+         ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
+                                     8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
+      }
+   } else {
+      assert(ctx->stage == MESA_SHADER_TESS_EVAL);
+      ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout, 8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
+      ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr, 8 + SI_SGPR_TES_OFFCHIP_ADDR);
+   }
+
+   unsigned vgpr;
+   if (ctx->stage == MESA_SHADER_VERTEX) {
+      if (shader->selector->num_vbos_in_user_sgprs) {
+         vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
+      } else {
+         vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1;
+      }
+   } else {
+      vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
+   }
+
+   val = LLVMBuildLoad(builder, new_vgpr0, "");
+   ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
+   vgpr++; /* gs_vtx23_offset */
+
+   ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
+   ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
+   vgpr++; /* gs_vtx45_offset */
+
+   if (ctx->stage == MESA_SHADER_VERTEX) {
+      val = LLVMBuildLoad(builder, es_data[0], "");
+      ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
+                                 ""); /* VGPR5 - VertexID */
+      vgpr += 2;
+      if (uses_instance_id) {
+         val = LLVMBuildLoad(builder, es_data[1], "");
+         ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
+                                    ""); /* VGPR8 - InstanceID */
+      } else {
+         vgpr++;
+      }
+   } else {
+      assert(ctx->stage == MESA_SHADER_TESS_EVAL);
+      unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
+      for (unsigned i = 0; i < num_vgprs; i++) {
+         val = LLVMBuildLoad(builder, es_data[i], "");
+         ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
+      }
+      if (num_vgprs == 3)
+         vgpr++;
+   }
+   /* Return the old thread ID. */
+   val = LLVMBuildLoad(builder, old_thread_id, "");
+   ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
+
+   /* These two also use LDS. */
+   if (sel->info.writes_edgeflag ||
+       (ctx->stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
+      ac_build_s_barrier(&ctx->ac);
+
+   ctx->return_value = ret;
 }
 
 /**
  * Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
  */
-void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
-                            unsigned max_outputs,
-                            LLVMValueRef *addrs)
+void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs)
 {
-       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
-       struct si_shader_selector *sel = ctx->shader->selector;
-       struct tgsi_shader_info *info = &sel->info;
-       struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef tmp, tmp2;
-
-       assert(!ctx->shader->is_gs_copy_shader);
-       assert(info->num_outputs <= max_outputs);
-
-       LLVMValueRef vertex_ptr = NULL;
-
-       if (sel->so.num_outputs || sel->info.writes_edgeflag)
-               vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
-
-       for (unsigned i = 0; i < info->num_outputs; i++) {
-               outputs[i].semantic_name = info->output_semantic_name[i];
-               outputs[i].semantic_index = info->output_semantic_index[i];
-
-               for (unsigned j = 0; j < 4; j++) {
-                       outputs[i].vertex_stream[j] =
-                               (info->output_streams[i] >> (2 * j)) & 3;
-
-                       /* TODO: we may store more outputs than streamout needs,
-                        * but streamout performance isn't that important.
-                        */
-                       if (sel->so.num_outputs) {
-                               tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
-                                       LLVMConstInt(ctx->i32, 4 * i + j, false));
-                               tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
-                               tmp2 = ac_to_integer(&ctx->ac, tmp2);
-                               LLVMBuildStore(builder, tmp2, tmp);
-                       }
-               }
-
-               /* Store the edgeflag at the end (if streamout is enabled) */
-               if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG &&
-                   sel->info.writes_edgeflag) {
-                       LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
-                       /* The output is a float, but the hw expects a 1-bit integer. */
-                       edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->i32, "");
-                       edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->i32_1);
-
-                       tmp = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
-                       tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
-                       LLVMBuildStore(builder, edgeflag, tmp);
-               }
-       }
-
-       ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
-
-       LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
-       LLVMValueRef is_es_thread = si_is_es_thread(ctx);
-       LLVMValueRef vtxindex[] = {
-               si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16),
-               si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16),
-               si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16),
-       };
-
-       /* Determine the number of vertices per primitive. */
-       unsigned num_vertices;
-       LLVMValueRef num_vertices_val;
-
-       if (ctx->type == PIPE_SHADER_VERTEX) {
-               if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
-                       /* Blits always use axis-aligned rectangles with 3 vertices. */
-                       num_vertices = 3;
-                       num_vertices_val = LLVMConstInt(ctx->i32, 3, 0);
-               } else {
-                       /* Extract OUTPRIM field. */
-                       tmp = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
-                       num_vertices_val = LLVMBuildAdd(builder, tmp, ctx->i32_1, "");
-                       num_vertices = 3; /* TODO: optimize for points & lines */
-               }
-       } else {
-               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
-
-               if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
-                       num_vertices = 1;
-               else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
-                       num_vertices = 2;
-               else
-                       num_vertices = 3;
-
-               num_vertices_val = LLVMConstInt(ctx->i32, num_vertices, false);
-       }
-
-       /* Streamout */
-       LLVMValueRef emitted_prims = NULL;
-
-       if (sel->so.num_outputs) {
-               struct ngg_streamout nggso = {};
-
-               nggso.num_vertices = num_vertices_val;
-               nggso.prim_enable[0] = is_gs_thread;
-
-               for (unsigned i = 0; i < num_vertices; ++i)
-                       nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
-
-               build_streamout(ctx, &nggso);
-               emitted_prims = nggso.emit[0];
-       }
-
-       LLVMValueRef user_edgeflags[3] = {};
-
-       if (sel->info.writes_edgeflag) {
-               /* Streamout already inserted the barrier, so don't insert it again. */
-               if (!sel->so.num_outputs)
-                       ac_build_s_barrier(&ctx->ac);
-
-               ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
-               /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
-               for (unsigned i = 0; i < num_vertices; i++) {
-                       tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
-                       tmp2 = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
-                       tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
-                       tmp = LLVMBuildLoad(builder, tmp, "");
-                       tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
-
-                       user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
-                       LLVMBuildStore(builder, tmp, user_edgeflags[i]);
-               }
-               ac_build_endif(&ctx->ac, 5400);
-       }
-
-       /* Copy Primitive IDs from GS threads to the LDS address corresponding
-        * to the ES thread of the provoking vertex.
-        */
-       if (ctx->type == PIPE_SHADER_VERTEX &&
-           ctx->shader->key.mono.u.vs_export_prim_id) {
-               /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
-               if (sel->so.num_outputs || sel->info.writes_edgeflag)
-                       ac_build_s_barrier(&ctx->ac);
-
-               ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
-               /* Extract the PROVOKING_VTX_INDEX field. */
-               LLVMValueRef provoking_vtx_in_prim =
-                       si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
-
-               /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
-               LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
-               LLVMValueRef provoking_vtx_index =
-                       LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
-
-               LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
-                              ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
-               ac_build_endif(&ctx->ac, 5400);
-       }
-
-       build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
-
-       /* Update query buffer */
-       /* TODO: this won't catch 96-bit clear_buffer via transform feedback. */
-       if (ctx->screen->use_ngg_streamout &&
-           !info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
-               tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
-               tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
-               ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
-               tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
-               ac_build_ifcc(&ctx->ac, tmp, 5030);
-               tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
-                                   sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
-               ac_build_ifcc(&ctx->ac, tmp, 5031);
-               {
-                       LLVMValueRef args[] = {
-                               ngg_get_prim_cnt(ctx),
-                               ngg_get_query_buf(ctx),
-                               LLVMConstInt(ctx->i32, 16, false), /* offset of stream[0].generated_primitives */
-                               ctx->i32_0, /* soffset */
-                               ctx->i32_0, /* cachepolicy */
-                       };
-
-                       if (sel->so.num_outputs) {
-                               args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->i32_1);
-                               args[2] = ac_build_writelane(&ctx->ac, args[2],
-                                               LLVMConstInt(ctx->i32, 24, false), ctx->i32_1);
-                       }
-
-                       /* TODO: should this be 64-bit atomics? */
-                       ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
-                                          ctx->i32, args, 5, 0);
-               }
-               ac_build_endif(&ctx->ac, 5031);
-               ac_build_endif(&ctx->ac, 5030);
-               ac_build_endif(&ctx->ac, 5029);
-       }
-
-       /* Export primitive data to the index buffer. Format is:
-        *  - bits 0..8: index 0
-        *  - bit 9: edge flag 0
-        *  - bits 10..18: index 1
-        *  - bit 19: edge flag 1
-        *  - bits 20..28: index 2
-        *  - bit 29: edge flag 2
-        *  - bit 31: null primitive (skip)
-        *
-        * For the first version, we will always build up all three indices
-        * independent of the primitive type. The additional garbage data
-        * shouldn't hurt.
-        *
-        * TODO: culling depends on the primitive type, so can have some
-        * interaction here.
-        */
-       ac_build_ifcc(&ctx->ac, is_gs_thread, 6001);
-       {
-               struct ngg_prim prim = {};
-
-               if (gfx10_is_ngg_passthrough(ctx->shader)) {
-                       prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
-               } else {
-                       prim.num_vertices = num_vertices;
-                       prim.isnull = ctx->ac.i1false;
-                       memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
-
-                       for (unsigned i = 0; i < num_vertices; ++i) {
-                               if (ctx->type != PIPE_SHADER_VERTEX) {
-                                       prim.edgeflag[i] = ctx->i1false;
-                                       continue;
-                               }
-
-                               tmp = LLVMBuildLShr(builder,
-                                                   ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
-                                                   LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
-                               prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
-
-                               if (sel->info.writes_edgeflag) {
-                                       tmp2 = LLVMBuildLoad(builder, user_edgeflags[i], "");
-                                       prim.edgeflag[i] = LLVMBuildAnd(builder, prim.edgeflag[i],
-                                                                       tmp2, "");
-                               }
-                       }
-               }
-
-               build_export_prim(ctx, &prim);
-       }
-       ac_build_endif(&ctx->ac, 6001);
-
-       /* Export per-vertex data (positions and parameters). */
-       ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
-       {
-               unsigned i;
-
-               /* Unconditionally (re-)load the values for proper SSA form. */
-               for (i = 0; i < info->num_outputs; i++) {
-                       for (unsigned j = 0; j < 4; j++) {
-                               outputs[i].values[j] =
-                                       LLVMBuildLoad(builder,
-                                               addrs[4 * i + j],
-                                               "");
-                       }
-               }
-
-               if (ctx->shader->key.mono.u.vs_export_prim_id) {
-                       outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
-                       outputs[i].semantic_index = 0;
-
-                       if (ctx->type == PIPE_SHADER_VERTEX) {
-                               /* Wait for GS stores to finish. */
-                               ac_build_s_barrier(&ctx->ac);
-
-                               tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
-                                                   get_thread_id_in_tg(ctx));
-                               outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
-                       } else {
-                               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
-                               outputs[i].values[0] = si_get_primitive_id(ctx, 0);
-                       }
-
-                       outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
-                       for (unsigned j = 1; j < 4; j++)
-                               outputs[i].values[j] = LLVMGetUndef(ctx->f32);
-
-                       memset(outputs[i].vertex_stream, 0,
-                              sizeof(outputs[i].vertex_stream));
-                       i++;
-               }
-
-               si_llvm_export_vs(ctx, outputs, i);
-       }
-       ac_build_endif(&ctx->ac, 6002);
+   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+   struct si_shader_selector *sel = ctx->shader->selector;
+   struct si_shader_info *info = &sel->info;
+   struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef tmp, tmp2;
+
+   assert(!ctx->shader->is_gs_copy_shader);
+   assert(info->num_outputs <= max_outputs);
+
+   LLVMValueRef vertex_ptr = NULL;
+
+   if (sel->so.num_outputs || sel->info.writes_edgeflag)
+      vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
+
+   for (unsigned i = 0; i < info->num_outputs; i++) {
+      outputs[i].semantic = info->output_semantic[i];
+
+      for (unsigned j = 0; j < 4; j++) {
+         outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
+
+         /* TODO: we may store more outputs than streamout needs,
+          * but streamout performance isn't that important.
+          */
+         if (sel->so.num_outputs) {
+            tmp = ac_build_gep0(&ctx->ac, vertex_ptr, LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
+            tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
+            tmp2 = ac_to_integer(&ctx->ac, tmp2);
+            LLVMBuildStore(builder, tmp2, tmp);
+         }
+      }
+
+      /* Store the edgeflag at the end (if streamout is enabled) */
+      if (info->output_semantic[i] == VARYING_SLOT_EDGE && sel->info.writes_edgeflag) {
+         LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
+         /* The output is a float, but the hw expects a 1-bit integer. */
+         edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
+         edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
+
+         tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
+         tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
+         LLVMBuildStore(builder, edgeflag, tmp);
+      }
+   }
+
+   bool unterminated_es_if_block =
+      !sel->so.num_outputs && !sel->info.writes_edgeflag &&
+      !ctx->screen->use_ngg_streamout && /* no query buffer */
+      (ctx->stage != MESA_SHADER_VERTEX || !ctx->shader->key.mono.u.vs_export_prim_id);
+
+   if (!unterminated_es_if_block)
+      ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
+
+   LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
+   LLVMValueRef is_es_thread = si_is_es_thread(ctx);
+   LLVMValueRef vtxindex[3];
+
+   if (ctx->shader->key.opt.ngg_culling) {
+      vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 9);
+      vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 10, 9);
+      vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 20, 9);
+   } else {
+      vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
+      vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
+      vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
+   }
+
+   /* Determine the number of vertices per primitive. */
+   unsigned num_vertices;
+   LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
+
+   /* Streamout */
+   LLVMValueRef emitted_prims = NULL;
+
+   if (sel->so.num_outputs) {
+      assert(!unterminated_es_if_block);
+
+      struct ngg_streamout nggso = {};
+      nggso.num_vertices = num_vertices_val;
+      nggso.prim_enable[0] = is_gs_thread;
+
+      for (unsigned i = 0; i < num_vertices; ++i)
+         nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
+
+      build_streamout(ctx, &nggso);
+      emitted_prims = nggso.emit[0];
+   }
+
+   LLVMValueRef user_edgeflags[3] = {};
+
+   if (sel->info.writes_edgeflag) {
+      assert(!unterminated_es_if_block);
+
+      /* Streamout already inserted the barrier, so don't insert it again. */
+      if (!sel->so.num_outputs)
+         ac_build_s_barrier(&ctx->ac);
+
+      ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
+      /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
+      for (unsigned i = 0; i < num_vertices; i++) {
+         tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
+         tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
+         tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
+         tmp = LLVMBuildLoad(builder, tmp, "");
+         tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+
+         user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i1, "");
+         LLVMBuildStore(builder, tmp, user_edgeflags[i]);
+      }
+      ac_build_endif(&ctx->ac, 5400);
+   }
+
+   /* Copy Primitive IDs from GS threads to the LDS address corresponding
+    * to the ES thread of the provoking vertex.
+    */
+   if (ctx->stage == MESA_SHADER_VERTEX && ctx->shader->key.mono.u.vs_export_prim_id) {
+      assert(!unterminated_es_if_block);
+
+      /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
+      if (sel->so.num_outputs || sel->info.writes_edgeflag)
+         ac_build_s_barrier(&ctx->ac);
+
+      ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
+      /* Extract the PROVOKING_VTX_INDEX field. */
+      LLVMValueRef provoking_vtx_in_prim = si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
+
+      /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
+      LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
+      LLVMValueRef provoking_vtx_index =
+         LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
+      LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
+
+      LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
+                     ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
+      ac_build_endif(&ctx->ac, 5400);
+   }
+
+   /* Update query buffer */
+   if (ctx->screen->use_ngg_streamout && !info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
+      assert(!unterminated_es_if_block);
+
+      tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
+      tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+      ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
+      tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
+      ac_build_ifcc(&ctx->ac, tmp, 5030);
+      tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
+                          sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
+      ac_build_ifcc(&ctx->ac, tmp, 5031);
+      {
+         LLVMValueRef args[] = {
+            ngg_get_prim_cnt(ctx),
+            ngg_get_query_buf(ctx),
+            LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
+            ctx->ac.i32_0,                        /* soffset */
+            ctx->ac.i32_0,                        /* cachepolicy */
+         };
+
+         if (sel->so.num_outputs) {
+            args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
+            args[2] = ac_build_writelane(&ctx->ac, args[2], LLVMConstInt(ctx->ac.i32, 24, false),
+                                         ctx->ac.i32_1);
+         }
+
+         /* TODO: should this be 64-bit atomics? */
+         ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
+                            0);
+      }
+      ac_build_endif(&ctx->ac, 5031);
+      ac_build_endif(&ctx->ac, 5030);
+      ac_build_endif(&ctx->ac, 5029);
+   }
+
+   /* Build the primitive export. */
+   if (!gfx10_ngg_export_prim_early(ctx->shader)) {
+      assert(!unterminated_es_if_block);
+      gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
+   }
+
+   /* Export per-vertex data (positions and parameters). */
+   if (!unterminated_es_if_block)
+      ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
+   {
+      unsigned i;
+
+      /* Unconditionally (re-)load the values for proper SSA form. */
+      for (i = 0; i < info->num_outputs; i++) {
+         /* If the NGG cull shader part computed the position, don't
+          * use the position from the current shader part. Instead,
+          * load it from LDS.
+          */
+         if (info->output_semantic[i] == VARYING_SLOT_POS &&
+             ctx->shader->key.opt.ngg_culling) {
+            vertex_ptr = ngg_nogs_vertex_ptr(ctx, ac_get_arg(&ctx->ac, ctx->ngg_old_thread_id));
+
+            for (unsigned j = 0; j < 4; j++) {
+               tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
+               tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
+               tmp = LLVMBuildLoad(builder, tmp, "");
+               outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
+            }
+         } else {
+            for (unsigned j = 0; j < 4; j++) {
+               outputs[i].values[j] = LLVMBuildLoad(builder, addrs[4 * i + j], "");
+            }
+         }
+      }
+
+      if (ctx->shader->key.mono.u.vs_export_prim_id) {
+         outputs[i].semantic = VARYING_SLOT_PRIMITIVE_ID;
+
+         if (ctx->stage == MESA_SHADER_VERTEX) {
+            /* Wait for GS stores to finish. */
+            ac_build_s_barrier(&ctx->ac);
+
+            tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
+            tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
+            outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
+         } else {
+            assert(ctx->stage == MESA_SHADER_TESS_EVAL);
+            outputs[i].values[0] = si_get_primitive_id(ctx, 0);
+         }
+
+         outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
+         for (unsigned j = 1; j < 4; j++)
+            outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
+
+         memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream));
+         i++;
+      }
+
+      si_llvm_build_vs_exports(ctx, outputs, i);
+   }
+   ac_build_endif(&ctx->ac, 6002);
 }
 
-static LLVMValueRef
-ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
+static LLVMValueRef ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
 {
-       const struct si_shader_selector *sel = ctx->shader->selector;
-       const struct tgsi_shader_info *info = &sel->info;
-
-       LLVMTypeRef elements[2] = {
-               LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
-               LLVMArrayType(ctx->ac.i8, 4),
-       };
-       LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
-       type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
-       return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
+   const struct si_shader_selector *sel = ctx->shader->selector;
+   const struct si_shader_info *info = &sel->info;
+
+   LLVMTypeRef elements[2] = {
+      LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
+      LLVMArrayType(ctx->ac.i8, 4),
+   };
+   LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
+   type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
+   return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
 }
 
 /**
@@ -854,471 +1464,433 @@ ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
  *
  * \return an LDS pointer to type {[N x i32], [4 x i8]}
  */
-static LLVMValueRef
-ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
+static LLVMValueRef ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
 {
-       struct si_shader_selector *sel = ctx->shader->selector;
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
-
-       /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
-       unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
-       if (write_stride_2exp) {
-               LLVMValueRef row =
-                       LLVMBuildLShr(builder, vertexidx,
-                                     LLVMConstInt(ctx->ac.i32, 5, false), "");
-               LLVMValueRef swizzle =
-                       LLVMBuildAnd(builder, row,
-                                    LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
-                                                 false), "");
-               vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
-       }
-
-       return ac_build_gep0(&ctx->ac, storage, vertexidx);
+   struct si_shader_selector *sel = ctx->shader->selector;
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
+
+   /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
+   unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
+   if (write_stride_2exp) {
+      LLVMValueRef row = LLVMBuildLShr(builder, vertexidx, LLVMConstInt(ctx->ac.i32, 5, false), "");
+      LLVMValueRef swizzle = LLVMBuildAnd(
+         builder, row, LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, false), "");
+      vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
+   }
+
+   return ac_build_gep0(&ctx->ac, storage, vertexidx);
 }
 
-static LLVMValueRef
-ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
-                      LLVMValueRef emitidx)
+static LLVMValueRef ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
+                                           LLVMValueRef emitidx)
 {
-       struct si_shader_selector *sel = ctx->shader->selector;
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef tmp;
-
-       tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
-       tmp = LLVMBuildMul(builder, tmp, gsthread, "");
-       const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
-       return ngg_gs_vertex_ptr(ctx, vertexidx);
+   struct si_shader_selector *sel = ctx->shader->selector;
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef tmp;
+
+   tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
+   tmp = LLVMBuildMul(builder, tmp, gsthread, "");
+   const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
+   return ngg_gs_vertex_ptr(ctx, vertexidx);
 }
 
-static LLVMValueRef
-ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
-                          unsigned out_idx)
+static LLVMValueRef ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx,
+                                               LLVMValueRef vertexptr, unsigned out_idx)
 {
-       LLVMValueRef gep_idx[3] = {
-               ctx->ac.i32_0, /* implied C-style array */
-               ctx->ac.i32_0, /* first struct entry */
-               LLVMConstInt(ctx->ac.i32, out_idx, false),
-       };
-       return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
+   LLVMValueRef gep_idx[3] = {
+      ctx->ac.i32_0, /* implied C-style array */
+      ctx->ac.i32_0, /* first struct entry */
+      LLVMConstInt(ctx->ac.i32, out_idx, false),
+   };
+   return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
 }
 
-static LLVMValueRef
-ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
-                            unsigned stream)
+static LLVMValueRef ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx,
+                                                 LLVMValueRef vertexptr, unsigned stream)
 {
-       LLVMValueRef gep_idx[3] = {
-               ctx->ac.i32_0, /* implied C-style array */
-               ctx->ac.i32_1, /* second struct entry */
-               LLVMConstInt(ctx->ac.i32, stream, false),
-       };
-       return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
+   LLVMValueRef gep_idx[3] = {
+      ctx->ac.i32_0, /* implied C-style array */
+      ctx->ac.i32_1, /* second struct entry */
+      LLVMConstInt(ctx->ac.i32, stream, false),
+   };
+   return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
 }
 
-void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
-                             unsigned stream,
-                             LLVMValueRef *addrs)
+void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, unsigned stream, LLVMValueRef *addrs)
 {
-       const struct si_shader_selector *sel = ctx->shader->selector;
-       const struct tgsi_shader_info *info = &sel->info;
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef tmp;
-       const LLVMValueRef vertexidx =
-               LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
-
-       /* If this thread has already emitted the declared maximum number of
-        * vertices, skip the write: excessive vertex emissions are not
-        * supposed to have any effect.
-        */
-       const LLVMValueRef can_emit =
-               LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
-                             LLVMConstInt(ctx->i32, sel->gs_max_out_vertices, false), "");
-
-       tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
-       tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
-       LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
-
-       ac_build_ifcc(&ctx->ac, can_emit, 9001);
-
-       const LLVMValueRef vertexptr =
-               ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
-       unsigned out_idx = 0;
-       for (unsigned i = 0; i < info->num_outputs; i++) {
-               for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
-                       if (!(info->output_usagemask[i] & (1 << chan)) ||
-                           ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
-                               continue;
-
-                       LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
-                       out_val = ac_to_integer(&ctx->ac, out_val);
-                       LLVMBuildStore(builder, out_val,
-                                      ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
-               }
-       }
-       assert(out_idx * 4 == sel->gsvs_vertex_size);
-
-       /* Determine and store whether this vertex completed a primitive. */
-       const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
-
-       tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
-       const LLVMValueRef iscompleteprim =
-               LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
-
-       /* Since the geometry shader emits triangle strips, we need to
-        * track which primitive is odd and swap vertex indices to get
-        * the correct vertex order.
-        */
-       LLVMValueRef is_odd = ctx->i1false;
-       if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) {
-               tmp = LLVMBuildAnd(builder, curverts, ctx->i32_1, "");
-               is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->i32_1, "");
-       }
-
-       tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
-       LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
-
-       /* The per-vertex primitive flag encoding:
-        *   bit 0: whether this vertex finishes a primitive
-        *   bit 1: whether the primitive is odd (if we are emitting triangle strips)
-        */
-       tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
-       tmp = LLVMBuildOr(builder, tmp,
-                         LLVMBuildShl(builder,
-                                      LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""),
-                                      ctx->ac.i8_1, ""), "");
-       LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
-
-       tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
-       tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
-       LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
-
-       ac_build_endif(&ctx->ac, 9001);
+   const struct si_shader_selector *sel = ctx->shader->selector;
+   const struct si_shader_info *info = &sel->info;
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef tmp;
+   const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
+
+   /* If this thread has already emitted the declared maximum number of
+    * vertices, skip the write: excessive vertex emissions are not
+    * supposed to have any effect.
+    */
+   const LLVMValueRef can_emit =
+      LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
+                    LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
+
+   tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
+   tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
+   LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
+
+   ac_build_ifcc(&ctx->ac, can_emit, 9001);
+
+   const LLVMValueRef vertexptr = ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
+   unsigned out_idx = 0;
+   for (unsigned i = 0; i < info->num_outputs; i++) {
+      for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
+         if (!(info->output_usagemask[i] & (1 << chan)) ||
+             ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
+            continue;
+
+         LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
+         out_val = ac_to_integer(&ctx->ac, out_val);
+         LLVMBuildStore(builder, out_val, ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
+      }
+   }
+   assert(out_idx * 4 == sel->gsvs_vertex_size);
+
+   /* Determine and store whether this vertex completed a primitive. */
+   const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
+
+   tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
+   const LLVMValueRef iscompleteprim = LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
+
+   /* Since the geometry shader emits triangle strips, we need to
+    * track which primitive is odd and swap vertex indices to get
+    * the correct vertex order.
+    */
+   LLVMValueRef is_odd = ctx->ac.i1false;
+   if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) {
+      tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
+      is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
+   }
+
+   tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
+   LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
+
+   /* The per-vertex primitive flag encoding:
+    *   bit 0: whether this vertex finishes a primitive
+    *   bit 1: whether the primitive is odd (if we are emitting triangle strips)
+    */
+   tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
+   tmp = LLVMBuildOr(
+      builder, tmp,
+      LLVMBuildShl(builder, LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""), ctx->ac.i8_1, ""), "");
+   LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
+
+   tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
+   tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
+   LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
+
+   ac_build_endif(&ctx->ac, 9001);
 }
 
 void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
 {
-       /* Zero out the part of LDS scratch that is used to accumulate the
-        * per-stream generated primitive count.
-        */
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
-       LLVMValueRef tid = get_thread_id_in_tg(ctx);
-       LLVMValueRef tmp;
-
-       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->i32, 4, false), "");
-       ac_build_ifcc(&ctx->ac, tmp, 5090);
-       {
-               LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
-               LLVMBuildStore(builder, ctx->i32_0, ptr);
-       }
-       ac_build_endif(&ctx->ac, 5090);
-
-       ac_build_s_barrier(&ctx->ac);
+   /* Zero out the part of LDS scratch that is used to accumulate the
+    * per-stream generated primitive count.
+    */
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
+   LLVMValueRef tid = get_thread_id_in_tg(ctx);
+   LLVMValueRef tmp;
+
+   tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
+   ac_build_ifcc(&ctx->ac, tmp, 5090);
+   {
+      LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
+      LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
+   }
+   ac_build_endif(&ctx->ac, 5090);
+
+   ac_build_s_barrier(&ctx->ac);
 }
 
 void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
 {
-       const struct si_shader_selector *sel = ctx->shader->selector;
-       const struct tgsi_shader_info *info = &sel->info;
-       const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
-       LLVMBuilderRef builder = ctx->ac.builder;
-       LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
-       LLVMValueRef tmp, tmp2;
-
-       /* Zero out remaining (non-emitted) primitive flags.
-        *
-        * Note: Alternatively, we could pass the relevant gs_next_vertex to
-        *       the emit threads via LDS. This is likely worse in the expected
-        *       typical case where each GS thread emits the full set of
-        *       vertices.
-        */
-       for (unsigned stream = 0; stream < 4; ++stream) {
-               if (!info->num_stream_output_components[stream])
-                       continue;
-
-               const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
-
-               ac_build_bgnloop(&ctx->ac, 5100);
-
-               const LLVMValueRef vertexidx =
-                       LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
-               tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
-                       LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
-               ac_build_ifcc(&ctx->ac, tmp, 5101);
-               ac_build_break(&ctx->ac);
-               ac_build_endif(&ctx->ac, 5101);
-
-               tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
-               LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
-
-               tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
-               LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
-
-               ac_build_endloop(&ctx->ac, 5100);
-       }
-
-       /* Accumulate generated primitives counts across the entire threadgroup. */
-       for (unsigned stream = 0; stream < 4; ++stream) {
-               if (!info->num_stream_output_components[stream])
-                       continue;
-
-               LLVMValueRef numprims =
-                       LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
-               numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
-
-               tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->i32_0, "");
-               ac_build_ifcc(&ctx->ac, tmp, 5105);
-               {
-                       LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
-                                          ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
-                                                        LLVMConstInt(ctx->i32, stream, false)),
-                                          numprims, LLVMAtomicOrderingMonotonic, false);
-               }
-               ac_build_endif(&ctx->ac, 5105);
-       }
-
-       ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
-
-       ac_build_s_barrier(&ctx->ac);
-
-       const LLVMValueRef tid = get_thread_id_in_tg(ctx);
-       LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
-
-       /* Streamout */
-       if (sel->so.num_outputs) {
-               struct ngg_streamout nggso = {};
-
-               nggso.num_vertices = LLVMConstInt(ctx->i32, verts_per_prim, false);
-
-               LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
-               for (unsigned stream = 0; stream < 4; ++stream) {
-                       if (!info->num_stream_output_components[stream])
-                               continue;
-
-                       tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
-                       tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
-                       tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
-                       nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
-               }
-
-               for (unsigned i = 0; i < verts_per_prim; ++i) {
-                       tmp = LLVMBuildSub(builder, tid,
-                                          LLVMConstInt(ctx->i32, verts_per_prim - i - 1, false), "");
-                       tmp = ngg_gs_vertex_ptr(ctx, tmp);
-                       nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->i32_0);
-               }
-
-               build_streamout(ctx, &nggso);
-       }
-
-       /* Write shader query data. */
-       if (ctx->screen->use_ngg_streamout) {
-               tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
-               tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
-               ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
-               unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
-               tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
-                                   LLVMConstInt(ctx->i32, num_query_comps, false), "");
-               ac_build_ifcc(&ctx->ac, tmp, 5110);
-               {
-                       LLVMValueRef offset;
-                       tmp = tid;
-                       if (sel->so.num_outputs)
-                               tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->i32, 3, false), "");
-                       offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 32, false), "");
-                       if (sel->so.num_outputs) {
-                               tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->i32, 2, false), "");
-                               tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 8, false), "");
-                               offset = LLVMBuildAdd(builder, offset, tmp, "");
-                       }
-
-                       tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
-                       LLVMValueRef args[] = {
-                               tmp,
-                               ngg_get_query_buf(ctx),
-                               offset,
-                               LLVMConstInt(ctx->i32, 16, false), /* soffset */
-                               ctx->i32_0, /* cachepolicy */
-                       };
-                       ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
-                                          ctx->i32, args, 5, 0);
-               }
-               ac_build_endif(&ctx->ac, 5110);
-               ac_build_endif(&ctx->ac, 5109);
-       }
-
-       /* TODO: culling */
-
-       /* Determine vertex liveness. */
-       LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
-
-       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
-       ac_build_ifcc(&ctx->ac, tmp, 5120);
-       {
-               for (unsigned i = 0; i < verts_per_prim; ++i) {
-                       const LLVMValueRef primidx =
-                               LLVMBuildAdd(builder, tid,
-                                            LLVMConstInt(ctx->ac.i32, i, false), "");
-
-                       if (i > 0) {
-                               tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
-                               ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
-                       }
-
-                       /* Load primitive liveness */
-                       tmp = ngg_gs_vertex_ptr(ctx, primidx);
-                       tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
-                       const LLVMValueRef primlive =
-                               LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
-
-                       tmp = LLVMBuildLoad(builder, vertliveptr, "");
-                       tmp = LLVMBuildOr(builder, tmp, primlive, ""),
-                       LLVMBuildStore(builder, tmp, vertliveptr);
-
-                       if (i > 0)
-                               ac_build_endif(&ctx->ac, 5121 + i);
-               }
-       }
-       ac_build_endif(&ctx->ac, 5120);
-
-       /* Inclusive scan addition across the current wave. */
-       LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
-       struct ac_wg_scan vertlive_scan = {};
-       vertlive_scan.op = nir_op_iadd;
-       vertlive_scan.enable_reduce = true;
-       vertlive_scan.enable_exclusive = true;
-       vertlive_scan.src = vertlive;
-       vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->i32_0);
-       vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
-       vertlive_scan.numwaves = get_tgsize(ctx);
-       vertlive_scan.maxwaves = 8;
-
-       ac_build_wg_scan(&ctx->ac, &vertlive_scan);
-
-       /* Skip all exports (including index exports) when possible. At least on
-        * early gfx10 revisions this is also to avoid hangs.
-        */
-       LLVMValueRef have_exports =
-               LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
-       num_emit_threads =
-               LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
-
-       /* Allocate export space. Send this message as early as possible, to
-        * hide the latency of the SQ <-> SPI roundtrip.
-        *
-        * Note: We could consider compacting primitives for export as well.
-        *       PA processes 1 non-null prim / clock, but it fetches 4 DW of
-        *       prim data per clock and skips null primitives at no additional
-        *       cost. So compacting primitives can only be beneficial when
-        *       there are 4 or more contiguous null primitives in the export
-        *       (in the common case of single-dword prim exports).
-        */
-       build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
-
-       /* Setup the reverse vertex compaction permutation. We re-use stream 1
-        * of the primitive liveness flags, relying on the fact that each
-        * threadgroup can have at most 256 threads. */
-       ac_build_ifcc(&ctx->ac, vertlive, 5130);
-       {
-               tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
-               tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
-               LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
-       }
-       ac_build_endif(&ctx->ac, 5130);
-
-       ac_build_s_barrier(&ctx->ac);
-
-       /* Export primitive data */
-       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
-       ac_build_ifcc(&ctx->ac, tmp, 5140);
-       {
-               LLVMValueRef flags;
-               struct ngg_prim prim = {};
-               prim.num_vertices = verts_per_prim;
-
-               tmp = ngg_gs_vertex_ptr(ctx, tid);
-               flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
-               prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->i1, ""), "");
-
-               for (unsigned i = 0; i < verts_per_prim; ++i) {
-                       prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
-                               LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
-                       prim.edgeflag[i] = ctx->ac.i1false;
-               }
-
-               /* Geometry shaders output triangle strips, but NGG expects triangles.
-                * We need to change the vertex order for odd triangles to get correct
-                * front/back facing by swapping 2 vertex indices, but we also have to
-                * keep the provoking vertex in the same place.
-                *
-                * If the first vertex is provoking, swap index 1 and 2.
-                * If the last vertex is provoking, swap index 0 and 1.
-                */
-               if (verts_per_prim == 3) {
-                       LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
-                       is_odd = LLVMBuildTrunc(builder, is_odd, ctx->i1, "");
-                       LLVMValueRef flatshade_first =
-                               LLVMBuildICmp(builder, LLVMIntEQ,
-                                             si_unpack_param(ctx, ctx->vs_state_bits, 4, 2),
-                                             ctx->i32_0, "");
-
-                       struct ngg_prim in = prim;
-                       prim.index[0] = LLVMBuildSelect(builder, flatshade_first,
-                                                       in.index[0],
-                                                       LLVMBuildSelect(builder, is_odd,
-                                                                       in.index[1], in.index[0], ""), "");
-                       prim.index[1] = LLVMBuildSelect(builder, flatshade_first,
-                                                       LLVMBuildSelect(builder, is_odd,
-                                                                       in.index[2], in.index[1], ""),
-                                                       LLVMBuildSelect(builder, is_odd,
-                                                                       in.index[0], in.index[1], ""), "");
-                       prim.index[2] = LLVMBuildSelect(builder, flatshade_first,
-                                                       LLVMBuildSelect(builder, is_odd,
-                                                                       in.index[1], in.index[2], ""),
-                                                       in.index[2], "");
-               }
-
-               build_export_prim(ctx, &prim);
-       }
-       ac_build_endif(&ctx->ac, 5140);
-
-       /* Export position and parameter data */
-       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
-       ac_build_ifcc(&ctx->ac, tmp, 5145);
-       {
-               struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
-
-               tmp = ngg_gs_vertex_ptr(ctx, tid);
-               tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
-               tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
-               const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
-
-               unsigned out_idx = 0;
-               for (unsigned i = 0; i < info->num_outputs; i++) {
-                       outputs[i].semantic_name = info->output_semantic_name[i];
-                       outputs[i].semantic_index = info->output_semantic_index[i];
-
-                       for (unsigned j = 0; j < 4; j++, out_idx++) {
-                               tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
-                               tmp = LLVMBuildLoad(builder, tmp, "");
-                               outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
-                               outputs[i].vertex_stream[j] =
-                                       (info->output_streams[i] >> (2 * j)) & 3;
-                       }
-               }
-
-               si_llvm_export_vs(ctx, outputs, info->num_outputs);
-       }
-       ac_build_endif(&ctx->ac, 5145);
+   const struct si_shader_selector *sel = ctx->shader->selector;
+   const struct si_shader_info *info = &sel->info;
+   const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
+   LLVMBuilderRef builder = ctx->ac.builder;
+   LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
+   LLVMValueRef tmp, tmp2;
+
+   /* Zero out remaining (non-emitted) primitive flags.
+    *
+    * Note: Alternatively, we could pass the relevant gs_next_vertex to
+    *       the emit threads via LDS. This is likely worse in the expected
+    *       typical case where each GS thread emits the full set of
+    *       vertices.
+    */
+   for (unsigned stream = 0; stream < 4; ++stream) {
+      if (!info->num_stream_output_components[stream])
+         continue;
+
+      const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
+
+      ac_build_bgnloop(&ctx->ac, 5100);
+
+      const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
+      tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
+                          LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
+      ac_build_ifcc(&ctx->ac, tmp, 5101);
+      ac_build_break(&ctx->ac);
+      ac_build_endif(&ctx->ac, 5101);
+
+      tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
+      LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
+
+      tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
+      LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
+
+      ac_build_endloop(&ctx->ac, 5100);
+   }
+
+   /* Accumulate generated primitives counts across the entire threadgroup. */
+   for (unsigned stream = 0; stream < 4; ++stream) {
+      if (!info->num_stream_output_components[stream])
+         continue;
+
+      LLVMValueRef numprims = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
+      numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
+
+      tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
+      ac_build_ifcc(&ctx->ac, tmp, 5105);
+      {
+         LLVMBuildAtomicRMW(
+            builder, LLVMAtomicRMWBinOpAdd,
+            ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, stream, false)),
+            numprims, LLVMAtomicOrderingMonotonic, false);
+      }
+      ac_build_endif(&ctx->ac, 5105);
+   }
+
+   ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
+
+   ac_build_s_barrier(&ctx->ac);
+
+   const LLVMValueRef tid = get_thread_id_in_tg(ctx);
+   LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
+
+   /* Streamout */
+   if (sel->so.num_outputs) {
+      struct ngg_streamout nggso = {};
+
+      nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
+
+      LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
+      for (unsigned stream = 0; stream < 4; ++stream) {
+         if (!info->num_stream_output_components[stream])
+            continue;
+
+         tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
+         tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+         tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+         nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
+      }
+
+      for (unsigned i = 0; i < verts_per_prim; ++i) {
+         tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false),
+                            "");
+         tmp = ngg_gs_vertex_ptr(ctx, tmp);
+         nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
+      }
+
+      build_streamout(ctx, &nggso);
+   }
+
+   /* Write shader query data. */
+   if (ctx->screen->use_ngg_streamout) {
+      tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
+      tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+      ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
+      unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
+      tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
+                          LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
+      ac_build_ifcc(&ctx->ac, tmp, 5110);
+      {
+         LLVMValueRef offset;
+         tmp = tid;
+         if (sel->so.num_outputs)
+            tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
+         offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
+         if (sel->so.num_outputs) {
+            tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
+            tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
+            offset = LLVMBuildAdd(builder, offset, tmp, "");
+         }
+
+         tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
+         LLVMValueRef args[] = {
+            tmp,           ngg_get_query_buf(ctx),
+            offset,        LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
+            ctx->ac.i32_0,                                       /* cachepolicy */
+         };
+         ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
+                            0);
+      }
+      ac_build_endif(&ctx->ac, 5110);
+      ac_build_endif(&ctx->ac, 5109);
+   }
+
+   /* Determine vertex liveness. */
+   LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
+
+   tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+   ac_build_ifcc(&ctx->ac, tmp, 5120);
+   {
+      for (unsigned i = 0; i < verts_per_prim; ++i) {
+         const LLVMValueRef primidx =
+            LLVMBuildAdd(builder, tid, LLVMConstInt(ctx->ac.i32, i, false), "");
+
+         if (i > 0) {
+            tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
+            ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
+         }
+
+         /* Load primitive liveness */
+         tmp = ngg_gs_vertex_ptr(ctx, primidx);
+         tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
+         const LLVMValueRef primlive = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+
+         tmp = LLVMBuildLoad(builder, vertliveptr, "");
+         tmp = LLVMBuildOr(builder, tmp, primlive, ""), LLVMBuildStore(builder, tmp, vertliveptr);
+
+         if (i > 0)
+            ac_build_endif(&ctx->ac, 5121 + i);
+      }
+   }
+   ac_build_endif(&ctx->ac, 5120);
+
+   /* Inclusive scan addition across the current wave. */
+   LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
+   struct ac_wg_scan vertlive_scan = {};
+   vertlive_scan.op = nir_op_iadd;
+   vertlive_scan.enable_reduce = true;
+   vertlive_scan.enable_exclusive = true;
+   vertlive_scan.src = vertlive;
+   vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
+   vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
+   vertlive_scan.numwaves = get_tgsize(ctx);
+   vertlive_scan.maxwaves = 8;
+
+   ac_build_wg_scan(&ctx->ac, &vertlive_scan);
+
+   /* Skip all exports (including index exports) when possible. At least on
+    * early gfx10 revisions this is also to avoid hangs.
+    */
+   LLVMValueRef have_exports =
+      LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
+   num_emit_threads = LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
+
+   /* Allocate export space. Send this message as early as possible, to
+    * hide the latency of the SQ <-> SPI roundtrip.
+    *
+    * Note: We could consider compacting primitives for export as well.
+    *       PA processes 1 non-null prim / clock, but it fetches 4 DW of
+    *       prim data per clock and skips null primitives at no additional
+    *       cost. So compacting primitives can only be beneficial when
+    *       there are 4 or more contiguous null primitives in the export
+    *       (in the common case of single-dword prim exports).
+    */
+   ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), vertlive_scan.result_reduce,
+                                 num_emit_threads);
+
+   /* Setup the reverse vertex compaction permutation. We re-use stream 1
+    * of the primitive liveness flags, relying on the fact that each
+    * threadgroup can have at most 256 threads. */
+   ac_build_ifcc(&ctx->ac, vertlive, 5130);
+   {
+      tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
+      tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
+      LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
+   }
+   ac_build_endif(&ctx->ac, 5130);
+
+   ac_build_s_barrier(&ctx->ac);
+
+   /* Export primitive data */
+   tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+   ac_build_ifcc(&ctx->ac, tmp, 5140);
+   {
+      LLVMValueRef flags;
+      struct ac_ngg_prim prim = {};
+      prim.num_vertices = verts_per_prim;
+
+      tmp = ngg_gs_vertex_ptr(ctx, tid);
+      flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
+      prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
+
+      for (unsigned i = 0; i < verts_per_prim; ++i) {
+         prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
+                                      LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
+         prim.edgeflag[i] = ctx->ac.i1false;
+      }
+
+      /* Geometry shaders output triangle strips, but NGG expects triangles. */
+      if (verts_per_prim == 3) {
+         LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
+         is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
+         LLVMValueRef flatshade_first = LLVMBuildICmp(
+            builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
+
+         ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, prim.index);
+      }
+
+      ac_build_export_prim(&ctx->ac, &prim);
+   }
+   ac_build_endif(&ctx->ac, 5140);
+
+   /* Export position and parameter data */
+   tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
+   ac_build_ifcc(&ctx->ac, tmp, 5145);
+   {
+      struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
+
+      tmp = ngg_gs_vertex_ptr(ctx, tid);
+      tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
+      tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
+      const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
+
+      unsigned out_idx = 0;
+      for (unsigned i = 0; i < info->num_outputs; i++) {
+         outputs[i].semantic = info->output_semantic[i];
+
+         for (unsigned j = 0; j < 4; j++, out_idx++) {
+            tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
+            tmp = LLVMBuildLoad(builder, tmp, "");
+            outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
+            outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
+         }
+      }
+
+      si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
+   }
+   ac_build_endif(&ctx->ac, 5145);
 }
 
 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
-                                    unsigned min_verts_per_prim, bool use_adjacency)
+                                     unsigned min_verts_per_prim, bool use_adjacency)
 {
-       unsigned max_reuse = max_esverts - min_verts_per_prim;
-       if (use_adjacency)
-               max_reuse /= 2;
-       *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
+   unsigned max_reuse = max_esverts - min_verts_per_prim;
+   if (use_adjacency)
+      max_reuse /= 2;
+   *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
+}
+
+unsigned gfx10_ngg_get_scratch_dw_size(struct si_shader *shader)
+{
+   const struct si_shader_selector *sel = shader->selector;
+
+   if (sel->info.stage == MESA_SHADER_GEOMETRY && sel->so.num_outputs)
+      return 44;
+
+   return 8;
 }
 
 /**
@@ -1327,175 +1899,190 @@ static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts
  * This happens before the shader is uploaded, since LDS relocations during
  * upload depend on the subgroup size.
  */
-void gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
+bool gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
 {
-       const struct si_shader_selector *gs_sel = shader->selector;
-       const struct si_shader_selector *es_sel =
-               shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
-       const enum pipe_shader_type gs_type = gs_sel->type;
-       const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
-       const unsigned input_prim = si_get_input_prim(gs_sel);
-       const bool use_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
-                                  input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
-       const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
-       const unsigned min_verts_per_prim =
-               gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
-
-       /* All these are in dwords: */
-       /* We can't allow using the whole LDS, because GS waves compete with
-        * other shader stages for LDS space.
-        *
-        * TODO: We should really take the shader's internal LDS use into
-        *       account. The linker will fail if the size is greater than
-        *       8K dwords.
-        */
-       const unsigned max_lds_size = 8 * 1024 - 768;
-       const unsigned target_lds_size = max_lds_size;
-       unsigned esvert_lds_size = 0;
-       unsigned gsprim_lds_size = 0;
-
-       /* All these are per subgroup: */
-       bool max_vert_out_per_gs_instance = false;
-       unsigned max_esverts_base = 128;
-       unsigned max_gsprims_base = 128; /* default prim group size clamp */
-
-       /* Hardware has the following non-natural restrictions on the value
-        * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
-        * the draw:
-        *  - at most 252 for any line input primitive type
-        *  - at most 251 for any quad input primitive type
-        *  - at most 251 for triangle strips with adjacency (this happens to
-        *    be the natural limit for triangle *lists* with adjacency)
-        */
-       max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
-
-       if (gs_type == PIPE_SHADER_GEOMETRY) {
-               unsigned max_out_verts_per_gsprim =
-                       gs_sel->gs_max_out_vertices * gs_num_invocations;
-
-               if (max_out_verts_per_gsprim <= 256) {
-                       if (max_out_verts_per_gsprim) {
-                               max_gsprims_base = MIN2(max_gsprims_base,
-                                                       256 / max_out_verts_per_gsprim);
-                       }
-               } else {
-                       /* Use special multi-cycling mode in which each GS
-                        * instance gets its own subgroup. Does not work with
-                        * tessellation. */
-                       max_vert_out_per_gs_instance = true;
-                       max_gsprims_base = 1;
-                       max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
-               }
-
-               esvert_lds_size = es_sel->esgs_itemsize / 4;
-               gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
-       } else {
-               /* VS and TES. */
-               /* LDS size for passing data from ES to GS. */
-               esvert_lds_size = ngg_nogs_vertex_size(shader);
-
-               /* LDS size for passing data from GS to ES.
-                * GS stores Primitive IDs into LDS at the address corresponding
-                * to the ES thread of the provoking vertex. All ES threads
-                * load and export PrimitiveID for their thread.
-                */
-               if (gs_sel->type == PIPE_SHADER_VERTEX &&
-                   shader->key.mono.u.vs_export_prim_id)
-                       esvert_lds_size = MAX2(esvert_lds_size, 1);
-       }
-
-       unsigned max_gsprims = max_gsprims_base;
-       unsigned max_esverts = max_esverts_base;
-
-       if (esvert_lds_size)
-               max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
-       if (gsprim_lds_size)
-               max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
-
-       max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
-       clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
-       assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
-
-       if (esvert_lds_size || gsprim_lds_size) {
-               /* Now that we have a rough proportionality between esverts
-                * and gsprims based on the primitive type, scale both of them
-                * down simultaneously based on required LDS space.
-                *
-                * We could be smarter about this if we knew how much vertex
-                * reuse to expect.
-                */
-               unsigned lds_total = max_esverts * esvert_lds_size +
-                                    max_gsprims * gsprim_lds_size;
-               if (lds_total > target_lds_size) {
-                       max_esverts = max_esverts * target_lds_size / lds_total;
-                       max_gsprims = max_gsprims * target_lds_size / lds_total;
-
-                       max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
-                       clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
-                                                min_verts_per_prim, use_adjacency);
-                       assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
-               }
-       }
-
-       /* Round up towards full wave sizes for better ALU utilization. */
-       if (!max_vert_out_per_gs_instance) {
-               const unsigned wavesize = gs_sel->screen->ge_wave_size;
-               unsigned orig_max_esverts;
-               unsigned orig_max_gsprims;
-               do {
-                       orig_max_esverts = max_esverts;
-                       orig_max_gsprims = max_gsprims;
-
-                       max_esverts = align(max_esverts, wavesize);
-                       max_esverts = MIN2(max_esverts, max_esverts_base);
-                       if (esvert_lds_size)
-                               max_esverts = MIN2(max_esverts,
-                                                  (max_lds_size - max_gsprims * gsprim_lds_size) /
-                                                  esvert_lds_size);
-                       max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
-
-                       max_gsprims = align(max_gsprims, wavesize);
-                       max_gsprims = MIN2(max_gsprims, max_gsprims_base);
-                       if (gsprim_lds_size)
-                               max_gsprims = MIN2(max_gsprims,
-                                                  (max_lds_size - max_esverts * esvert_lds_size) /
-                                                  gsprim_lds_size);
-                       clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
-                                                min_verts_per_prim, use_adjacency);
-                       assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
-               } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
-       }
-
-       /* Hardware restriction: minimum value of max_esverts */
-       max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
-
-       unsigned max_out_vertices =
-               max_vert_out_per_gs_instance ? gs_sel->gs_max_out_vertices :
-               gs_type == PIPE_SHADER_GEOMETRY ?
-               max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices :
-               max_esverts;
-       assert(max_out_vertices <= 256);
-
-       unsigned prim_amp_factor = 1;
-       if (gs_type == PIPE_SHADER_GEOMETRY) {
-               /* Number of output primitives per GS input primitive after
-                * GS instancing. */
-               prim_amp_factor = gs_sel->gs_max_out_vertices;
-       }
-
-       /* The GE only checks against the maximum number of ES verts after
-        * allocating a full GS primitive. So we need to ensure that whenever
-        * this check passes, there is enough space for a full primitive without
-        * vertex reuse.
-        */
-       shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
-       shader->ngg.max_gsprims = max_gsprims;
-       shader->ngg.max_out_verts = max_out_vertices;
-       shader->ngg.prim_amp_factor = prim_amp_factor;
-       shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
-
-       shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size;
-       shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
-
-       assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
+   const struct si_shader_selector *gs_sel = shader->selector;
+   const struct si_shader_selector *es_sel =
+      shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
+   const gl_shader_stage gs_stage = gs_sel->info.stage;
+   const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
+   const unsigned input_prim = si_get_input_prim(gs_sel);
+   const bool use_adjacency =
+      input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
+   const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
+   const unsigned min_verts_per_prim = gs_stage == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
+
+   /* All these are in dwords: */
+   /* GE can only use 8K dwords (32KB) of LDS per workgroup.
+    */
+   const unsigned max_lds_size = 8 * 1024 - gfx10_ngg_get_scratch_dw_size(shader);
+   const unsigned target_lds_size = max_lds_size;
+   unsigned esvert_lds_size = 0;
+   unsigned gsprim_lds_size = 0;
+
+   /* All these are per subgroup: */
+   const unsigned min_esverts = gs_sel->screen->info.chip_class >= GFX10_3 ? 29 : 24;
+   bool max_vert_out_per_gs_instance = false;
+   unsigned max_gsprims_base = 128; /* default prim group size clamp */
+   unsigned max_esverts_base = 128;
+
+   if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
+      max_gsprims_base = 128 / 3;
+      max_esverts_base = max_gsprims_base * 3;
+   } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
+      max_gsprims_base = 126;
+      max_esverts_base = 128;
+   }
+
+   /* Hardware has the following non-natural restrictions on the value
+    * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
+    * the draw:
+    *  - at most 252 for any line input primitive type
+    *  - at most 251 for any quad input primitive type
+    *  - at most 251 for triangle strips with adjacency (this happens to
+    *    be the natural limit for triangle *lists* with adjacency)
+    */
+   max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
+
+   if (gs_stage == MESA_SHADER_GEOMETRY) {
+      bool force_multi_cycling = false;
+      unsigned max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices * gs_num_invocations;
+
+retry_select_mode:
+      if (max_out_verts_per_gsprim <= 256 && !force_multi_cycling) {
+         if (max_out_verts_per_gsprim) {
+            max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
+         }
+      } else {
+         /* Use special multi-cycling mode in which each GS
+          * instance gets its own subgroup. Does not work with
+          * tessellation. */
+         max_vert_out_per_gs_instance = true;
+         max_gsprims_base = 1;
+         max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
+      }
+
+      esvert_lds_size = es_sel->esgs_itemsize / 4;
+      gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
+
+      if (gsprim_lds_size > target_lds_size && !force_multi_cycling) {
+         if (gs_sel->tess_turns_off_ngg || es_sel->info.stage != MESA_SHADER_TESS_EVAL) {
+            force_multi_cycling = true;
+            goto retry_select_mode;
+         }
+      }
+   } else {
+      /* VS and TES. */
+      /* LDS size for passing data from ES to GS. */
+      esvert_lds_size = ngg_nogs_vertex_size(shader);
+   }
+
+   unsigned max_gsprims = max_gsprims_base;
+   unsigned max_esverts = max_esverts_base;
+
+   if (esvert_lds_size)
+      max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
+   if (gsprim_lds_size)
+      max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
+
+   max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
+   clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
+   assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
+
+   if (esvert_lds_size || gsprim_lds_size) {
+      /* Now that we have a rough proportionality between esverts
+       * and gsprims based on the primitive type, scale both of them
+       * down simultaneously based on required LDS space.
+       *
+       * We could be smarter about this if we knew how much vertex
+       * reuse to expect.
+       */
+      unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
+      if (lds_total > target_lds_size) {
+         max_esverts = max_esverts * target_lds_size / lds_total;
+         max_gsprims = max_gsprims * target_lds_size / lds_total;
+
+         max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
+         clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
+         assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
+      }
+   }
+
+   /* Round up towards full wave sizes for better ALU utilization. */
+   if (!max_vert_out_per_gs_instance) {
+      const unsigned wavesize = si_get_shader_wave_size(shader);
+      unsigned orig_max_esverts;
+      unsigned orig_max_gsprims;
+      do {
+         orig_max_esverts = max_esverts;
+         orig_max_gsprims = max_gsprims;
+
+         max_esverts = align(max_esverts, wavesize);
+         max_esverts = MIN2(max_esverts, max_esverts_base);
+         if (esvert_lds_size)
+            max_esverts =
+               MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
+         max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
+         /* Hardware restriction: minimum value of max_esverts */
+         max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
+
+         max_gsprims = align(max_gsprims, wavesize);
+         max_gsprims = MIN2(max_gsprims, max_gsprims_base);
+         if (gsprim_lds_size) {
+            /* Don't count unusable vertices to the LDS size. Those are vertices above
+             * the maximum number of vertices that can occur in the workgroup,
+             * which is e.g. max_gsprims * 3 for triangles.
+             */
+            unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
+            max_gsprims =
+               MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size);
+         }
+         clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
+         assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
+      } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
+
+      /* Verify the restriction. */
+      assert(max_esverts >= min_esverts - 1 + max_verts_per_prim);
+   } else {
+      /* Hardware restriction: minimum value of max_esverts */
+      max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
+   }
+
+   unsigned max_out_vertices =
+      max_vert_out_per_gs_instance
+         ? gs_sel->gs_max_out_vertices
+         : gs_stage == MESA_SHADER_GEOMETRY
+              ? max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices
+              : max_esverts;
+   assert(max_out_vertices <= 256);
+
+   unsigned prim_amp_factor = 1;
+   if (gs_stage == MESA_SHADER_GEOMETRY) {
+      /* Number of output primitives per GS input primitive after
+       * GS instancing. */
+      prim_amp_factor = gs_sel->gs_max_out_vertices;
+   }
+
+   /* The GE only checks against the maximum number of ES verts after
+    * allocating a full GS primitive. So we need to ensure that whenever
+    * this check passes, there is enough space for a full primitive without
+    * vertex reuse.
+    */
+   shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
+   shader->ngg.max_gsprims = max_gsprims;
+   shader->ngg.max_out_verts = max_out_vertices;
+   shader->ngg.prim_amp_factor = prim_amp_factor;
+   shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
+
+   /* Don't count unusable vertices. */
+   shader->gs_info.esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) *
+                                    esvert_lds_size;
+   shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
+
+   assert(shader->ngg.hw_max_esverts >= min_esverts); /* HW limitation */
+
+   /* If asserts are disabled, we use the same conditions to return false */
+   return max_esverts >= max_verts_per_prim && max_gsprims >= 1 &&
+          max_out_vertices <= 256 &&
+          shader->ngg.hw_max_esverts >= min_esverts;
 }