radeonsi: kill point size VS output if it's not used by the rasterizer
[mesa.git] / src / gallium / drivers / radeonsi / si_shader_llvm_vs.c
index 39c06f41ecea441b8dc1f0be4e89fa97901d969c..96313d11175ed540c6a7c862044a9e400ee3a5a0 100644 (file)
  * USE OR OTHER DEALINGS IN THE SOFTWARE.
  */
 
-#include "si_shader_internal.h"
 #include "si_pipe.h"
+#include "si_shader_internal.h"
 #include "sid.h"
 #include "util/u_memory.h"
 
-static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
-                                LLVMValueRef i32, unsigned index)
+static LLVMValueRef unpack_sint16(struct si_shader_context *ctx, LLVMValueRef i32, unsigned index)
 {
-       assert(index <= 1);
+   assert(index <= 1);
 
-       if (index == 1)
-               return LLVMBuildAShr(ctx->ac.builder, i32,
-                                    LLVMConstInt(ctx->ac.i32, 16, 0), "");
+   if (index == 1)
+      return LLVMBuildAShr(ctx->ac.builder, i32, LLVMConstInt(ctx->ac.i32, 16, 0), "");
 
-       return LLVMBuildSExt(ctx->ac.builder,
-                            LLVMBuildTrunc(ctx->ac.builder, i32,
-                                           ctx->ac.i16, ""),
-                            ctx->ac.i32, "");
+   return LLVMBuildSExt(ctx->ac.builder, LLVMBuildTrunc(ctx->ac.builder, i32, ctx->ac.i16, ""),
+                        ctx->ac.i32, "");
 }
 
-static void load_input_vs(struct si_shader_context *ctx, unsigned input_index,
-                         LLVMValueRef out[4])
+static void load_input_vs(struct si_shader_context *ctx, unsigned input_index, LLVMValueRef out[4])
 {
-       const struct si_shader_info *info = &ctx->shader->selector->info;
-       unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD];
-
-       if (vs_blit_property) {
-               LLVMValueRef vertex_id = ctx->abi.vertex_id;
-               LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
-                                                   LLVMIntULE, vertex_id,
-                                                   ctx->ac.i32_1, "");
-               /* Use LLVMIntNE, because we have 3 vertices and only
-                * the middle one should use y2.
-                */
-               LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
-                                                   LLVMIntNE, vertex_id,
-                                                   ctx->ac.i32_1, "");
-
-               unsigned param_vs_blit_inputs = ctx->vs_blit_inputs.arg_index;
-               if (input_index == 0) {
-                       /* Position: */
-                       LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
-                                                        param_vs_blit_inputs);
-                       LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
-                                                        param_vs_blit_inputs + 1);
-
-                       LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
-                       LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
-                       LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
-                       LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
-
-                       LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
-                                                        x1, x2, "");
-                       LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
-                                                        y1, y2, "");
-
-                       out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->ac.f32, "");
-                       out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->ac.f32, "");
-                       out[2] = LLVMGetParam(ctx->main_fn,
-                                             param_vs_blit_inputs + 2);
-                       out[3] = ctx->ac.f32_1;
-                       return;
-               }
-
-               /* Color or texture coordinates: */
-               assert(input_index == 1);
-
-               if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
-                       for (int i = 0; i < 4; i++) {
-                               out[i] = LLVMGetParam(ctx->main_fn,
-                                                     param_vs_blit_inputs + 3 + i);
-                       }
-               } else {
-                       assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
-                       LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
-                                                      param_vs_blit_inputs + 3);
-                       LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
-                                                      param_vs_blit_inputs + 4);
-                       LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
-                                                      param_vs_blit_inputs + 5);
-                       LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
-                                                      param_vs_blit_inputs + 6);
-
-                       out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
-                                                x1, x2, "");
-                       out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
-                                                y1, y2, "");
-                       out[2] = LLVMGetParam(ctx->main_fn,
-                                             param_vs_blit_inputs + 7);
-                       out[3] = LLVMGetParam(ctx->main_fn,
-                                             param_vs_blit_inputs + 8);
-               }
-               return;
-       }
-
-       unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
-       union si_vs_fix_fetch fix_fetch;
-       LLVMValueRef vb_desc;
-       LLVMValueRef vertex_index;
-       LLVMValueRef tmp;
-
-       if (input_index < num_vbos_in_user_sgprs) {
-               vb_desc = ac_get_arg(&ctx->ac, ctx->vb_descriptors[input_index]);
-       } else {
-               unsigned index= input_index - num_vbos_in_user_sgprs;
-               vb_desc = ac_build_load_to_sgpr(&ctx->ac,
-                                               ac_get_arg(&ctx->ac, ctx->vertex_buffers),
-                                               LLVMConstInt(ctx->ac.i32, index, 0));
-       }
-
-       vertex_index = LLVMGetParam(ctx->main_fn,
-                                   ctx->vertex_index0.arg_index +
-                                   input_index);
-
-       /* Use the open-coded implementation for all loads of doubles and
-        * of dword-sized data that needs fixups. We need to insert conversion
-        * code anyway, and the amd/common code does it for us.
-        *
-        * Note: On LLVM <= 8, we can only open-code formats with
-        * channel size >= 4 bytes.
-        */
-       bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
-       fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
-       if (opencode ||
-           (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
-           (fix_fetch.u.log_size == 2)) {
-               tmp = ac_build_opencoded_load_format(
-                               &ctx->ac, fix_fetch.u.log_size, fix_fetch.u.num_channels_m1 + 1,
-                               fix_fetch.u.format, fix_fetch.u.reverse, !opencode,
-                               vb_desc, vertex_index, ctx->ac.i32_0, ctx->ac.i32_0, 0, true);
-               for (unsigned i = 0; i < 4; ++i)
-                       out[i] = LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->ac.i32, i, false), "");
-               return;
-       }
-
-       /* Do multiple loads for special formats. */
-       unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
-       LLVMValueRef fetches[4];
-       unsigned num_fetches;
-       unsigned fetch_stride;
-       unsigned channels_per_fetch;
-
-       if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
-               num_fetches = MIN2(required_channels, 3);
-               fetch_stride = 1 << fix_fetch.u.log_size;
-               channels_per_fetch = 1;
-       } else {
-               num_fetches = 1;
-               fetch_stride = 0;
-               channels_per_fetch = required_channels;
-       }
-
-       for (unsigned i = 0; i < num_fetches; ++i) {
-               LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, fetch_stride * i, 0);
-               fetches[i] = ac_build_buffer_load_format(&ctx->ac, vb_desc, vertex_index, voffset,
-                                                        channels_per_fetch, 0, true);
-       }
-
-       if (num_fetches == 1 && channels_per_fetch > 1) {
-               LLVMValueRef fetch = fetches[0];
-               for (unsigned i = 0; i < channels_per_fetch; ++i) {
-                       tmp = LLVMConstInt(ctx->ac.i32, i, false);
-                       fetches[i] = LLVMBuildExtractElement(
-                               ctx->ac.builder, fetch, tmp, "");
-               }
-               num_fetches = channels_per_fetch;
-               channels_per_fetch = 1;
-       }
-
-       for (unsigned i = num_fetches; i < 4; ++i)
-               fetches[i] = LLVMGetUndef(ctx->ac.f32);
-
-       if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 &&
-           required_channels == 4) {
-               if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
-                       fetches[3] = ctx->ac.i32_1;
-               else
-                       fetches[3] = ctx->ac.f32_1;
-       } else if (fix_fetch.u.log_size == 3 &&
-                  (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
-                   fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
-                   fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
-                  required_channels == 4) {
-               /* For 2_10_10_10, the hardware returns an unsigned value;
-                * convert it to a signed one.
-                */
-               LLVMValueRef tmp = fetches[3];
-               LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
-
-               /* First, recover the sign-extended signed integer value. */
-               if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
-                       tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->ac.i32, "");
-               else
-                       tmp = ac_to_integer(&ctx->ac, tmp);
-
-               /* For the integer-like cases, do a natural sign extension.
-                *
-                * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
-                * and happen to contain 0, 1, 2, 3 as the two LSBs of the
-                * exponent.
-                */
-               tmp = LLVMBuildShl(ctx->ac.builder, tmp,
-                                  fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ?
-                                  LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
-               tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
-
-               /* Convert back to the right type. */
-               if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
-                       LLVMValueRef clamp;
-                       LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
-                       tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->ac.f32, "");
-                       clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
-                       tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
-               } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
-                       tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->ac.f32, "");
-               }
-
-               fetches[3] = tmp;
-       }
-
-       for (unsigned i = 0; i < 4; ++i)
-               out[i] = ac_to_float(&ctx->ac, fetches[i]);
+   const struct si_shader_info *info = &ctx->shader->selector->info;
+   unsigned vs_blit_property = info->base.vs.blit_sgprs_amd;
+
+   if (vs_blit_property) {
+      LLVMValueRef vertex_id = ctx->abi.vertex_id;
+      LLVMValueRef sel_x1 =
+         LLVMBuildICmp(ctx->ac.builder, LLVMIntULE, vertex_id, ctx->ac.i32_1, "");
+      /* Use LLVMIntNE, because we have 3 vertices and only
+       * the middle one should use y2.
+       */
+      LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE, vertex_id, ctx->ac.i32_1, "");
+
+      unsigned param_vs_blit_inputs = ctx->vs_blit_inputs.arg_index;
+      if (input_index == 0) {
+         /* Position: */
+         LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs);
+         LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 1);
+
+         LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
+         LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
+         LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
+         LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
+
+         LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1, x1, x2, "");
+         LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1, y1, y2, "");
+
+         out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->ac.f32, "");
+         out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->ac.f32, "");
+         out[2] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 2);
+         out[3] = ctx->ac.f32_1;
+         return;
+      }
+
+      /* Color or texture coordinates: */
+      assert(input_index == 1);
+
+      if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
+         for (int i = 0; i < 4; i++) {
+            out[i] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 3 + i);
+         }
+      } else {
+         assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
+         LLVMValueRef x1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 3);
+         LLVMValueRef y1 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 4);
+         LLVMValueRef x2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 5);
+         LLVMValueRef y2 = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 6);
+
+         out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1, x1, x2, "");
+         out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1, y1, y2, "");
+         out[2] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 7);
+         out[3] = LLVMGetParam(ctx->main_fn, param_vs_blit_inputs + 8);
+      }
+      return;
+   }
+
+   unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
+   union si_vs_fix_fetch fix_fetch;
+   LLVMValueRef vb_desc;
+   LLVMValueRef vertex_index;
+   LLVMValueRef tmp;
+
+   if (input_index < num_vbos_in_user_sgprs) {
+      vb_desc = ac_get_arg(&ctx->ac, ctx->vb_descriptors[input_index]);
+   } else {
+      unsigned index = input_index - num_vbos_in_user_sgprs;
+      vb_desc = ac_build_load_to_sgpr(&ctx->ac, ac_get_arg(&ctx->ac, ctx->vertex_buffers),
+                                      LLVMConstInt(ctx->ac.i32, index, 0));
+   }
+
+   vertex_index = LLVMGetParam(ctx->main_fn, ctx->vertex_index0.arg_index + input_index);
+
+   /* Use the open-coded implementation for all loads of doubles and
+    * of dword-sized data that needs fixups. We need to insert conversion
+    * code anyway, and the amd/common code does it for us.
+    *
+    * Note: On LLVM <= 8, we can only open-code formats with
+    * channel size >= 4 bytes.
+    */
+   bool opencode = ctx->shader->key.mono.vs_fetch_opencode & (1 << input_index);
+   fix_fetch.bits = ctx->shader->key.mono.vs_fix_fetch[input_index].bits;
+   if (opencode || (fix_fetch.u.log_size == 3 && fix_fetch.u.format == AC_FETCH_FORMAT_FLOAT) ||
+       (fix_fetch.u.log_size == 2)) {
+      tmp = ac_build_opencoded_load_format(&ctx->ac, fix_fetch.u.log_size,
+                                           fix_fetch.u.num_channels_m1 + 1, fix_fetch.u.format,
+                                           fix_fetch.u.reverse, !opencode, vb_desc, vertex_index,
+                                           ctx->ac.i32_0, ctx->ac.i32_0, 0, true);
+      for (unsigned i = 0; i < 4; ++i)
+         out[i] =
+            LLVMBuildExtractElement(ctx->ac.builder, tmp, LLVMConstInt(ctx->ac.i32, i, false), "");
+      return;
+   }
+
+   unsigned required_channels = util_last_bit(info->input_usage_mask[input_index]);
+   if (required_channels == 0) {
+      for (unsigned i = 0; i < 4; ++i)
+         out[i] = LLVMGetUndef(ctx->ac.f32);
+      return;
+   }
+
+   /* Do multiple loads for special formats. */
+   LLVMValueRef fetches[4];
+   unsigned num_fetches;
+   unsigned fetch_stride;
+   unsigned channels_per_fetch;
+
+   if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2) {
+      num_fetches = MIN2(required_channels, 3);
+      fetch_stride = 1 << fix_fetch.u.log_size;
+      channels_per_fetch = 1;
+   } else {
+      num_fetches = 1;
+      fetch_stride = 0;
+      channels_per_fetch = required_channels;
+   }
+
+   for (unsigned i = 0; i < num_fetches; ++i) {
+      LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, fetch_stride * i, 0);
+      fetches[i] = ac_build_buffer_load_format(&ctx->ac, vb_desc, vertex_index, voffset,
+                                               channels_per_fetch, 0, true, false);
+   }
+
+   if (num_fetches == 1 && channels_per_fetch > 1) {
+      LLVMValueRef fetch = fetches[0];
+      for (unsigned i = 0; i < channels_per_fetch; ++i) {
+         tmp = LLVMConstInt(ctx->ac.i32, i, false);
+         fetches[i] = LLVMBuildExtractElement(ctx->ac.builder, fetch, tmp, "");
+      }
+      num_fetches = channels_per_fetch;
+      channels_per_fetch = 1;
+   }
+
+   for (unsigned i = num_fetches; i < 4; ++i)
+      fetches[i] = LLVMGetUndef(ctx->ac.f32);
+
+   if (fix_fetch.u.log_size <= 1 && fix_fetch.u.num_channels_m1 == 2 && required_channels == 4) {
+      if (fix_fetch.u.format == AC_FETCH_FORMAT_UINT || fix_fetch.u.format == AC_FETCH_FORMAT_SINT)
+         fetches[3] = ctx->ac.i32_1;
+      else
+         fetches[3] = ctx->ac.f32_1;
+   } else if (fix_fetch.u.log_size == 3 &&
+              (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ||
+               fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED ||
+               fix_fetch.u.format == AC_FETCH_FORMAT_SINT) &&
+              required_channels == 4) {
+      /* For 2_10_10_10, the hardware returns an unsigned value;
+       * convert it to a signed one.
+       */
+      LLVMValueRef tmp = fetches[3];
+      LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
+
+      /* First, recover the sign-extended signed integer value. */
+      if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED)
+         tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->ac.i32, "");
+      else
+         tmp = ac_to_integer(&ctx->ac, tmp);
+
+      /* For the integer-like cases, do a natural sign extension.
+       *
+       * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
+       * and happen to contain 0, 1, 2, 3 as the two LSBs of the
+       * exponent.
+       */
+      tmp = LLVMBuildShl(
+         ctx->ac.builder, tmp,
+         fix_fetch.u.format == AC_FETCH_FORMAT_SNORM ? LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
+      tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
+
+      /* Convert back to the right type. */
+      if (fix_fetch.u.format == AC_FETCH_FORMAT_SNORM) {
+         LLVMValueRef clamp;
+         LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
+         tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->ac.f32, "");
+         clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
+         tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
+      } else if (fix_fetch.u.format == AC_FETCH_FORMAT_SSCALED) {
+         tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->ac.f32, "");
+      }
+
+      fetches[3] = tmp;
+   }
+
+   for (unsigned i = 0; i < 4; ++i)
+      out[i] = ac_to_float(&ctx->ac, fetches[i]);
 }
 
-static void declare_input_vs(struct si_shader_context *ctx, unsigned input_index)
+void si_llvm_load_vs_inputs(struct si_shader_context *ctx, struct nir_shader *nir)
 {
-       LLVMValueRef input[4];
+   const struct si_shader_info *info = &ctx->shader->selector->info;
 
-       load_input_vs(ctx, input_index / 4, input);
+   for (unsigned i = 0; i < info->num_inputs; i++) {
+      LLVMValueRef values[4];
 
-       for (unsigned chan = 0; chan < 4; chan++) {
-               ctx->inputs[input_index + chan] =
-                       LLVMBuildBitCast(ctx->ac.builder, input[chan], ctx->ac.i32, "");
-       }
-}
+      load_input_vs(ctx, i, values);
 
-void si_llvm_load_vs_inputs(struct si_shader_context *ctx, struct nir_shader *nir)
-{
-       uint64_t processed_inputs = 0;
-
-       nir_foreach_variable(variable, &nir->inputs) {
-               unsigned attrib_count = glsl_count_attribute_slots(variable->type,
-                                                                  true);
-               unsigned input_idx = variable->data.driver_location;
-               unsigned loc = variable->data.location;
-
-               for (unsigned i = 0; i < attrib_count; i++) {
-                       /* Packed components share the same location so skip
-                        * them if we have already processed the location.
-                        */
-                       if (processed_inputs & ((uint64_t)1 << (loc + i))) {
-                               input_idx += 4;
-                               continue;
-                       }
-
-                       declare_input_vs(ctx, input_idx);
-                       if (glsl_type_is_dual_slot(variable->type)) {
-                               input_idx += 4;
-                               declare_input_vs(ctx, input_idx);
-                       }
-
-                       processed_inputs |= ((uint64_t)1 << (loc + i));
-                       input_idx += 4;
-               }
-       }
+      for (unsigned chan = 0; chan < 4; chan++) {
+         ctx->inputs[i * 4 + chan] =
+            LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i32, "");
+      }
+   }
 }
 
-void si_llvm_streamout_store_output(struct si_shader_context *ctx,
-                                   LLVMValueRef const *so_buffers,
-                                   LLVMValueRef const *so_write_offsets,
-                                   struct pipe_stream_output *stream_out,
-                                   struct si_shader_output_values *shader_out)
+void si_llvm_streamout_store_output(struct si_shader_context *ctx, LLVMValueRef const *so_buffers,
+                                    LLVMValueRef const *so_write_offsets,
+                                    struct pipe_stream_output *stream_out,
+                                    struct si_shader_output_values *shader_out)
 {
-       unsigned buf_idx = stream_out->output_buffer;
-       unsigned start = stream_out->start_component;
-       unsigned num_comps = stream_out->num_components;
-       LLVMValueRef out[4];
-
-       assert(num_comps && num_comps <= 4);
-       if (!num_comps || num_comps > 4)
-               return;
-
-       /* Load the output as int. */
-       for (int j = 0; j < num_comps; j++) {
-               assert(stream_out->stream == shader_out->vertex_stream[start + j]);
-
-               out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
-       }
-
-       /* Pack the output. */
-       LLVMValueRef vdata = NULL;
-
-       switch (num_comps) {
-       case 1: /* as i32 */
-               vdata = out[0];
-               break;
-       case 2: /* as v2i32 */
-       case 3: /* as v3i32 */
-               if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
-                       vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
-                       break;
-               }
-               /* as v4i32 (aligned to 4) */
-               out[3] = LLVMGetUndef(ctx->ac.i32);
-               /* fall through */
-       case 4: /* as v4i32 */
-               vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
-               break;
-       }
-
-       ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
-                                   vdata, num_comps,
-                                   so_write_offsets[buf_idx],
-                                   ctx->ac.i32_0,
-                                   stream_out->dst_offset * 4, ac_glc | ac_slc);
+   unsigned buf_idx = stream_out->output_buffer;
+   unsigned start = stream_out->start_component;
+   unsigned num_comps = stream_out->num_components;
+   LLVMValueRef out[4];
+
+   assert(num_comps && num_comps <= 4);
+   if (!num_comps || num_comps > 4)
+      return;
+
+   /* Load the output as int. */
+   for (int j = 0; j < num_comps; j++) {
+      assert(stream_out->stream == shader_out->vertex_stream[start + j]);
+
+      out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
+   }
+
+   /* Pack the output. */
+   LLVMValueRef vdata = NULL;
+
+   switch (num_comps) {
+   case 1: /* as i32 */
+      vdata = out[0];
+      break;
+   case 2: /* as v2i32 */
+   case 3: /* as v3i32 */
+      if (ac_has_vec3_support(ctx->screen->info.chip_class, false)) {
+         vdata = ac_build_gather_values(&ctx->ac, out, num_comps);
+         break;
+      }
+      /* as v4i32 (aligned to 4) */
+      out[3] = LLVMGetUndef(ctx->ac.i32);
+      /* fall through */
+   case 4: /* as v4i32 */
+      vdata = ac_build_gather_values(&ctx->ac, out, util_next_power_of_two(num_comps));
+      break;
+   }
+
+   ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx], vdata, num_comps,
+                               so_write_offsets[buf_idx], ctx->ac.i32_0, stream_out->dst_offset * 4,
+                               ac_glc | ac_slc);
 }
 
 /**
  * Write streamout data to buffers for vertex stream @p stream (different
  * vertex streams can occur for GS copy shaders).
  */
-void si_llvm_emit_streamout(struct si_shader_context *ctx,
-                           struct si_shader_output_values *outputs,
-                           unsigned noutput, unsigned stream)
+void si_llvm_emit_streamout(struct si_shader_context *ctx, struct si_shader_output_values *outputs,
+                            unsigned noutput, unsigned stream)
 {
-       struct si_shader_selector *sel = ctx->shader->selector;
-       struct pipe_stream_output_info *so = &sel->so;
-       LLVMBuilderRef builder = ctx->ac.builder;
-       int i;
-
-       /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
-       LLVMValueRef so_vtx_count =
-               si_unpack_param(ctx, ctx->streamout_config, 16, 7);
-
-       LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
-
-       /* can_emit = tid < so_vtx_count; */
-       LLVMValueRef can_emit =
-               LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
-
-       /* Emit the streamout code conditionally. This actually avoids
-        * out-of-bounds buffer access. The hw tells us via the SGPR
-        * (so_vtx_count) which threads are allowed to emit streamout data. */
-       ac_build_ifcc(&ctx->ac, can_emit, 6501);
-       {
-               /* The buffer offset is computed as follows:
-                *   ByteOffset = streamout_offset[buffer_id]*4 +
-                *                (streamout_write_index + thread_id)*stride[buffer_id] +
-                *                attrib_offset
-                 */
-
-               LLVMValueRef so_write_index =
-                       ac_get_arg(&ctx->ac,
-                                  ctx->streamout_write_index);
-
-               /* Compute (streamout_write_index + thread_id). */
-               so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
-
-               /* Load the descriptor and compute the write offset for each
-                * enabled buffer. */
-               LLVMValueRef so_write_offset[4] = {};
-               LLVMValueRef so_buffers[4];
-               LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac,
-                                                 ctx->rw_buffers);
-
-               for (i = 0; i < 4; i++) {
-                       if (!so->stride[i])
-                               continue;
-
-                       LLVMValueRef offset = LLVMConstInt(ctx->ac.i32,
-                                                          SI_VS_STREAMOUT_BUF0 + i, 0);
-
-                       so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
-
-                       LLVMValueRef so_offset = ac_get_arg(&ctx->ac,
-                                                           ctx->streamout_offset[i]);
-                       so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->ac.i32, 4, 0), "");
-
-                       so_write_offset[i] = ac_build_imad(&ctx->ac, so_write_index,
-                                                          LLVMConstInt(ctx->ac.i32, so->stride[i]*4, 0),
-                                                          so_offset);
-               }
-
-               /* Write streamout data. */
-               for (i = 0; i < so->num_outputs; i++) {
-                       unsigned reg = so->output[i].register_index;
-
-                       if (reg >= noutput)
-                               continue;
-
-                       if (stream != so->output[i].stream)
-                               continue;
-
-                       si_llvm_streamout_store_output(ctx, so_buffers, so_write_offset,
-                                                      &so->output[i], &outputs[reg]);
-               }
-       }
-       ac_build_endif(&ctx->ac, 6501);
+   struct si_shader_selector *sel = ctx->shader->selector;
+   struct pipe_stream_output_info *so = &sel->so;
+   LLVMBuilderRef builder = ctx->ac.builder;
+   int i;
+
+   /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
+   LLVMValueRef so_vtx_count = si_unpack_param(ctx, ctx->streamout_config, 16, 7);
+
+   LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
+
+   /* can_emit = tid < so_vtx_count; */
+   LLVMValueRef can_emit = LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
+
+   /* Emit the streamout code conditionally. This actually avoids
+    * out-of-bounds buffer access. The hw tells us via the SGPR
+    * (so_vtx_count) which threads are allowed to emit streamout data. */
+   ac_build_ifcc(&ctx->ac, can_emit, 6501);
+   {
+      /* The buffer offset is computed as follows:
+       *   ByteOffset = streamout_offset[buffer_id]*4 +
+       *                (streamout_write_index + thread_id)*stride[buffer_id] +
+       *                attrib_offset
+       */
+
+      LLVMValueRef so_write_index = ac_get_arg(&ctx->ac, ctx->streamout_write_index);
+
+      /* Compute (streamout_write_index + thread_id). */
+      so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
+
+      /* Load the descriptor and compute the write offset for each
+       * enabled buffer. */
+      LLVMValueRef so_write_offset[4] = {};
+      LLVMValueRef so_buffers[4];
+      LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+
+      for (i = 0; i < 4; i++) {
+         if (!so->stride[i])
+            continue;
+
+         LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + i, 0);
+
+         so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
+
+         LLVMValueRef so_offset = ac_get_arg(&ctx->ac, ctx->streamout_offset[i]);
+         so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->ac.i32, 4, 0), "");
+
+         so_write_offset[i] = ac_build_imad(
+            &ctx->ac, so_write_index, LLVMConstInt(ctx->ac.i32, so->stride[i] * 4, 0), so_offset);
+      }
+
+      /* Write streamout data. */
+      for (i = 0; i < so->num_outputs; i++) {
+         unsigned reg = so->output[i].register_index;
+
+         if (reg >= noutput)
+            continue;
+
+         if (stream != so->output[i].stream)
+            continue;
+
+         si_llvm_streamout_store_output(ctx, so_buffers, so_write_offset, &so->output[i],
+                                        &outputs[reg]);
+      }
+   }
+   ac_build_endif(&ctx->ac, 6501);
 }
 
-static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
-                                   struct ac_export_args *pos, LLVMValueRef *out_elts)
+static void si_llvm_emit_clipvertex(struct si_shader_context *ctx, struct ac_export_args *pos,
+                                    LLVMValueRef *out_elts)
 {
-       unsigned reg_index;
-       unsigned chan;
-       unsigned const_chan;
-       LLVMValueRef base_elt;
-       LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
-       LLVMValueRef constbuf_index = LLVMConstInt(ctx->ac.i32,
-                                                  SI_VS_CONST_CLIP_PLANES, 0);
-       LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
-
-       for (reg_index = 0; reg_index < 2; reg_index ++) {
-               struct ac_export_args *args = &pos[2 + reg_index];
-
-               args->out[0] =
-               args->out[1] =
-               args->out[2] =
-               args->out[3] = LLVMConstReal(ctx->ac.f32, 0.0f);
-
-               /* Compute dot products of position and user clip plane vectors */
-               for (chan = 0; chan < 4; chan++) {
-                       for (const_chan = 0; const_chan < 4; const_chan++) {
-                               LLVMValueRef addr =
-                                       LLVMConstInt(ctx->ac.i32, ((reg_index * 4 + chan) * 4 +
-                                                               const_chan) * 4, 0);
-                               base_elt = si_buffer_load_const(ctx, const_resource,
-                                                               addr);
-                               args->out[chan] = ac_build_fmad(&ctx->ac, base_elt,
-                                                               out_elts[const_chan], args->out[chan]);
-                       }
-               }
-
-               args->enabled_channels = 0xf;
-               args->valid_mask = 0;
-               args->done = 0;
-               args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
-               args->compr = 0;
-       }
+   unsigned reg_index;
+   unsigned chan;
+   unsigned const_chan;
+   LLVMValueRef base_elt;
+   LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+   LLVMValueRef constbuf_index = LLVMConstInt(ctx->ac.i32, SI_VS_CONST_CLIP_PLANES, 0);
+   LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
+
+   for (reg_index = 0; reg_index < 2; reg_index++) {
+      struct ac_export_args *args = &pos[2 + reg_index];
+
+      args->out[0] = args->out[1] = args->out[2] = args->out[3] = LLVMConstReal(ctx->ac.f32, 0.0f);
+
+      /* Compute dot products of position and user clip plane vectors */
+      for (chan = 0; chan < 4; chan++) {
+         for (const_chan = 0; const_chan < 4; const_chan++) {
+            LLVMValueRef addr =
+               LLVMConstInt(ctx->ac.i32, ((reg_index * 4 + chan) * 4 + const_chan) * 4, 0);
+            base_elt = si_buffer_load_const(ctx, const_resource, addr);
+            args->out[chan] =
+               ac_build_fmad(&ctx->ac, base_elt, out_elts[const_chan], args->out[chan]);
+         }
+      }
+
+      args->enabled_channels = 0xf;
+      args->valid_mask = 0;
+      args->done = 0;
+      args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
+      args->compr = 0;
+   }
 }
 
 /* Initialize arguments for the shader export intrinsic */
-static void si_llvm_init_vs_export_args(struct si_shader_context *ctx,
-                                       LLVMValueRef *values,
-                                       unsigned target,
-                                       struct ac_export_args *args)
+static void si_llvm_init_vs_export_args(struct si_shader_context *ctx, LLVMValueRef *values,
+                                        unsigned target, struct ac_export_args *args)
 {
-       args->enabled_channels = 0xf; /* writemask - default is 0xf */
-       args->valid_mask = 0; /* Specify whether the EXEC mask represents the valid mask */
-       args->done = 0; /* Specify whether this is the last export */
-       args->target = target; /* Specify the target we are exporting */
-       args->compr = false;
+   args->enabled_channels = 0xf; /* writemask - default is 0xf */
+   args->valid_mask = 0;         /* Specify whether the EXEC mask represents the valid mask */
+   args->done = 0;               /* Specify whether this is the last export */
+   args->target = target;        /* Specify the target we are exporting */
+   args->compr = false;
 
-       memcpy(&args->out[0], values, sizeof(values[0]) * 4);
+   memcpy(&args->out[0], values, sizeof(values[0]) * 4);
 }
 
-static void si_export_param(struct si_shader_context *ctx, unsigned index,
-                           LLVMValueRef *values)
+static void si_export_param(struct si_shader_context *ctx, unsigned index, LLVMValueRef *values)
 {
-       struct ac_export_args args;
+   struct ac_export_args args;
 
-       si_llvm_init_vs_export_args(ctx, values,
-                                   V_008DFC_SQ_EXP_PARAM + index, &args);
-       ac_build_export(&ctx->ac, &args);
+   si_llvm_init_vs_export_args(ctx, values, V_008DFC_SQ_EXP_PARAM + index, &args);
+   ac_build_export(&ctx->ac, &args);
 }
 
 static void si_build_param_exports(struct si_shader_context *ctx,
-                                  struct si_shader_output_values *outputs,
-                                  unsigned noutput)
+                                   struct si_shader_output_values *outputs, unsigned noutput)
 {
-       struct si_shader *shader = ctx->shader;
-       unsigned param_count = 0;
-
-       for (unsigned i = 0; i < noutput; i++) {
-               unsigned semantic_name = outputs[i].semantic_name;
-               unsigned semantic_index = outputs[i].semantic_index;
-
-               if (outputs[i].vertex_stream[0] != 0 &&
-                   outputs[i].vertex_stream[1] != 0 &&
-                   outputs[i].vertex_stream[2] != 0 &&
-                   outputs[i].vertex_stream[3] != 0)
-                       continue;
-
-               switch (semantic_name) {
-               case TGSI_SEMANTIC_LAYER:
-               case TGSI_SEMANTIC_VIEWPORT_INDEX:
-               case TGSI_SEMANTIC_CLIPDIST:
-               case TGSI_SEMANTIC_COLOR:
-               case TGSI_SEMANTIC_BCOLOR:
-               case TGSI_SEMANTIC_PRIMID:
-               case TGSI_SEMANTIC_FOG:
-               case TGSI_SEMANTIC_TEXCOORD:
-               case TGSI_SEMANTIC_GENERIC:
-                       break;
-               default:
-                       continue;
-               }
-
-               if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
-                    semantic_index < SI_MAX_IO_GENERIC) &&
-                   shader->key.opt.kill_outputs &
-                   (1ull << si_shader_io_get_unique_index(semantic_name,
-                                                          semantic_index, true)))
-                       continue;
-
-               si_export_param(ctx, param_count, outputs[i].values);
-
-               assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
-               shader->info.vs_output_param_offset[i] = param_count++;
-       }
-
-       shader->info.nr_param_exports = param_count;
+   struct si_shader *shader = ctx->shader;
+   unsigned param_count = 0;
+
+   for (unsigned i = 0; i < noutput; i++) {
+      unsigned semantic = outputs[i].semantic;
+
+      if (outputs[i].vertex_stream[0] != 0 && outputs[i].vertex_stream[1] != 0 &&
+          outputs[i].vertex_stream[2] != 0 && outputs[i].vertex_stream[3] != 0)
+         continue;
+
+      switch (semantic) {
+      case VARYING_SLOT_LAYER:
+      case VARYING_SLOT_VIEWPORT:
+      case VARYING_SLOT_CLIP_DIST0:
+      case VARYING_SLOT_CLIP_DIST1:
+      case VARYING_SLOT_COL0:
+      case VARYING_SLOT_COL1:
+      case VARYING_SLOT_BFC0:
+      case VARYING_SLOT_BFC1:
+      case VARYING_SLOT_PRIMITIVE_ID:
+      case VARYING_SLOT_FOGC:
+         break;
+      default:
+         if ((semantic >= VARYING_SLOT_TEX0 && semantic <= VARYING_SLOT_TEX7) ||
+             semantic >= VARYING_SLOT_VAR0)
+            break;
+         else
+            continue;
+      }
+
+      if (semantic < VARYING_SLOT_VAR0 + SI_MAX_IO_GENERIC &&
+          shader->key.opt.kill_outputs &
+             (1ull << si_shader_io_get_unique_index(semantic, true)))
+         continue;
+
+      si_export_param(ctx, param_count, outputs[i].values);
+
+      assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
+      shader->info.vs_output_param_offset[i] = param_count++;
+   }
+
+   shader->info.nr_param_exports = param_count;
 }
 
 /**
@@ -544,296 +473,277 @@ static void si_build_param_exports(struct si_shader_context *ctx,
  * is true.
  */
 static void si_vertex_color_clamping(struct si_shader_context *ctx,
-                                    struct si_shader_output_values *outputs,
-                                    unsigned noutput)
+                                     struct si_shader_output_values *outputs, unsigned noutput)
 {
-       LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
-       bool has_colors = false;
-
-       /* Store original colors to alloca variables. */
-       for (unsigned i = 0; i < noutput; i++) {
-               if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
-                   outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
-                       continue;
-
-               for (unsigned j = 0; j < 4; j++) {
-                       addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
-                       LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
-               }
-               has_colors = true;
-       }
-
-       if (!has_colors)
-               return;
-
-       /* The state is in the first bit of the user SGPR. */
-       LLVMValueRef cond = ac_get_arg(&ctx->ac, ctx->vs_state_bits);
-       cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->ac.i1, "");
-
-       ac_build_ifcc(&ctx->ac, cond, 6502);
-
-       /* Store clamped colors to alloca variables within the conditional block. */
-       for (unsigned i = 0; i < noutput; i++) {
-               if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
-                   outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
-                       continue;
-
-               for (unsigned j = 0; j < 4; j++) {
-                       LLVMBuildStore(ctx->ac.builder,
-                                      ac_build_clamp(&ctx->ac, outputs[i].values[j]),
-                                      addr[i][j]);
-               }
-       }
-       ac_build_endif(&ctx->ac, 6502);
-
-       /* Load clamped colors */
-       for (unsigned i = 0; i < noutput; i++) {
-               if (outputs[i].semantic_name != TGSI_SEMANTIC_COLOR &&
-                   outputs[i].semantic_name != TGSI_SEMANTIC_BCOLOR)
-                       continue;
-
-               for (unsigned j = 0; j < 4; j++) {
-                       outputs[i].values[j] =
-                               LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
-               }
-       }
+   LLVMValueRef addr[SI_MAX_VS_OUTPUTS][4];
+   bool has_colors = false;
+
+   /* Store original colors to alloca variables. */
+   for (unsigned i = 0; i < noutput; i++) {
+      if (outputs[i].semantic != VARYING_SLOT_COL0 &&
+          outputs[i].semantic != VARYING_SLOT_COL1 &&
+          outputs[i].semantic != VARYING_SLOT_BFC0 &&
+          outputs[i].semantic != VARYING_SLOT_BFC1)
+         continue;
+
+      for (unsigned j = 0; j < 4; j++) {
+         addr[i][j] = ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
+         LLVMBuildStore(ctx->ac.builder, outputs[i].values[j], addr[i][j]);
+      }
+      has_colors = true;
+   }
+
+   if (!has_colors)
+      return;
+
+   /* The state is in the first bit of the user SGPR. */
+   LLVMValueRef cond = ac_get_arg(&ctx->ac, ctx->vs_state_bits);
+   cond = LLVMBuildTrunc(ctx->ac.builder, cond, ctx->ac.i1, "");
+
+   ac_build_ifcc(&ctx->ac, cond, 6502);
+
+   /* Store clamped colors to alloca variables within the conditional block. */
+   for (unsigned i = 0; i < noutput; i++) {
+      if (outputs[i].semantic != VARYING_SLOT_COL0 &&
+          outputs[i].semantic != VARYING_SLOT_COL1 &&
+          outputs[i].semantic != VARYING_SLOT_BFC0 &&
+          outputs[i].semantic != VARYING_SLOT_BFC1)
+         continue;
+
+      for (unsigned j = 0; j < 4; j++) {
+         LLVMBuildStore(ctx->ac.builder, ac_build_clamp(&ctx->ac, outputs[i].values[j]),
+                        addr[i][j]);
+      }
+   }
+   ac_build_endif(&ctx->ac, 6502);
+
+   /* Load clamped colors */
+   for (unsigned i = 0; i < noutput; i++) {
+      if (outputs[i].semantic != VARYING_SLOT_COL0 &&
+          outputs[i].semantic != VARYING_SLOT_COL1 &&
+          outputs[i].semantic != VARYING_SLOT_BFC0 &&
+          outputs[i].semantic != VARYING_SLOT_BFC1)
+         continue;
+
+      for (unsigned j = 0; j < 4; j++) {
+         outputs[i].values[j] = LLVMBuildLoad(ctx->ac.builder, addr[i][j], "");
+      }
+   }
 }
 
 /* Generate export instructions for hardware VS shader stage or NGG GS stage
  * (position and parameter data only).
  */
 void si_llvm_build_vs_exports(struct si_shader_context *ctx,
-                             struct si_shader_output_values *outputs,
-                             unsigned noutput)
+                              struct si_shader_output_values *outputs, unsigned noutput)
 {
-       struct si_shader *shader = ctx->shader;
-       struct ac_export_args pos_args[4] = {};
-       LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
-       unsigned pos_idx;
-       int i;
-
-       si_vertex_color_clamping(ctx, outputs, noutput);
-
-       /* Build position exports. */
-       for (i = 0; i < noutput; i++) {
-               switch (outputs[i].semantic_name) {
-               case TGSI_SEMANTIC_POSITION:
-                       si_llvm_init_vs_export_args(ctx, outputs[i].values,
-                                                   V_008DFC_SQ_EXP_POS, &pos_args[0]);
-                       break;
-               case TGSI_SEMANTIC_PSIZE:
-                       psize_value = outputs[i].values[0];
-                       break;
-               case TGSI_SEMANTIC_LAYER:
-                       layer_value = outputs[i].values[0];
-                       break;
-               case TGSI_SEMANTIC_VIEWPORT_INDEX:
-                       viewport_index_value = outputs[i].values[0];
-                       break;
-               case TGSI_SEMANTIC_EDGEFLAG:
-                       edgeflag_value = outputs[i].values[0];
-                       break;
-               case TGSI_SEMANTIC_CLIPDIST:
-                       if (!shader->key.opt.clip_disable) {
-                               unsigned index = 2 + outputs[i].semantic_index;
-                               si_llvm_init_vs_export_args(ctx, outputs[i].values,
-                                                           V_008DFC_SQ_EXP_POS + index,
-                                                           &pos_args[index]);
-                       }
-                       break;
-               case TGSI_SEMANTIC_CLIPVERTEX:
-                       if (!shader->key.opt.clip_disable) {
-                               si_llvm_emit_clipvertex(ctx, pos_args,
-                                                       outputs[i].values);
-                       }
-                       break;
-               }
-       }
-
-       /* We need to add the position output manually if it's missing. */
-       if (!pos_args[0].out[0]) {
-               pos_args[0].enabled_channels = 0xf; /* writemask */
-               pos_args[0].valid_mask = 0; /* EXEC mask */
-               pos_args[0].done = 0; /* last export? */
-               pos_args[0].target = V_008DFC_SQ_EXP_POS;
-               pos_args[0].compr = 0; /* COMPR flag */
-               pos_args[0].out[0] = ctx->ac.f32_0; /* X */
-               pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
-               pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
-               pos_args[0].out[3] = ctx->ac.f32_1;  /* W */
-       }
-
-       bool pos_writes_edgeflag = shader->selector->info.writes_edgeflag &&
-                                  !shader->key.as_ngg;
-
-       /* Write the misc vector (point size, edgeflag, layer, viewport). */
-       if (shader->selector->info.writes_psize ||
-           pos_writes_edgeflag ||
-           shader->selector->info.writes_viewport_index ||
-           shader->selector->info.writes_layer) {
-               pos_args[1].enabled_channels = shader->selector->info.writes_psize |
-                                              (pos_writes_edgeflag << 1) |
-                                              (shader->selector->info.writes_layer << 2);
-
-               pos_args[1].valid_mask = 0; /* EXEC mask */
-               pos_args[1].done = 0; /* last export? */
-               pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
-               pos_args[1].compr = 0; /* COMPR flag */
-               pos_args[1].out[0] = ctx->ac.f32_0; /* X */
-               pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
-               pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
-               pos_args[1].out[3] = ctx->ac.f32_0; /* W */
-
-               if (shader->selector->info.writes_psize)
-                       pos_args[1].out[0] = psize_value;
-
-               if (pos_writes_edgeflag) {
-                       /* The output is a float, but the hw expects an integer
-                        * with the first bit containing the edge flag. */
-                       edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
-                                                        edgeflag_value,
-                                                        ctx->ac.i32, "");
-                       edgeflag_value = ac_build_umin(&ctx->ac,
-                                                     edgeflag_value,
-                                                     ctx->ac.i32_1);
-
-                       /* The LLVM intrinsic expects a float. */
-                       pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
-               }
-
-               if (ctx->screen->info.chip_class >= GFX9) {
-                       /* GFX9 has the layer in out.z[10:0] and the viewport
-                        * index in out.z[19:16].
-                        */
-                       if (shader->selector->info.writes_layer)
-                               pos_args[1].out[2] = layer_value;
-
-                       if (shader->selector->info.writes_viewport_index) {
-                               LLVMValueRef v = viewport_index_value;
-
-                               v = ac_to_integer(&ctx->ac, v);
-                               v = LLVMBuildShl(ctx->ac.builder, v,
-                                                LLVMConstInt(ctx->ac.i32, 16, 0), "");
-                               v = LLVMBuildOr(ctx->ac.builder, v,
-                                               ac_to_integer(&ctx->ac,  pos_args[1].out[2]), "");
-                               pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
-                               pos_args[1].enabled_channels |= 1 << 2;
-                       }
-               } else {
-                       if (shader->selector->info.writes_layer)
-                               pos_args[1].out[2] = layer_value;
-
-                       if (shader->selector->info.writes_viewport_index) {
-                               pos_args[1].out[3] = viewport_index_value;
-                               pos_args[1].enabled_channels |= 1 << 3;
-                       }
-               }
-       }
-
-       for (i = 0; i < 4; i++)
-               if (pos_args[i].out[0])
-                       shader->info.nr_pos_exports++;
-
-       /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
-        * Setting valid_mask=1 prevents it and has no other effect.
-        */
-       if (ctx->screen->info.family == CHIP_NAVI10 ||
-           ctx->screen->info.family == CHIP_NAVI12 ||
-           ctx->screen->info.family == CHIP_NAVI14)
-               pos_args[0].valid_mask = 1;
-
-       pos_idx = 0;
-       for (i = 0; i < 4; i++) {
-               if (!pos_args[i].out[0])
-                       continue;
-
-               /* Specify the target we are exporting */
-               pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
-
-               if (pos_idx == shader->info.nr_pos_exports)
-                       /* Specify that this is the last export */
-                       pos_args[i].done = 1;
-
-               ac_build_export(&ctx->ac, &pos_args[i]);
-       }
-
-       /* Build parameter exports. */
-       si_build_param_exports(ctx, outputs, noutput);
+   struct si_shader *shader = ctx->shader;
+   struct ac_export_args pos_args[4] = {};
+   LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL,
+                viewport_index_value = NULL;
+   unsigned pos_idx;
+   int i;
+
+   si_vertex_color_clamping(ctx, outputs, noutput);
+
+   /* Build position exports. */
+   for (i = 0; i < noutput; i++) {
+      switch (outputs[i].semantic) {
+      case VARYING_SLOT_POS:
+         si_llvm_init_vs_export_args(ctx, outputs[i].values, V_008DFC_SQ_EXP_POS, &pos_args[0]);
+         break;
+      case VARYING_SLOT_PSIZ:
+         psize_value = outputs[i].values[0];
+         break;
+      case VARYING_SLOT_LAYER:
+         layer_value = outputs[i].values[0];
+         break;
+      case VARYING_SLOT_VIEWPORT:
+         viewport_index_value = outputs[i].values[0];
+         break;
+      case VARYING_SLOT_EDGE:
+         edgeflag_value = outputs[i].values[0];
+         break;
+      case VARYING_SLOT_CLIP_DIST0:
+      case VARYING_SLOT_CLIP_DIST1:
+         if (!shader->key.opt.clip_disable) {
+            unsigned index = 2 + (outputs[i].semantic - VARYING_SLOT_CLIP_DIST0);
+            si_llvm_init_vs_export_args(ctx, outputs[i].values, V_008DFC_SQ_EXP_POS + index,
+                                        &pos_args[index]);
+         }
+         break;
+      case VARYING_SLOT_CLIP_VERTEX:
+         if (!shader->key.opt.clip_disable) {
+            si_llvm_emit_clipvertex(ctx, pos_args, outputs[i].values);
+         }
+         break;
+      }
+   }
+
+   /* We need to add the position output manually if it's missing. */
+   if (!pos_args[0].out[0]) {
+      pos_args[0].enabled_channels = 0xf; /* writemask */
+      pos_args[0].valid_mask = 0;         /* EXEC mask */
+      pos_args[0].done = 0;               /* last export? */
+      pos_args[0].target = V_008DFC_SQ_EXP_POS;
+      pos_args[0].compr = 0;              /* COMPR flag */
+      pos_args[0].out[0] = ctx->ac.f32_0; /* X */
+      pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
+      pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
+      pos_args[0].out[3] = ctx->ac.f32_1; /* W */
+   }
+
+   bool writes_psize = shader->selector->info.writes_psize && !shader->key.opt.kill_pointsize;
+   bool pos_writes_edgeflag = shader->selector->info.writes_edgeflag && !shader->key.as_ngg;
+
+   /* Write the misc vector (point size, edgeflag, layer, viewport). */
+   if (writes_psize || pos_writes_edgeflag ||
+       shader->selector->info.writes_viewport_index || shader->selector->info.writes_layer) {
+      pos_args[1].enabled_channels = writes_psize |
+                                     (pos_writes_edgeflag << 1) |
+                                     (shader->selector->info.writes_layer << 2);
+
+      pos_args[1].valid_mask = 0; /* EXEC mask */
+      pos_args[1].done = 0;       /* last export? */
+      pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
+      pos_args[1].compr = 0;              /* COMPR flag */
+      pos_args[1].out[0] = ctx->ac.f32_0; /* X */
+      pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
+      pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
+      pos_args[1].out[3] = ctx->ac.f32_0; /* W */
+
+      if (writes_psize)
+         pos_args[1].out[0] = psize_value;
+
+      if (pos_writes_edgeflag) {
+         /* The output is a float, but the hw expects an integer
+          * with the first bit containing the edge flag. */
+         edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder, edgeflag_value, ctx->ac.i32, "");
+         edgeflag_value = ac_build_umin(&ctx->ac, edgeflag_value, ctx->ac.i32_1);
+
+         /* The LLVM intrinsic expects a float. */
+         pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
+      }
+
+      if (ctx->screen->info.chip_class >= GFX9) {
+         /* GFX9 has the layer in out.z[10:0] and the viewport
+          * index in out.z[19:16].
+          */
+         if (shader->selector->info.writes_layer)
+            pos_args[1].out[2] = layer_value;
+
+         if (shader->selector->info.writes_viewport_index) {
+            LLVMValueRef v = viewport_index_value;
+
+            v = ac_to_integer(&ctx->ac, v);
+            v = LLVMBuildShl(ctx->ac.builder, v, LLVMConstInt(ctx->ac.i32, 16, 0), "");
+            v = LLVMBuildOr(ctx->ac.builder, v, ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
+            pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
+            pos_args[1].enabled_channels |= 1 << 2;
+         }
+      } else {
+         if (shader->selector->info.writes_layer)
+            pos_args[1].out[2] = layer_value;
+
+         if (shader->selector->info.writes_viewport_index) {
+            pos_args[1].out[3] = viewport_index_value;
+            pos_args[1].enabled_channels |= 1 << 3;
+         }
+      }
+   }
+
+   for (i = 0; i < 4; i++)
+      if (pos_args[i].out[0])
+         shader->info.nr_pos_exports++;
+
+   /* GFX10 (Navi1x) skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
+    * Setting valid_mask=1 prevents it and has no other effect.
+    */
+   if (ctx->screen->info.chip_class == GFX10)
+      pos_args[0].valid_mask = 1;
+
+   pos_idx = 0;
+   for (i = 0; i < 4; i++) {
+      if (!pos_args[i].out[0])
+         continue;
+
+      /* Specify the target we are exporting */
+      pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
+
+      if (pos_idx == shader->info.nr_pos_exports)
+         /* Specify that this is the last export */
+         pos_args[i].done = 1;
+
+      ac_build_export(&ctx->ac, &pos_args[i]);
+   }
+
+   /* Build parameter exports. */
+   si_build_param_exports(ctx, outputs, noutput);
 }
 
-void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs,
-                             LLVMValueRef *addrs)
+void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs)
 {
-       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
-       struct si_shader_info *info = &ctx->shader->selector->info;
-       struct si_shader_output_values *outputs = NULL;
-       int i,j;
-
-       assert(!ctx->shader->is_gs_copy_shader);
-       assert(info->num_outputs <= max_outputs);
-
-       outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
-
-       for (i = 0; i < info->num_outputs; i++) {
-               outputs[i].semantic_name = info->output_semantic_name[i];
-               outputs[i].semantic_index = info->output_semantic_index[i];
-
-               for (j = 0; j < 4; j++) {
-                       outputs[i].values[j] =
-                               LLVMBuildLoad(ctx->ac.builder,
-                                             addrs[4 * i + j],
-                                             "");
-                       outputs[i].vertex_stream[j] =
-                               (info->output_streams[i] >> (2 * j)) & 3;
-               }
-       }
-
-       if (!ctx->screen->use_ngg_streamout &&
-           ctx->shader->selector->so.num_outputs)
-               si_llvm_emit_streamout(ctx, outputs, i, 0);
-
-       /* Export PrimitiveID. */
-       if (ctx->shader->key.mono.u.vs_export_prim_id) {
-               outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
-               outputs[i].semantic_index = 0;
-               outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
-               for (j = 1; j < 4; j++)
-                       outputs[i].values[j] = LLVMConstReal(ctx->ac.f32, 0);
-
-               memset(outputs[i].vertex_stream, 0,
-                      sizeof(outputs[i].vertex_stream));
-               i++;
-       }
-
-       si_llvm_build_vs_exports(ctx, outputs, i);
-       FREE(outputs);
+   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+   struct si_shader_info *info = &ctx->shader->selector->info;
+   struct si_shader_output_values *outputs = NULL;
+   int i, j;
+
+   assert(!ctx->shader->is_gs_copy_shader);
+   assert(info->num_outputs <= max_outputs);
+
+   outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
+
+   for (i = 0; i < info->num_outputs; i++) {
+      outputs[i].semantic = info->output_semantic[i];
+
+      for (j = 0; j < 4; j++) {
+         outputs[i].values[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
+         outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
+      }
+   }
+
+   if (!ctx->screen->use_ngg_streamout && ctx->shader->selector->so.num_outputs)
+      si_llvm_emit_streamout(ctx, outputs, i, 0);
+
+   /* Export PrimitiveID. */
+   if (ctx->shader->key.mono.u.vs_export_prim_id) {
+      outputs[i].semantic = VARYING_SLOT_PRIMITIVE_ID;
+      outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
+      for (j = 1; j < 4; j++)
+         outputs[i].values[j] = LLVMConstReal(ctx->ac.f32, 0);
+
+      memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream));
+      i++;
+   }
+
+   si_llvm_build_vs_exports(ctx, outputs, i);
+   FREE(outputs);
 }
 
-static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
-                                                 unsigned max_outputs,
-                                                 LLVMValueRef *addrs)
+static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi, unsigned max_outputs,
+                                                  LLVMValueRef *addrs)
 {
-       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
-       struct si_shader_info *info = &ctx->shader->selector->info;
-       LLVMValueRef pos[4] = {};
-
-       assert(info->num_outputs <= max_outputs);
-
-       for (unsigned i = 0; i < info->num_outputs; i++) {
-               if (info->output_semantic_name[i] != TGSI_SEMANTIC_POSITION)
-                       continue;
-
-               for (unsigned chan = 0; chan < 4; chan++)
-                       pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
-               break;
-       }
-       assert(pos[0] != NULL);
-
-       /* Return the position output. */
-       LLVMValueRef ret = ctx->return_value;
-       for (unsigned chan = 0; chan < 4; chan++)
-               ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
-       ctx->return_value = ret;
+   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+   struct si_shader_info *info = &ctx->shader->selector->info;
+   LLVMValueRef pos[4] = {};
+
+   assert(info->num_outputs <= max_outputs);
+
+   for (unsigned i = 0; i < info->num_outputs; i++) {
+      if (info->output_semantic[i] != VARYING_SLOT_POS)
+         continue;
+
+      for (unsigned chan = 0; chan < 4; chan++)
+         pos[chan] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
+      break;
+   }
+   assert(pos[0] != NULL);
+
+   /* Return the position output. */
+   LLVMValueRef ret = ctx->return_value;
+   for (unsigned chan = 0; chan < 4; chan++)
+      ret = LLVMBuildInsertValue(ctx->ac.builder, ret, pos[chan], chan, "");
+   ctx->return_value = ret;
 }
 
 /**
@@ -852,280 +762,252 @@ static void si_llvm_emit_prim_discard_cs_epilogue(struct ac_shader_abi *abi,
  *   (InstanceID + StartInstance),
  *   (InstanceID / 2 + StartInstance)
  */
-void si_llvm_build_vs_prolog(struct si_shader_context *ctx,
-                            union si_shader_part_key *key)
+void si_llvm_build_vs_prolog(struct si_shader_context *ctx, union si_shader_part_key *key)
 {
-       LLVMTypeRef *returns;
-       LLVMValueRef ret, func;
-       int num_returns, i;
-       unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
-       unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4 +
-                                  (key->vs_prolog.has_ngg_cull_inputs ? 1 : 0);
-       struct ac_arg input_sgpr_param[key->vs_prolog.num_input_sgprs];
-       struct ac_arg input_vgpr_param[10];
-       LLVMValueRef input_vgprs[10];
-       unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
-                                     num_input_vgprs;
-       unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
-
-       memset(&ctx->args, 0, sizeof(ctx->args));
-
-       /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
-       returns = alloca((num_all_input_regs + key->vs_prolog.num_inputs) *
-                        sizeof(LLVMTypeRef));
-       num_returns = 0;
-
-       /* Declare input and output SGPRs. */
-       for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
-               ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
-                          &input_sgpr_param[i]);
-               returns[num_returns++] = ctx->ac.i32;
-       }
-
-       struct ac_arg merged_wave_info = input_sgpr_param[3];
-
-       /* Preloaded VGPRs (outputs must be floats) */
-       for (i = 0; i < num_input_vgprs; i++) {
-               ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &input_vgpr_param[i]);
-               returns[num_returns++] = ctx->ac.f32;
-       }
-
-       /* Vertex load indices. */
-       for (i = 0; i < key->vs_prolog.num_inputs; i++)
-               returns[num_returns++] = ctx->ac.f32;
-
-       /* Create the function. */
-       si_llvm_create_func(ctx, "vs_prolog", returns, num_returns, 0);
-       func = ctx->main_fn;
-
-       for (i = 0; i < num_input_vgprs; i++) {
-               input_vgprs[i] = ac_get_arg(&ctx->ac, input_vgpr_param[i]);
-       }
-
-       if (key->vs_prolog.num_merged_next_stage_vgprs) {
-               if (!key->vs_prolog.is_monolithic)
-                       si_init_exec_from_input(ctx, merged_wave_info, 0);
-
-               if (key->vs_prolog.as_ls &&
-                   ctx->screen->info.has_ls_vgpr_init_bug) {
-                       /* If there are no HS threads, SPI loads the LS VGPRs
-                        * starting at VGPR 0. Shift them back to where they
-                        * belong.
-                        */
-                       LLVMValueRef has_hs_threads =
-                               LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
-                                   si_unpack_param(ctx, input_sgpr_param[3], 8, 8),
-                                   ctx->ac.i32_0, "");
-
-                       for (i = 4; i > 0; --i) {
-                               input_vgprs[i + 1] =
-                                       LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
-                                                       input_vgprs[i + 1],
-                                                       input_vgprs[i - 1], "");
-                       }
-               }
-       }
-
-       if (key->vs_prolog.gs_fast_launch_tri_list ||
-           key->vs_prolog.gs_fast_launch_tri_strip) {
-               LLVMValueRef wave_id, thread_id_in_tg;
-
-               wave_id = si_unpack_param(ctx, input_sgpr_param[3], 24, 4);
-               thread_id_in_tg = ac_build_imad(&ctx->ac, wave_id,
-                                               LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false),
-                                               ac_get_thread_id(&ctx->ac));
-
-               /* The GS fast launch initializes all VGPRs to the value of
-                * the first thread, so we have to add the thread ID.
-                *
-                * Only these are initialized by the hw:
-                *   VGPR2: Base Primitive ID
-                *   VGPR5: Base Vertex ID
-                *   VGPR6: Instance ID
-                */
-
-               /* Put the vertex thread IDs into VGPRs as-is instead of packing them.
-                * The NGG cull shader will read them from there.
-                */
-               if (key->vs_prolog.gs_fast_launch_tri_list) {
-                       input_vgprs[0] = ac_build_imad(&ctx->ac, thread_id_in_tg, /* gs_vtx01_offset */
-                                                      LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 0 */
-                                                      LLVMConstInt(ctx->ac.i32, 0, 0));
-                       input_vgprs[1] = ac_build_imad(&ctx->ac, thread_id_in_tg, /* gs_vtx23_offset */
-                                                      LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 1 */
-                                                      LLVMConstInt(ctx->ac.i32, 1, 0));
-                       input_vgprs[4] = ac_build_imad(&ctx->ac, thread_id_in_tg, /* gs_vtx45_offset */
-                                                      LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 2 */
-                                                      LLVMConstInt(ctx->ac.i32, 2, 0));
-               } else {
-                       assert(key->vs_prolog.gs_fast_launch_tri_strip);
-                       LLVMBuilderRef builder = ctx->ac.builder;
-                       /* Triangle indices: */
-                       LLVMValueRef index[3] = {
-                               thread_id_in_tg,
-                               LLVMBuildAdd(builder, thread_id_in_tg,
-                                            LLVMConstInt(ctx->ac.i32, 1, 0), ""),
-                               LLVMBuildAdd(builder, thread_id_in_tg,
-                                            LLVMConstInt(ctx->ac.i32, 2, 0), ""),
-                       };
-                       LLVMValueRef is_odd = LLVMBuildTrunc(ctx->ac.builder,
-                                                            thread_id_in_tg, ctx->ac.i1, "");
-                       LLVMValueRef flatshade_first =
-                               LLVMBuildICmp(builder, LLVMIntEQ,
-                                             si_unpack_param(ctx, ctx->vs_state_bits, 4, 2),
-                                             ctx->ac.i32_0, "");
-
-                       ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd,
-                                                                   flatshade_first, index);
-                       input_vgprs[0] = index[0];
-                       input_vgprs[1] = index[1];
-                       input_vgprs[4] = index[2];
-               }
-
-               /* Triangles always have all edge flags set initially. */
-               input_vgprs[3] = LLVMConstInt(ctx->ac.i32, 0x7 << 8, 0);
-
-               input_vgprs[2] = LLVMBuildAdd(ctx->ac.builder, input_vgprs[2],
-                                             thread_id_in_tg, ""); /* PrimID */
-               input_vgprs[5] = LLVMBuildAdd(ctx->ac.builder, input_vgprs[5],
-                                             thread_id_in_tg, ""); /* VertexID */
-               input_vgprs[8] = input_vgprs[6]; /* InstanceID */
-       }
-
-       unsigned vertex_id_vgpr = first_vs_vgpr;
-       unsigned instance_id_vgpr =
-               ctx->screen->info.chip_class >= GFX10 ?
-                       first_vs_vgpr + 3 :
-                       first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
-
-       ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
-       ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
-
-       /* InstanceID = VertexID >> 16;
-        * VertexID   = VertexID & 0xffff;
-        */
-       if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
-               ctx->abi.instance_id = LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id,
-                                                    LLVMConstInt(ctx->ac.i32, 16, 0), "");
-               ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
-                                                 LLVMConstInt(ctx->ac.i32, 0xffff, 0), "");
-       }
-
-       /* Copy inputs to outputs. This should be no-op, as the registers match,
-        * but it will prevent the compiler from overwriting them unintentionally.
-        */
-       ret = ctx->return_value;
-       for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
-               LLVMValueRef p = LLVMGetParam(func, i);
-               ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
-       }
-       for (i = 0; i < num_input_vgprs; i++) {
-               LLVMValueRef p = input_vgprs[i];
-
-               if (i == vertex_id_vgpr)
-                       p = ctx->abi.vertex_id;
-               else if (i == instance_id_vgpr)
-                       p = ctx->abi.instance_id;
-
-               p = ac_to_float(&ctx->ac, p);
-               ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
-                                          key->vs_prolog.num_input_sgprs + i, "");
-       }
-
-       /* Compute vertex load indices from instance divisors. */
-       LLVMValueRef instance_divisor_constbuf = NULL;
-
-       if (key->vs_prolog.states.instance_divisor_is_fetched) {
-               LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
-               LLVMValueRef buf_index =
-                       LLVMConstInt(ctx->ac.i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
-               instance_divisor_constbuf =
-                       ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
-       }
-
-       for (i = 0; i < key->vs_prolog.num_inputs; i++) {
-               bool divisor_is_one =
-                       key->vs_prolog.states.instance_divisor_is_one & (1u << i);
-               bool divisor_is_fetched =
-                       key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
-               LLVMValueRef index = NULL;
-
-               if (divisor_is_one) {
-                       index = ctx->abi.instance_id;
-               } else if (divisor_is_fetched) {
-                       LLVMValueRef udiv_factors[4];
-
-                       for (unsigned j = 0; j < 4; j++) {
-                               udiv_factors[j] =
-                                       si_buffer_load_const(ctx, instance_divisor_constbuf,
-                                                            LLVMConstInt(ctx->ac.i32, i*16 + j*4, 0));
-                               udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
-                       }
-                       /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
-                        * Such InstanceID might not be achievable in a reasonable time though.
-                        */
-                       index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id,
-                                                      udiv_factors[0], udiv_factors[1],
-                                                      udiv_factors[2], udiv_factors[3]);
-               }
-
-               if (divisor_is_one || divisor_is_fetched) {
-                       /* Add StartInstance. */
-                       index = LLVMBuildAdd(ctx->ac.builder, index,
-                                            LLVMGetParam(ctx->main_fn, user_sgpr_base +
-                                                         SI_SGPR_START_INSTANCE), "");
-               } else {
-                       /* VertexID + BaseVertex */
-                       index = LLVMBuildAdd(ctx->ac.builder,
-                                            ctx->abi.vertex_id,
-                                            LLVMGetParam(func, user_sgpr_base +
-                                                               SI_SGPR_BASE_VERTEX), "");
-               }
-
-               index = ac_to_float(&ctx->ac, index);
-               ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
-                                          ctx->args.arg_count + i, "");
-       }
-
-       si_llvm_build_ret(ctx, ret);
+   LLVMTypeRef *returns;
+   LLVMValueRef ret, func;
+   int num_returns, i;
+   unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
+   unsigned num_input_vgprs =
+      key->vs_prolog.num_merged_next_stage_vgprs + 4 + (key->vs_prolog.has_ngg_cull_inputs ? 1 : 0);
+   struct ac_arg input_sgpr_param[key->vs_prolog.num_input_sgprs];
+   struct ac_arg input_vgpr_param[10];
+   LLVMValueRef input_vgprs[10];
+   unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs + num_input_vgprs;
+   unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
+
+   memset(&ctx->args, 0, sizeof(ctx->args));
+
+   /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
+   returns = alloca((num_all_input_regs + key->vs_prolog.num_inputs) * sizeof(LLVMTypeRef));
+   num_returns = 0;
+
+   /* Declare input and output SGPRs. */
+   for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
+      ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &input_sgpr_param[i]);
+      returns[num_returns++] = ctx->ac.i32;
+   }
+
+   struct ac_arg merged_wave_info = input_sgpr_param[3];
+
+   /* Preloaded VGPRs (outputs must be floats) */
+   for (i = 0; i < num_input_vgprs; i++) {
+      ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &input_vgpr_param[i]);
+      returns[num_returns++] = ctx->ac.f32;
+   }
+
+   /* Vertex load indices. */
+   for (i = 0; i < key->vs_prolog.num_inputs; i++)
+      returns[num_returns++] = ctx->ac.f32;
+
+   /* Create the function. */
+   si_llvm_create_func(ctx, "vs_prolog", returns, num_returns, 0);
+   func = ctx->main_fn;
+
+   for (i = 0; i < num_input_vgprs; i++) {
+      input_vgprs[i] = ac_get_arg(&ctx->ac, input_vgpr_param[i]);
+   }
+
+   if (key->vs_prolog.num_merged_next_stage_vgprs) {
+      if (!key->vs_prolog.is_monolithic)
+         si_init_exec_from_input(ctx, merged_wave_info, 0);
+
+      if (key->vs_prolog.as_ls && ctx->screen->info.has_ls_vgpr_init_bug) {
+         /* If there are no HS threads, SPI loads the LS VGPRs
+          * starting at VGPR 0. Shift them back to where they
+          * belong.
+          */
+         LLVMValueRef has_hs_threads =
+            LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
+                          si_unpack_param(ctx, input_sgpr_param[3], 8, 8), ctx->ac.i32_0, "");
+
+         for (i = 4; i > 0; --i) {
+            input_vgprs[i + 1] = LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
+                                                 input_vgprs[i + 1], input_vgprs[i - 1], "");
+         }
+      }
+   }
+
+   if (key->vs_prolog.gs_fast_launch_tri_list || key->vs_prolog.gs_fast_launch_tri_strip) {
+      LLVMValueRef wave_id, thread_id_in_tg;
+
+      wave_id = si_unpack_param(ctx, input_sgpr_param[3], 24, 4);
+      thread_id_in_tg =
+         ac_build_imad(&ctx->ac, wave_id, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false),
+                       ac_get_thread_id(&ctx->ac));
+
+      /* The GS fast launch initializes all VGPRs to the value of
+       * the first thread, so we have to add the thread ID.
+       *
+       * Only these are initialized by the hw:
+       *   VGPR2: Base Primitive ID
+       *   VGPR5: Base Vertex ID
+       *   VGPR6: Instance ID
+       */
+
+      /* Put the vertex thread IDs into VGPRs as-is instead of packing them.
+       * The NGG cull shader will read them from there.
+       */
+      if (key->vs_prolog.gs_fast_launch_tri_list) {
+         input_vgprs[0] = ac_build_imad(&ctx->ac, thread_id_in_tg,       /* gs_vtx01_offset */
+                                        LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 0 */
+                                        LLVMConstInt(ctx->ac.i32, 0, 0));
+         input_vgprs[1] = ac_build_imad(&ctx->ac, thread_id_in_tg,       /* gs_vtx23_offset */
+                                        LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 1 */
+                                        LLVMConstInt(ctx->ac.i32, 1, 0));
+         input_vgprs[4] = ac_build_imad(&ctx->ac, thread_id_in_tg,       /* gs_vtx45_offset */
+                                        LLVMConstInt(ctx->ac.i32, 3, 0), /* Vertex 2 */
+                                        LLVMConstInt(ctx->ac.i32, 2, 0));
+      } else {
+         assert(key->vs_prolog.gs_fast_launch_tri_strip);
+         LLVMBuilderRef builder = ctx->ac.builder;
+         /* Triangle indices: */
+         LLVMValueRef index[3] = {
+            thread_id_in_tg,
+            LLVMBuildAdd(builder, thread_id_in_tg, LLVMConstInt(ctx->ac.i32, 1, 0), ""),
+            LLVMBuildAdd(builder, thread_id_in_tg, LLVMConstInt(ctx->ac.i32, 2, 0), ""),
+         };
+         LLVMValueRef is_odd = LLVMBuildTrunc(ctx->ac.builder, thread_id_in_tg, ctx->ac.i1, "");
+         LLVMValueRef flatshade_first = LLVMBuildICmp(
+            builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
+
+         ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, index);
+         input_vgprs[0] = index[0];
+         input_vgprs[1] = index[1];
+         input_vgprs[4] = index[2];
+      }
+
+      /* Triangles always have all edge flags set initially. */
+      input_vgprs[3] = LLVMConstInt(ctx->ac.i32, 0x7 << 8, 0);
+
+      input_vgprs[2] =
+         LLVMBuildAdd(ctx->ac.builder, input_vgprs[2], thread_id_in_tg, ""); /* PrimID */
+      input_vgprs[5] =
+         LLVMBuildAdd(ctx->ac.builder, input_vgprs[5], thread_id_in_tg, ""); /* VertexID */
+      input_vgprs[8] = input_vgprs[6];                                       /* InstanceID */
+   }
+
+   unsigned vertex_id_vgpr = first_vs_vgpr;
+   unsigned instance_id_vgpr = ctx->screen->info.chip_class >= GFX10
+                                  ? first_vs_vgpr + 3
+                                  : first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1);
+
+   ctx->abi.vertex_id = input_vgprs[vertex_id_vgpr];
+   ctx->abi.instance_id = input_vgprs[instance_id_vgpr];
+
+   /* InstanceID = VertexID >> 16;
+    * VertexID   = VertexID & 0xffff;
+    */
+   if (key->vs_prolog.states.unpack_instance_id_from_vertex_id) {
+      ctx->abi.instance_id =
+         LLVMBuildLShr(ctx->ac.builder, ctx->abi.vertex_id, LLVMConstInt(ctx->ac.i32, 16, 0), "");
+      ctx->abi.vertex_id = LLVMBuildAnd(ctx->ac.builder, ctx->abi.vertex_id,
+                                        LLVMConstInt(ctx->ac.i32, 0xffff, 0), "");
+   }
+
+   /* Copy inputs to outputs. This should be no-op, as the registers match,
+    * but it will prevent the compiler from overwriting them unintentionally.
+    */
+   ret = ctx->return_value;
+   for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
+      LLVMValueRef p = LLVMGetParam(func, i);
+      ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
+   }
+   for (i = 0; i < num_input_vgprs; i++) {
+      LLVMValueRef p = input_vgprs[i];
+
+      if (i == vertex_id_vgpr)
+         p = ctx->abi.vertex_id;
+      else if (i == instance_id_vgpr)
+         p = ctx->abi.instance_id;
+
+      p = ac_to_float(&ctx->ac, p);
+      ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, key->vs_prolog.num_input_sgprs + i, "");
+   }
+
+   /* Compute vertex load indices from instance divisors. */
+   LLVMValueRef instance_divisor_constbuf = NULL;
+
+   if (key->vs_prolog.states.instance_divisor_is_fetched) {
+      LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
+      LLVMValueRef buf_index = LLVMConstInt(ctx->ac.i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
+      instance_divisor_constbuf = ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
+   }
+
+   for (i = 0; i < key->vs_prolog.num_inputs; i++) {
+      bool divisor_is_one = key->vs_prolog.states.instance_divisor_is_one & (1u << i);
+      bool divisor_is_fetched = key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
+      LLVMValueRef index = NULL;
+
+      if (divisor_is_one) {
+         index = ctx->abi.instance_id;
+      } else if (divisor_is_fetched) {
+         LLVMValueRef udiv_factors[4];
+
+         for (unsigned j = 0; j < 4; j++) {
+            udiv_factors[j] = si_buffer_load_const(ctx, instance_divisor_constbuf,
+                                                   LLVMConstInt(ctx->ac.i32, i * 16 + j * 4, 0));
+            udiv_factors[j] = ac_to_integer(&ctx->ac, udiv_factors[j]);
+         }
+         /* The faster NUW version doesn't work when InstanceID == UINT_MAX.
+          * Such InstanceID might not be achievable in a reasonable time though.
+          */
+         index = ac_build_fast_udiv_nuw(&ctx->ac, ctx->abi.instance_id, udiv_factors[0],
+                                        udiv_factors[1], udiv_factors[2], udiv_factors[3]);
+      }
+
+      if (divisor_is_one || divisor_is_fetched) {
+         /* Add StartInstance. */
+         index =
+            LLVMBuildAdd(ctx->ac.builder, index,
+                         LLVMGetParam(ctx->main_fn, user_sgpr_base + SI_SGPR_START_INSTANCE), "");
+      } else {
+         /* VertexID + BaseVertex */
+         index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
+                              LLVMGetParam(func, user_sgpr_base + SI_SGPR_BASE_VERTEX), "");
+      }
+
+      index = ac_to_float(&ctx->ac, index);
+      ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index, ctx->args.arg_count + i, "");
+   }
+
+   si_llvm_build_ret(ctx, ret);
 }
 
 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
 {
-       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
-
-       /* For non-indexed draws, the base vertex set by the driver
-        * (for direct draws) or the CP (for indirect draws) is the
-        * first vertex ID, but GLSL expects 0 to be returned.
-        */
-       LLVMValueRef vs_state = ac_get_arg(&ctx->ac,
-                                          ctx->vs_state_bits);
-       LLVMValueRef indexed;
-
-       indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->ac.i32_1, "");
-       indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->ac.i1, "");
-
-       return LLVMBuildSelect(ctx->ac.builder, indexed,
-                              ac_get_arg(&ctx->ac, ctx->args.base_vertex),
-                              ctx->ac.i32_0, "");
+   struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+
+   /* For non-indexed draws, the base vertex set by the driver
+    * (for direct draws) or the CP (for indirect draws) is the
+    * first vertex ID, but GLSL expects 0 to be returned.
+    */
+   LLVMValueRef vs_state = ac_get_arg(&ctx->ac, ctx->vs_state_bits);
+   LLVMValueRef indexed;
+
+   indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->ac.i32_1, "");
+   indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->ac.i1, "");
+
+   return LLVMBuildSelect(ctx->ac.builder, indexed, ac_get_arg(&ctx->ac, ctx->args.base_vertex),
+                          ctx->ac.i32_0, "");
 }
 
 void si_llvm_init_vs_callbacks(struct si_shader_context *ctx, bool ngg_cull_shader)
 {
-       struct si_shader *shader = ctx->shader;
-
-       if (shader->key.as_ls)
-               ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
-       else if (shader->key.as_es)
-               ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
-       else if (shader->key.opt.vs_as_prim_discard_cs)
-               ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
-       else if (ngg_cull_shader)
-               ctx->abi.emit_outputs = gfx10_emit_ngg_culling_epilogue_4x_wave32;
-       else if (shader->key.as_ngg)
-               ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
-       else
-               ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
-
-       ctx->abi.load_base_vertex = get_base_vertex;
+   struct si_shader *shader = ctx->shader;
+
+   if (shader->key.as_ls)
+      ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
+   else if (shader->key.as_es)
+      ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
+   else if (shader->key.opt.vs_as_prim_discard_cs)
+      ctx->abi.emit_outputs = si_llvm_emit_prim_discard_cs_epilogue;
+   else if (ngg_cull_shader)
+      ctx->abi.emit_outputs = gfx10_emit_ngg_culling_epilogue;
+   else if (shader->key.as_ngg)
+      ctx->abi.emit_outputs = gfx10_emit_ngg_epilogue;
+   else
+      ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
+
+   ctx->abi.load_base_vertex = get_base_vertex;
 }