util/hash_set: Rework the API to know about hashing
[mesa.git] / src / glsl / lower_instructions.cpp
index d460ba1a97abd2d3fe00f368c2ef5eba4f0e7d55..684285350d05a685270b3da79eb9a2d836c76602 100644 (file)
  * Currently supported transformations:
  * - SUB_TO_ADD_NEG
  * - DIV_TO_MUL_RCP
+ * - INT_DIV_TO_MUL_RCP
  * - EXP_TO_EXP2
+ * - POW_TO_EXP2
  * - LOG_TO_LOG2
  * - MOD_TO_FRACT
+ * - LDEXP_TO_ARITH
+ * - BITFIELD_INSERT_TO_BFM_BFI
+ * - CARRY_TO_ARITH
+ * - BORROW_TO_ARITH
+ * - SAT_TO_CLAMP
  *
  * SUB_TO_ADD_NEG:
  * ---------------
  * want to recognize add(op0, neg(op1)) or the other way around to
  * produce a subtract anyway.
  *
- * DIV_TO_MUL_RCP:
- * ---------------
- * Breaks an ir_unop_div expression down to op0 * (rcp(op1)).
+ * DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
+ * --------------------------------------
+ * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
  *
  * Many GPUs don't have a divide instruction (945 and 965 included),
  * but they do have an RCP instruction to compute an approximate
  * reciprocal.  By breaking the operation down, constant reciprocals
  * can get constant folded.
  *
+ * DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
+ * handles the integer case, converting to and from floating point so that
+ * RCP is possible.
+ *
  * EXP_TO_EXP2 and LOG_TO_LOG2:
  * ----------------------------
  * Many GPUs don't have a base e log or exponent instruction, but they
  * do have base 2 versions, so this pass converts exp and log to exp2
  * and log2 operations.
  *
+ * POW_TO_EXP2:
+ * -----------
+ * Many older GPUs don't have an x**y instruction.  For these GPUs, convert
+ * x**y to 2**(y * log2(x)).
+ *
  * MOD_TO_FRACT:
  * -------------
- * Breaks an ir_unop_mod expression down to (op1 * fract(op0 / op1))
+ * Breaks an ir_binop_mod expression down to (op1 * fract(op0 / op1))
  *
  * Many GPUs don't have a MOD instruction (945 and 965 included), and
  * if we have to break it down like this anyway, it gives an
  * opportunity to do things like constant fold the (1.0 / op1) easily.
+ *
+ * LDEXP_TO_ARITH:
+ * -------------
+ * Converts ir_binop_ldexp to arithmetic and bit operations.
+ *
+ * BITFIELD_INSERT_TO_BFM_BFI:
+ * ---------------------------
+ * Breaks ir_quadop_bitfield_insert into ir_binop_bfm (bitfield mask) and
+ * ir_triop_bfi (bitfield insert).
+ *
+ * Many GPUs implement the bitfieldInsert() built-in from ARB_gpu_shader_5
+ * with a pair of instructions.
+ *
+ * CARRY_TO_ARITH:
+ * ---------------
+ * Converts ir_carry into (x + y) < x.
+ *
+ * BORROW_TO_ARITH:
+ * ----------------
+ * Converts ir_borrow into (x < y).
+ *
+ * SAT_TO_CLAMP:
+ * -------------
+ * Converts ir_unop_saturate into min(max(x, 0.0), 1.0)
+ *
  */
 
-#include "main/core.h" /* for M_E */
+#include "main/core.h" /* for M_LOG2E */
 #include "glsl_types.h"
 #include "ir.h"
+#include "ir_builder.h"
 #include "ir_optimization.h"
 
+using namespace ir_builder;
+
+namespace {
+
 class lower_instructions_visitor : public ir_hierarchical_visitor {
 public:
    lower_instructions_visitor(unsigned lower)
@@ -89,11 +135,20 @@ private:
 
    void sub_to_add_neg(ir_expression *);
    void div_to_mul_rcp(ir_expression *);
+   void int_div_to_mul_rcp(ir_expression *);
    void mod_to_fract(ir_expression *);
    void exp_to_exp2(ir_expression *);
+   void pow_to_exp2(ir_expression *);
    void log_to_log2(ir_expression *);
+   void bitfield_insert_to_bfm_bfi(ir_expression *);
+   void ldexp_to_arith(ir_expression *);
+   void carry_to_arith(ir_expression *);
+   void borrow_to_arith(ir_expression *);
+   void sat_to_clamp(ir_expression *);
 };
 
+} /* anonymous namespace */
+
 /**
  * Determine if a particular type of lowering should occur
  */
@@ -120,51 +175,67 @@ lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
 void
 lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
 {
-   if (!ir->operands[1]->type->is_integer()) {
-      /* New expression for the 1.0 / op1 */
-      ir_rvalue *expr;
-      expr = new(ir) ir_expression(ir_unop_rcp,
-                                  ir->operands[1]->type,
-                                  ir->operands[1],
-                                  NULL);
-
-      /* op0 / op1 -> op0 * (1.0 / op1) */
-      ir->operation = ir_binop_mul;
-      ir->operands[1] = expr;
-   } else {
-      /* Be careful with integer division -- we need to do it as a
-       * float and re-truncate, since rcp(n > 1) of an integer would
-       * just be 0.
-       */
-      ir_rvalue *op0, *op1;
-      const struct glsl_type *vec_type;
+   assert(ir->operands[1]->type->is_float());
+
+   /* New expression for the 1.0 / op1 */
+   ir_rvalue *expr;
+   expr = new(ir) ir_expression(ir_unop_rcp,
+                               ir->operands[1]->type,
+                               ir->operands[1]);
+
+   /* op0 / op1 -> op0 * (1.0 / op1) */
+   ir->operation = ir_binop_mul;
+   ir->operands[1] = expr;
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
+{
+   assert(ir->operands[1]->type->is_integer());
+
+   /* Be careful with integer division -- we need to do it as a
+    * float and re-truncate, since rcp(n > 1) of an integer would
+    * just be 0.
+    */
+   ir_rvalue *op0, *op1;
+   const struct glsl_type *vec_type;
+
+   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
+                                     ir->operands[1]->type->vector_elements,
+                                     ir->operands[1]->type->matrix_columns);
 
-      vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
-                                        ir->operands[1]->type->vector_elements,
-                                        ir->operands[1]->type->matrix_columns);
+   if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
+      op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
+   else
+      op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
 
-      if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
-        op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
-      else
-        op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
+   op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
 
-      op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
+   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
+                                     ir->operands[0]->type->vector_elements,
+                                     ir->operands[0]->type->matrix_columns);
 
-      vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
-                                        ir->operands[0]->type->vector_elements,
-                                        ir->operands[0]->type->matrix_columns);
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
+      op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
+   else
+      op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
 
-      if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
-        op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
-      else
-        op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
+   vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
+                                     ir->type->vector_elements,
+                                     ir->type->matrix_columns);
 
-      op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
+   op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
 
+   if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
       ir->operation = ir_unop_f2i;
       ir->operands[0] = op0;
-      ir->operands[1] = NULL;
+   } else {
+      ir->operation = ir_unop_i2u;
+      ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
    }
+   ir->operands[1] = NULL;
 
    this->progress = true;
 }
@@ -172,7 +243,7 @@ lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
 void
 lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
 {
-   ir_constant *log2_e = new(ir) ir_constant(log2f(M_E));
+   ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
 
    ir->operation = ir_unop_exp2;
    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
@@ -180,13 +251,27 @@ lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
    this->progress = true;
 }
 
+void
+lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
+{
+   ir_expression *const log2_x =
+      new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
+                           ir->operands[0]);
+
+   ir->operation = ir_unop_exp2;
+   ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
+                                          ir->operands[1], log2_x);
+   ir->operands[1] = NULL;
+   this->progress = true;
+}
+
 void
 lower_instructions_visitor::log_to_log2(ir_expression *ir)
 {
    ir->operation = ir_binop_mul;
    ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
                                           ir->operands[0], NULL);
-   ir->operands[1] = new(ir) ir_constant(1.0f / log2f(M_E));
+   ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
    this->progress = true;
 }
 
@@ -225,6 +310,204 @@ lower_instructions_visitor::mod_to_fract(ir_expression *ir)
    this->progress = true;
 }
 
+void
+lower_instructions_visitor::bitfield_insert_to_bfm_bfi(ir_expression *ir)
+{
+   /* Translates
+    *    ir_quadop_bitfield_insert base insert offset bits
+    * into
+    *    ir_triop_bfi (ir_binop_bfm bits offset) insert base
+    */
+
+   ir_rvalue *base_expr = ir->operands[0];
+
+   ir->operation = ir_triop_bfi;
+   ir->operands[0] = new(ir) ir_expression(ir_binop_bfm,
+                                           ir->type->get_base_type(),
+                                           ir->operands[3],
+                                           ir->operands[2]);
+   /* ir->operands[1] is still the value to insert. */
+   ir->operands[2] = base_expr;
+   ir->operands[3] = NULL;
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
+{
+   /* Translates
+    *    ir_binop_ldexp x exp
+    * into
+    *
+    *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
+    *    resulting_biased_exp = extracted_biased_exp + exp;
+    *
+    *    if (resulting_biased_exp < 1) {
+    *       return copysign(0.0, x);
+    *    }
+    *
+    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
+    *                       lshift(i2u(resulting_biased_exp), exp_shift));
+    *
+    * which we can't actually implement as such, since the GLSL IR doesn't
+    * have vectorized if-statements. We actually implement it without branches
+    * using conditional-select:
+    *
+    *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
+    *    resulting_biased_exp = extracted_biased_exp + exp;
+    *
+    *    is_not_zero_or_underflow = gequal(resulting_biased_exp, 1);
+    *    x = csel(is_not_zero_or_underflow, x, copysign(0.0f, x));
+    *    resulting_biased_exp = csel(is_not_zero_or_underflow,
+    *                                resulting_biased_exp, 0);
+    *
+    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
+    *                       lshift(i2u(resulting_biased_exp), exp_shift));
+    */
+
+   const unsigned vec_elem = ir->type->vector_elements;
+
+   /* Types */
+   const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
+   const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
+
+   /* Constants */
+   ir_constant *zeroi = ir_constant::zero(ir, ivec);
+
+   ir_constant *sign_mask = new(ir) ir_constant(0x80000000u, vec_elem);
+
+   ir_constant *exp_shift = new(ir) ir_constant(23);
+   ir_constant *exp_width = new(ir) ir_constant(8);
+
+   /* Temporary variables */
+   ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
+   ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
+
+   ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
+                                                  ir_var_temporary);
+
+   ir_variable *extracted_biased_exp =
+      new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
+   ir_variable *resulting_biased_exp =
+      new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
+
+   ir_variable *is_not_zero_or_underflow =
+      new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
+
+   ir_instruction &i = *base_ir;
+
+   /* Copy <x> and <exp> arguments. */
+   i.insert_before(x);
+   i.insert_before(assign(x, ir->operands[0]));
+   i.insert_before(exp);
+   i.insert_before(assign(exp, ir->operands[1]));
+
+   /* Extract the biased exponent from <x>. */
+   i.insert_before(extracted_biased_exp);
+   i.insert_before(assign(extracted_biased_exp,
+                          rshift(bitcast_f2i(abs(x)), exp_shift)));
+
+   i.insert_before(resulting_biased_exp);
+   i.insert_before(assign(resulting_biased_exp,
+                          add(extracted_biased_exp, exp)));
+
+   /* Test if result is ±0.0, subnormal, or underflow by checking if the
+    * resulting biased exponent would be less than 0x1. If so, the result is
+    * 0.0 with the sign of x. (Actually, invert the conditions so that
+    * immediate values are the second arguments, which is better for i965)
+    */
+   i.insert_before(zero_sign_x);
+   i.insert_before(assign(zero_sign_x,
+                          bitcast_u2f(bit_and(bitcast_f2u(x), sign_mask))));
+
+   i.insert_before(is_not_zero_or_underflow);
+   i.insert_before(assign(is_not_zero_or_underflow,
+                          gequal(resulting_biased_exp,
+                                  new(ir) ir_constant(0x1, vec_elem))));
+   i.insert_before(assign(x, csel(is_not_zero_or_underflow,
+                                  x, zero_sign_x)));
+   i.insert_before(assign(resulting_biased_exp,
+                          csel(is_not_zero_or_underflow,
+                               resulting_biased_exp, zeroi)));
+
+   /* We could test for overflows by checking if the resulting biased exponent
+    * would be greater than 0xFE. Turns out we don't need to because the GLSL
+    * spec says:
+    *
+    *    "If this product is too large to be represented in the
+    *     floating-point type, the result is undefined."
+    */
+
+   ir_constant *exp_shift_clone = exp_shift->clone(ir, NULL);
+   ir->operation = ir_unop_bitcast_i2f;
+   ir->operands[0] = bitfield_insert(bitcast_f2i(x), resulting_biased_exp,
+                                     exp_shift_clone, exp_width);
+   ir->operands[1] = NULL;
+
+   /* Don't generate new IR that would need to be lowered in an additional
+    * pass.
+    */
+   if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
+      bitfield_insert_to_bfm_bfi(ir->operands[0]->as_expression());
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::carry_to_arith(ir_expression *ir)
+{
+   /* Translates
+    *   ir_binop_carry x y
+    * into
+    *   sum = ir_binop_add x y
+    *   bcarry = ir_binop_less sum x
+    *   carry = ir_unop_b2i bcarry
+    */
+
+   ir_rvalue *x_clone = ir->operands[0]->clone(ir, NULL);
+   ir->operation = ir_unop_i2u;
+   ir->operands[0] = b2i(less(add(ir->operands[0], ir->operands[1]), x_clone));
+   ir->operands[1] = NULL;
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::borrow_to_arith(ir_expression *ir)
+{
+   /* Translates
+    *   ir_binop_borrow x y
+    * into
+    *   bcarry = ir_binop_less x y
+    *   carry = ir_unop_b2i bcarry
+    */
+
+   ir->operation = ir_unop_i2u;
+   ir->operands[0] = b2i(less(ir->operands[0], ir->operands[1]));
+   ir->operands[1] = NULL;
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::sat_to_clamp(ir_expression *ir)
+{
+   /* Translates
+    *   ir_unop_saturate x
+    * into
+    *   ir_binop_min (ir_binop_max(x, 0.0), 1.0)
+    */
+
+   ir->operation = ir_binop_min;
+   ir->operands[0] = new(ir) ir_expression(ir_binop_max, ir->operands[0]->type,
+                                           ir->operands[0],
+                                           new(ir) ir_constant(0.0f));
+   ir->operands[1] = new(ir) ir_constant(1.0f);
+
+   this->progress = true;
+}
+
 ir_visitor_status
 lower_instructions_visitor::visit_leave(ir_expression *ir)
 {
@@ -235,7 +518,9 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
       break;
 
    case ir_binop_div:
-      if (lowering(DIV_TO_MUL_RCP))
+      if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
+        int_div_to_mul_rcp(ir);
+      else if (ir->operands[1]->type->is_float() && lowering(DIV_TO_MUL_RCP))
         div_to_mul_rcp(ir);
       break;
 
@@ -250,10 +535,40 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
       break;
 
    case ir_binop_mod:
-      if (lowering(MOD_TO_FRACT))
+      if (lowering(MOD_TO_FRACT) && ir->type->is_float())
         mod_to_fract(ir);
       break;
 
+   case ir_binop_pow:
+      if (lowering(POW_TO_EXP2))
+        pow_to_exp2(ir);
+      break;
+
+   case ir_quadop_bitfield_insert:
+      if (lowering(BITFIELD_INSERT_TO_BFM_BFI))
+         bitfield_insert_to_bfm_bfi(ir);
+      break;
+
+   case ir_binop_ldexp:
+      if (lowering(LDEXP_TO_ARITH))
+         ldexp_to_arith(ir);
+      break;
+
+   case ir_binop_carry:
+      if (lowering(CARRY_TO_ARITH))
+         carry_to_arith(ir);
+      break;
+
+   case ir_binop_borrow:
+      if (lowering(BORROW_TO_ARITH))
+         borrow_to_arith(ir);
+      break;
+
+   case ir_unop_saturate:
+      if (lowering(SAT_TO_CLAMP))
+         sat_to_clamp(ir);
+      break;
+
    default:
       return visit_continue;
    }