panfrost: Move lcra to panfrost/util
[mesa.git] / src / panfrost / midgard / midgard_ra.c
index 01f0f4980359410a9ce6bf99cfa664da5ef0028a..48122c4967a3bb9c31c9e513c99e4f60a25778d4 100644 (file)
 
 #include "compiler.h"
 #include "midgard_ops.h"
-#include "util/register_allocate.h"
 #include "util/u_math.h"
-
-/* For work registers, we can subdivide in various ways. So we create
- * classes for the various sizes and conflict accordingly, keeping in
- * mind that physical registers are divided along 128-bit boundaries.
- * The important part is that 128-bit boundaries are not crossed.
- *
- * For each 128-bit register, we can subdivide to 32-bits 10 ways
- *
- * vec4: xyzw
- * vec3: xyz, yzw
- * vec2: xy, yz, zw,
- * vec1: x, y, z, w
- *
- * For each 64-bit register, we can subdivide similarly to 16-bit
- * (TODO: half-float RA, not that we support fp16 yet)
- */
-
-#define WORK_STRIDE 10
-
-/* Prepacked masks/swizzles for virtual register types */
-static unsigned reg_type_to_mask[WORK_STRIDE] = {
-        0xF,                                    /* xyzw */
-        0x7, 0x7 << 1,                          /* xyz */
-                 0x3, 0x3 << 1, 0x3 << 2,                /* xy */
-                 0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3       /* x */
-};
-
-static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-};
+#include "util/u_memory.h"
+#include "midgard_quirks.h"
 
 struct phys_reg {
+        /* Physical register: 0-31 */
         unsigned reg;
-        unsigned mask;
-        unsigned swizzle;
-};
 
-/* Given the mask/swizzle of both the register and the original source,
- * compose to find the actual mask/swizzle to give the hardware */
+        /* Byte offset into the physical register: 0-15 */
+        unsigned offset;
 
-static unsigned
-compose_writemask(unsigned mask, struct phys_reg reg)
-{
-        /* Note: the reg mask is guaranteed to be contiguous. So we shift
-         * into the X place, compose via a simple AND, and shift back */
+        /* Number of bytes in a component of this register */
+        unsigned size;
+};
 
-        unsigned shift = __builtin_ctz(reg.mask);
-        return ((reg.mask >> shift) & mask) << shift;
-}
+/* Shift up by reg_offset and horizontally by dst_offset. */
 
-static unsigned
-compose_swizzle(unsigned swizzle, unsigned mask,
-                struct phys_reg reg, struct phys_reg dst)
+static void
+offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcsize, unsigned dst_offset)
 {
-        unsigned out = pan_compose_swizzle(swizzle, reg.swizzle);
+        unsigned out[MIR_VEC_COMPONENTS];
 
-        /* Based on the register mask, we need to adjust over. E.g if we're
-         * writing to yz, a base swizzle of xy__ becomes _xy_. Save the
-         * original first component (x). But to prevent duplicate shifting
-         * (only applies to ALU -- mask param is set to xyzw out on L/S to
-         * prevent changes), we have to account for the shift inherent to the
-         * original writemask */
+        signed reg_comp = reg_offset / srcsize;
+        signed dst_comp = dst_offset / srcsize;
 
-        unsigned rep = out & 0x3;
-        unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
-        unsigned shifted = out << (2*shift);
+        unsigned max_component = (16 / srcsize) - 1;
 
-        /* ..but we fill in the gaps so it appears to replicate */
+        assert(reg_comp * srcsize == reg_offset);
+        assert(dst_comp * srcsize == dst_offset);
 
-        for (unsigned s = 0; s < shift; ++s)
-                shifted |= rep << (2*s);
+        for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
+                signed comp = MAX2(c - dst_comp, 0);
+                out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
+        }
 
-        return shifted;
+        memcpy(swizzle, out, sizeof(out));
 }
 
 /* Helper to return the default phys_reg for a given register */
 
 static struct phys_reg
-default_phys_reg(int reg)
+default_phys_reg(int reg, midgard_reg_mode size)
 {
         struct phys_reg r = {
                 .reg = reg,
-                .mask = 0xF, /* xyzw */
-                .swizzle = 0xE4 /* xyzw */
+                .offset = 0,
+                .size = mir_bytes_for_mode(size)
         };
 
         return r;
@@ -131,269 +80,536 @@ default_phys_reg(int reg)
  * register corresponds to */
 
 static struct phys_reg
-index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
+index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, midgard_reg_mode size)
 {
         /* Check for special cases */
-        if (reg >= SSA_FIXED_MINIMUM)
-                return default_phys_reg(SSA_REG_FROM_FIXED(reg));
-        else if ((reg < 0) || !g)
-                return default_phys_reg(REGISTER_UNUSED);
-
-        /* Special cases aside, we pick the underlying register */
-        int virt = ra_get_node_reg(g, reg);
-
-        /* Divide out the register and classification */
-        int phys = virt / WORK_STRIDE;
-        int type = virt % WORK_STRIDE;
+        if (reg == ~0)
+                return default_phys_reg(REGISTER_UNUSED, size);
+        else if (reg >= SSA_FIXED_MINIMUM)
+                return default_phys_reg(SSA_REG_FROM_FIXED(reg), size);
+        else if (!l)
+                return default_phys_reg(REGISTER_UNUSED, size);
 
         struct phys_reg r = {
-                .reg = phys,
-                .mask = reg_type_to_mask[type],
-                .swizzle = reg_type_to_swizzle[type]
+                .reg = l->solutions[reg] / 16,
+                .offset = l->solutions[reg] & 0xF,
+                .size = mir_bytes_for_mode(size)
         };
 
         /* Report that we actually use this register, and return it */
-        ctx->work_registers = MAX2(ctx->work_registers, phys);
+
+        if (r.reg < 16)
+                ctx->work_registers = MAX2(ctx->work_registers, r.reg);
+
         return r;
 }
 
-/* This routine creates a register set. Should be called infrequently since
- * it's slow and can be cached */
+static void
+set_class(unsigned *classes, unsigned node, unsigned class)
+{
+        if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
+                assert(classes[node] == REG_CLASS_WORK);
+                classes[node] = class;
+        }
+}
+
+/* Special register classes impose special constraints on who can read their
+ * values, so check that */
+
+static bool
+check_read_class(unsigned *classes, unsigned tag, unsigned node)
+{
+        /* Non-nodes are implicitly ok */
+        if (node >= SSA_FIXED_MINIMUM)
+                return true;
+
+        switch (classes[node]) {
+        case REG_CLASS_LDST:
+                return (tag == TAG_LOAD_STORE_4);
+        case REG_CLASS_TEXR:
+                return (tag == TAG_TEXTURE_4);
+        case REG_CLASS_TEXW:
+                return (tag != TAG_LOAD_STORE_4);
+        case REG_CLASS_WORK:
+                return IS_ALU(tag);
+        default:
+                unreachable("Invalid class");
+        }
+}
+
+static bool
+check_write_class(unsigned *classes, unsigned tag, unsigned node)
+{
+        /* Non-nodes are implicitly ok */
+        if (node >= SSA_FIXED_MINIMUM)
+                return true;
+
+        switch (classes[node]) {
+        case REG_CLASS_TEXR:
+                return true;
+        case REG_CLASS_TEXW:
+                return (tag == TAG_TEXTURE_4);
+        case REG_CLASS_LDST:
+        case REG_CLASS_WORK:
+                return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
+        default:
+                unreachable("Invalid class");
+        }
+}
 
-static struct ra_regs *
-create_register_set(unsigned work_count, unsigned *classes)
+/* Prepass before RA to ensure special class restrictions are met. The idea is
+ * to create a bit field of types of instructions that read a particular index.
+ * Later, we'll add moves as appropriate and rewrite to specialize by type. */
+
+static void
+mark_node_class (unsigned *bitfield, unsigned node)
 {
-        int virtual_count = work_count * WORK_STRIDE;
-
-        /* First, initialize the RA */
-        struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
-
-        int work_vec4 = ra_alloc_reg_class(regs);
-        int work_vec3 = ra_alloc_reg_class(regs);
-        int work_vec2 = ra_alloc_reg_class(regs);
-        int work_vec1 = ra_alloc_reg_class(regs);
-
-        classes[0] = work_vec1;
-        classes[1] = work_vec2;
-        classes[2] = work_vec3;
-        classes[3] = work_vec4;
-
-        /* Add the full set of work registers */
-        for (unsigned i = 0; i < work_count; ++i) {
-                int base = WORK_STRIDE * i;
-
-                /* Build a full set of subdivisions */
-                ra_class_add_reg(regs, work_vec4, base);
-                ra_class_add_reg(regs, work_vec3, base + 1);
-                ra_class_add_reg(regs, work_vec3, base + 2);
-                ra_class_add_reg(regs, work_vec2, base + 3);
-                ra_class_add_reg(regs, work_vec2, base + 4);
-                ra_class_add_reg(regs, work_vec2, base + 5);
-                ra_class_add_reg(regs, work_vec1, base + 6);
-                ra_class_add_reg(regs, work_vec1, base + 7);
-                ra_class_add_reg(regs, work_vec1, base + 8);
-                ra_class_add_reg(regs, work_vec1, base + 9);
-
-                for (unsigned a = 0; a < 10; ++a) {
-                        unsigned mask1 = reg_type_to_mask[a];
-
-                        for (unsigned b = 0; b < 10; ++b) {
-                                unsigned mask2 = reg_type_to_mask[b];
-
-                                if (mask1 & mask2)
-                                        ra_add_reg_conflict(regs,
-                                                            base + a, base + b);
+        if (node < SSA_FIXED_MINIMUM)
+                BITSET_SET(bitfield, node);
+}
+
+void
+mir_lower_special_reads(compiler_context *ctx)
+{
+        size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
+
+        /* Bitfields for the various types of registers we could have. aluw can
+         * be written by either ALU or load/store */
+
+        unsigned *alur = calloc(sz, 1);
+        unsigned *aluw = calloc(sz, 1);
+        unsigned *brar = calloc(sz, 1);
+        unsigned *ldst = calloc(sz, 1);
+        unsigned *texr = calloc(sz, 1);
+        unsigned *texw = calloc(sz, 1);
+
+        /* Pass #1 is analysis, a linear scan to fill out the bitfields */
+
+        mir_foreach_instr_global(ctx, ins) {
+                switch (ins->type) {
+                case TAG_ALU_4:
+                        mark_node_class(aluw, ins->dest);
+                        mark_node_class(alur, ins->src[0]);
+                        mark_node_class(alur, ins->src[1]);
+                        mark_node_class(alur, ins->src[2]);
+
+                        if (ins->compact_branch && ins->writeout)
+                                mark_node_class(brar, ins->src[0]);
+
+                        break;
+
+                case TAG_LOAD_STORE_4:
+                        mark_node_class(aluw, ins->dest);
+                        mark_node_class(ldst, ins->src[0]);
+                        mark_node_class(ldst, ins->src[1]);
+                        mark_node_class(ldst, ins->src[2]);
+                        break;
+
+                case TAG_TEXTURE_4:
+                        mark_node_class(texr, ins->src[0]);
+                        mark_node_class(texr, ins->src[1]);
+                        mark_node_class(texr, ins->src[2]);
+                        mark_node_class(texw, ins->dest);
+                        break;
+                }
+        }
+
+        /* Pass #2 is lowering now that we've analyzed all the classes.
+         * Conceptually, if an index is only marked for a single type of use,
+         * there is nothing to lower. If it is marked for different uses, we
+         * split up based on the number of types of uses. To do so, we divide
+         * into N distinct classes of use (where N>1 by definition), emit N-1
+         * moves from the index to copies of the index, and finally rewrite N-1
+         * of the types of uses to use the corresponding move */
+
+        unsigned spill_idx = ctx->temp_count;
+
+        for (unsigned i = 0; i < ctx->temp_count; ++i) {
+                bool is_alur = BITSET_TEST(alur, i);
+                bool is_aluw = BITSET_TEST(aluw, i);
+                bool is_brar = BITSET_TEST(brar, i);
+                bool is_ldst = BITSET_TEST(ldst, i);
+                bool is_texr = BITSET_TEST(texr, i);
+                bool is_texw = BITSET_TEST(texw, i);
+
+                /* Analyse to check how many distinct uses there are. ALU ops
+                 * (alur) can read the results of the texture pipeline (texw)
+                 * but not ldst or texr. Load/store ops (ldst) cannot read
+                 * anything but load/store inputs. Texture pipeline cannot read
+                 * anything but texture inputs. TODO: Simplify.  */
+
+                bool collision =
+                        (is_alur && (is_ldst || is_texr)) ||
+                        (is_ldst && (is_alur || is_texr || is_texw)) ||
+                        (is_texr && (is_alur || is_ldst || is_texw)) ||
+                        (is_texw && (is_aluw || is_ldst || is_texr)) ||
+                        (is_brar && is_texw);
+        
+                if (!collision)
+                        continue;
+
+                /* Use the index as-is as the work copy. Emit copies for
+                 * special uses */
+
+                unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
+                bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
+
+                for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
+                        if (!collisions[j]) continue;
+
+                        /* When the hazard is from reading, we move and rewrite
+                         * sources (typical case). When it's from writing, we
+                         * flip the move and rewrite destinations (obscure,
+                         * only from control flow -- impossible in SSA) */
+
+                        bool hazard_write = (j == 2);
+
+                        unsigned idx = spill_idx++;
+
+                        midgard_instruction m = hazard_write ?
+                                v_mov(idx, i) : v_mov(i, idx);
+
+                        /* Insert move before each read/write, depending on the
+                         * hazard we're trying to account for */
+
+                        mir_foreach_instr_global_safe(ctx, pre_use) {
+                                if (pre_use->type != classes[j])
+                                        continue;
+
+                                if (hazard_write) {
+                                        if (pre_use->dest != i)
+                                                continue;
+                                } else {
+                                        if (!mir_has_arg(pre_use, i))
+                                                continue;
+                                }
+
+                                if (hazard_write) {
+                                        midgard_instruction *use = mir_next_op(pre_use);
+                                        assert(use);
+                                        mir_insert_instruction_before(ctx, use, m);
+                                        mir_rewrite_index_dst_single(pre_use, i, idx);
+                                } else {
+                                        idx = spill_idx++;
+                                        m = v_mov(i, idx);
+                                        m.mask = mir_from_bytemask(mir_bytemask_of_read_components(pre_use, i), midgard_reg_mode_32);
+                                        mir_insert_instruction_before(ctx, pre_use, m);
+                                        mir_rewrite_index_src_single(pre_use, i, idx);
+                                }
                         }
                 }
         }
 
-        /* We're done setting up */
-        ra_set_finalize(regs, NULL);
+        free(alur);
+        free(aluw);
+        free(brar);
+        free(ldst);
+        free(texr);
+        free(texw);
+}
+
+/* We register allocate after scheduling, so we need to ensure instructions
+ * executing in parallel within a segment of a bundle don't clobber each
+ * other's registers. This is mostly a non-issue thanks to scheduling, but
+ * there are edge cases. In particular, after a register is written in a
+ * segment, it interferes with anything reading. */
+
+static void
+mir_compute_segment_interference(
+                compiler_context *ctx,
+                struct lcra_state *l,
+                midgard_bundle *bun,
+                unsigned pivot,
+                unsigned i)
+{
+        for (unsigned j = pivot; j < i; ++j) {
+                mir_foreach_src(bun->instructions[j], s) {
+                        if (bun->instructions[j]->src[s] >= ctx->temp_count)
+                                continue;
+
+                        for (unsigned q = pivot; q < i; ++q) {
+                                if (bun->instructions[q]->dest >= ctx->temp_count)
+                                        continue;
+
+                                /* See dEQP-GLES2.functional.shaders.return.output_write_in_func_dynamic_fragment */
+
+                                if (q >= j) {
+                                        if (!(bun->instructions[j]->unit == UNIT_SMUL && bun->instructions[q]->unit == UNIT_VLUT))
+                                                continue;
+                                }
 
-        return regs;
+                                unsigned mask = mir_bytemask(bun->instructions[q]);
+                                unsigned rmask = mir_bytemask_of_read_components(bun->instructions[j], bun->instructions[j]->src[s]);
+                                lcra_add_node_interference(l, bun->instructions[q]->dest, mask, bun->instructions[j]->src[s], rmask);
+                        }
+                }
+        }
 }
 
-/* This routine gets a precomputed register set off the screen if it's able, or otherwise it computes one on the fly */
+static void
+mir_compute_bundle_interference(
+                compiler_context *ctx,
+                struct lcra_state *l,
+                midgard_bundle *bun)
+{
+        if (!IS_ALU(bun->tag))
+                return;
+
+        bool old = bun->instructions[0]->unit >= UNIT_VADD;
+        unsigned pivot = 0;
+
+        for (unsigned i = 1; i < bun->instruction_count; ++i) {
+                bool new = bun->instructions[i]->unit >= UNIT_VADD;
+
+                if (old != new) {
+                        mir_compute_segment_interference(ctx, l, bun, 0, i);
+                        pivot = i;
+                        break;
+                }
+        }
 
-static struct ra_regs *
-get_register_set(struct midgard_screen *screen, unsigned work_count, unsigned **classes)
+        mir_compute_segment_interference(ctx, l, bun, pivot, bun->instruction_count);
+}
+
+static void
+mir_compute_interference(
+                compiler_context *ctx,
+                struct lcra_state *l)
 {
-        /* Bounds check */
-        assert(work_count >= 8);
-        assert(work_count <= 16);
+        /* First, we need liveness information to be computed per block */
+        mir_compute_liveness(ctx);
 
-        /* Compute index */
-        unsigned index = work_count - 8;
+        /* We need to force r1.w live throughout a blend shader */
+
+        if (ctx->is_blend) {
+                unsigned r1w = ~0;
+
+                mir_foreach_block(ctx, _block) {
+                        midgard_block *block = (midgard_block *) _block;
+                        mir_foreach_instr_in_block_rev(block, ins) {
+                                if (ins->writeout)
+                                        r1w = ins->src[2];
+                        }
 
-        /* Find the reg set */
-        struct ra_regs *cached = screen->regs[index];
+                        if (r1w != ~0)
+                                break;
+                }
 
-        if (cached) {
-                assert(screen->reg_classes[index]);
-                *classes = screen->reg_classes[index];
-                return cached;
+                mir_foreach_instr_global(ctx, ins) {
+                        if (ins->dest < ctx->temp_count)
+                                lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
+                }
         }
 
-        /* Otherwise, create one */
-        struct ra_regs *created = create_register_set(work_count, screen->reg_classes[index]);
+        /* Now that every block has live_in/live_out computed, we can determine
+         * interference by walking each block linearly. Take live_out at the
+         * end of each block and walk the block backwards. */
+
+        mir_foreach_block(ctx, _blk) {
+                midgard_block *blk = (midgard_block *) _blk;
+                uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
+
+                mir_foreach_instr_in_block_rev(blk, ins) {
+                        /* Mark all registers live after the instruction as
+                         * interfering with the destination */
+
+                        unsigned dest = ins->dest;
+
+                        if (dest < ctx->temp_count) {
+                                for (unsigned i = 0; i < ctx->temp_count; ++i)
+                                        if (live[i]) {
+                                                unsigned mask = mir_bytemask(ins);
+                                                lcra_add_node_interference(l, dest, mask, i, live[i]);
+                                        }
+                        }
+
+                        /* Update live_in */
+                        mir_liveness_ins_update(live, ins, ctx->temp_count);
+                }
 
-        /* Cache it and use it */
-        screen->regs[index] = created;
+                mir_foreach_bundle_in_block(blk, bun)
+                        mir_compute_bundle_interference(ctx, l, bun);
 
-        *classes = screen->reg_classes[index];
-        return created;
+                free(live);
+        }
 }
 
 /* This routine performs the actual register allocation. It should be succeeded
  * by install_registers */
 
-struct ra_graph *
+static struct lcra_state *
 allocate_registers(compiler_context *ctx, bool *spilled)
 {
         /* The number of vec4 work registers available depends on when the
          * uniforms start, so compute that first */
         int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
-        unsigned *classes = NULL;
-        struct ra_regs *regs = get_register_set(ctx->screen, work_count, &classes);
-
-        assert(regs != NULL);
-        assert(classes != NULL);
 
        /* No register allocation to do with no SSA */
 
         if (!ctx->temp_count)
                 return NULL;
 
-        /* Let's actually do register allocation */
-        int nodes = ctx->temp_count;
-        struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
+        struct lcra_state *l = lcra_alloc_equations(ctx->temp_count, 1, 8, 16, 5);
 
-        /* Determine minimum size needed to hold values, to indirectly
-         * determine class */
+        /* Starts of classes, in bytes */
+        l->class_start[REG_CLASS_WORK]  = 16 * 0;
+        l->class_start[REG_CLASS_LDST]  = 16 * 26;
+        l->class_start[REG_CLASS_TEXR]  = 16 * 28;
+        l->class_start[REG_CLASS_TEXW]  = 16 * 28;
 
-        unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
-
-        mir_foreach_block(ctx, block) {
-                mir_foreach_instr_in_block(block, ins) {
-                        if (ins->compact_branch) continue;
-                        if (ins->ssa_args.dest < 0) continue;
-                        if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
+        l->class_size[REG_CLASS_WORK] = 16 * work_count;
+        l->class_size[REG_CLASS_LDST]  = 16 * 2;
+        l->class_size[REG_CLASS_TEXR]  = 16 * 2;
+        l->class_size[REG_CLASS_TEXW]  = 16 * 2;
 
-                        int class = util_logbase2(ins->mask) + 1;
+        lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
 
-                        /* Use the largest class if there's ambiguity, this
-                         * handles partial writes */
+        /* To save space on T*20, we don't have real texture registers.
+         * Instead, tex inputs reuse the load/store pipeline registers, and
+         * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
+         * noting that this handles interferences and sizes correctly. */
 
-                        int dest = ins->ssa_args.dest;
-                        found_class[dest] = MAX2(found_class[dest], class);
-                }
-        }
-
-        for (unsigned i = 0; i < ctx->temp_count; ++i) {
-                unsigned class = found_class[i];
-                if (!class) continue;
-                ra_set_node_class(g, i, classes[class - 1]);
+        if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
+                l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
+                l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
         }
 
-        /* Determine liveness */
+        unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
+        unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
 
-        int *live_start = malloc(nodes * sizeof(int));
-        int *live_end = malloc(nodes * sizeof(int));
+        mir_foreach_instr_global(ctx, ins) {
+                /* Swizzles of 32-bit sources on 64-bit instructions need to be
+                 * aligned to either bottom (xy) or top (zw). More general
+                 * swizzle lowering should happen prior to scheduling (TODO),
+                 * but once we get RA we shouldn't disrupt this further. Align
+                 * sources of 64-bit instructions. */
 
-        /* Initialize as non-existent */
+                if (ins->type == TAG_ALU_4 && ins->alu.reg_mode == midgard_reg_mode_64) {
+                        mir_foreach_src(ins, v) {
+                                unsigned s = ins->src[v];
 
-        for (int i = 0; i < nodes; ++i) {
-                live_start[i] = live_end[i] = -1;
-        }
+                                if (s < ctx->temp_count)
+                                        min_alignment[s] = 3;
+                        }
+                }
 
-        int d = 0;
+                if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->load_store.op)) {
+                        mir_foreach_src(ins, v) {
+                                unsigned s = ins->src[v];
+                                unsigned size = mir_srcsize(ins, v);
 
-        mir_foreach_block(ctx, block) {
-                mir_foreach_instr_in_block(block, ins) {
-                        if (ins->compact_branch) continue;
+                                if (s < ctx->temp_count)
+                                        min_alignment[s] = (size == midgard_reg_mode_64) ? 3 : 2;
+                        }
+                }
 
-                        /* Dest is < 0 for st_vary instructions, which break
-                         * the usual SSA conventions. Liveness analysis doesn't
-                         * make sense on these instructions, so skip them to
-                         * avoid memory corruption */
+                if (ins->dest >= SSA_FIXED_MINIMUM) continue;
 
-                        if (ins->ssa_args.dest < 0) continue;
+                /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
+                int class = util_logbase2(ins->mask);
 
-                        if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
-                                /* If this destination is not yet live, it is
-                                 * now since we just wrote it */
+                /* Use the largest class if there's ambiguity, this
+                 * handles partial writes */
 
-                                int dest = ins->ssa_args.dest;
+                int dest = ins->dest;
+                found_class[dest] = MAX2(found_class[dest], class);
 
-                                if (live_start[dest] == -1)
-                                        live_start[dest] = d;
-                        }
+                /* XXX: Ensure swizzles align the right way with more LCRA constraints? */
+                if (ins->type == TAG_ALU_4 && ins->alu.reg_mode != midgard_reg_mode_32)
+                        min_alignment[dest] = 3; /* (1 << 3) = 8 */
 
-                        /* Since we just used a source, the source might be
-                         * dead now. Scan the rest of the block for
-                         * invocations, and if there are none, the source dies
-                         * */
+                if (ins->type == TAG_LOAD_STORE_4 && ins->load_64)
+                        min_alignment[dest] = 3;
 
-                        int sources[2] = {
-                                ins->ssa_args.src0, ins->ssa_args.src1
-                        };
+                /* We don't have a swizzle for the conditional and we don't
+                 * want to muck with the conditional itself, so just force
+                 * alignment for now */
 
-                        for (int src = 0; src < 2; ++src) {
-                                int s = sources[src];
+                if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->alu.op))
+                        min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
 
-                                if (ins->ssa_args.inline_constant && src == 1)
-                                        continue;
-
-                                if (s < 0) continue;
-
-                                if (s >= SSA_FIXED_MINIMUM) continue;
+        }
 
-                                if (!mir_is_live_after(ctx, block, ins, s)) {
-                                        live_end[s] = d;
-                                }
+        for (unsigned i = 0; i < ctx->temp_count; ++i) {
+                lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2);
+                lcra_restrict_range(l, i, (found_class[i] + 1) * 4);
+        }
+        
+        free(found_class);
+        free(min_alignment);
+
+        /* Next, we'll determine semantic class. We default to zero (work).
+         * But, if we're used with a special operation, that will force us to a
+         * particular class. Each node must be assigned to exactly one class; a
+         * prepass before RA should have lowered what-would-have-been
+         * multiclass nodes into a series of moves to break it up into multiple
+         * nodes (TODO) */
+
+        mir_foreach_instr_global(ctx, ins) {
+                /* Check if this operation imposes any classes */
+
+                if (ins->type == TAG_LOAD_STORE_4) {
+                        set_class(l->class, ins->src[0], REG_CLASS_LDST);
+                        set_class(l->class, ins->src[1], REG_CLASS_LDST);
+                        set_class(l->class, ins->src[2], REG_CLASS_LDST);
+
+                        if (OP_IS_VEC4_ONLY(ins->load_store.op)) {
+                                lcra_restrict_range(l, ins->dest, 16);
+                                lcra_restrict_range(l, ins->src[0], 16);
+                                lcra_restrict_range(l, ins->src[1], 16);
+                                lcra_restrict_range(l, ins->src[2], 16);
                         }
-
-                        ++d;
+                } else if (ins->type == TAG_TEXTURE_4) {
+                        set_class(l->class, ins->dest, REG_CLASS_TEXW);
+                        set_class(l->class, ins->src[0], REG_CLASS_TEXR);
+                        set_class(l->class, ins->src[1], REG_CLASS_TEXR);
+                        set_class(l->class, ins->src[2], REG_CLASS_TEXR);
+                        set_class(l->class, ins->src[3], REG_CLASS_TEXR);
+
+                        /* Texture offsets need to be aligned to vec4, since
+                         * the swizzle for x is forced to x in hardware, while
+                         * the other components are free. TODO: Relax to 8 for
+                         * half-registers if that ever occurs. */
+
+                        //lcra_restrict_range(l, ins->src[3], 16);
                 }
         }
 
-        /* If a node still hasn't been killed, kill it now */
-
-        for (int i = 0; i < nodes; ++i) {
-                /* live_start == -1 most likely indicates a pinned output */
-
-                if (live_end[i] == -1)
-                        live_end[i] = d;
+        /* Check that the semantics of the class are respected */
+        mir_foreach_instr_global(ctx, ins) {
+                assert(check_write_class(l->class, ins->type, ins->dest));
+                assert(check_read_class(l->class, ins->type, ins->src[0]));
+                assert(check_read_class(l->class, ins->type, ins->src[1]));
+                assert(check_read_class(l->class, ins->type, ins->src[2]));
         }
 
-        /* Setup interference between nodes that are live at the same time */
-
-        for (int i = 0; i < nodes; ++i) {
-                for (int j = i + 1; j < nodes; ++j) {
-                        bool j_overlaps_i = live_start[j] < live_end[i];
-                        bool i_overlaps_j = live_end[j] < live_start[i];
-
-                        if (i_overlaps_j || j_overlaps_i)
-                                ra_add_node_interference(g, i, j);
+        /* Mark writeout to r0, render target to r1.z, unknown to r1.w */
+        mir_foreach_instr_global(ctx, ins) {
+                if (!(ins->compact_branch && ins->writeout)) continue;
+
+                if (ins->src[0] < ctx->temp_count) {
+                        if (ins->writeout_depth)
+                                l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_X * 4;
+                        else if (ins->writeout_stencil)
+                                l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_Y * 4;
+                        else
+                                l->solutions[ins->src[0]] = 0;
                 }
-        }
 
-        /* Cleanup */
-        free(live_start);
-        free(live_end);
+                if (ins->src[1] < ctx->temp_count)
+                        l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
 
-        if (!ra_allocate(g)) {
-                *spilled = true;
-        } else {
-                *spilled = false;
+                if (ins->src[2] < ctx->temp_count)
+                        l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_W * 4;
         }
+        
+        mir_compute_interference(ctx, l);
 
-        /* Whether we were successful or not, report the graph so we can
-         * compute spill nodes */
-
-        return g;
+        *spilled = !lcra_solve(l);
+        return l;
 }
 
+
 /* Once registers have been decided via register allocation
  * (allocate_registers), we need to rewrite the MIR to use registers instead of
  * indices */
@@ -401,35 +617,34 @@ allocate_registers(compiler_context *ctx, bool *spilled)
 static void
 install_registers_instr(
         compiler_context *ctx,
-        struct ra_graph *g,
+        struct lcra_state *l,
         midgard_instruction *ins)
 {
-        ssa_args args = ins->ssa_args;
-
         switch (ins->type) {
-        case TAG_ALU_4: {
-                int adjusted_src = args.inline_constant ? -1 : args.src1;
-                struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
-                struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
-                struct phys_reg dest = index_to_reg(ctx, g, args.dest);
+        case TAG_ALU_4:
+        case TAG_ALU_8:
+        case TAG_ALU_12:
+        case TAG_ALU_16: {
+                 if (ins->compact_branch)
+                         return;
 
-                unsigned uncomposed_mask = ins->mask;
-                ins->mask = compose_writemask(uncomposed_mask, dest);
+                struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
+                struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
+                struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
 
-                /* Adjust the dest mask if necessary. Mostly this is a no-op
-                 * but it matters for dot products */
-                dest.mask = effective_writemask(&ins->alu, ins->mask);
+                mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
 
-                midgard_vector_alu_src mod1 =
-                        vector_alu_from_unsigned(ins->alu.src1);
-                mod1.swizzle = compose_swizzle(mod1.swizzle, uncomposed_mask, src1, dest);
-                ins->alu.src1 = vector_alu_srco_unsigned(mod1);
+                unsigned dest_offset =
+                        GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
+                        dest.offset;
+
+                offset_swizzle(ins->swizzle[0], src1.offset, src1.size, dest_offset);
 
                 ins->registers.src1_reg = src1.reg;
 
-                ins->registers.src2_imm = args.inline_constant;
+                ins->registers.src2_imm = ins->has_inline_constant;
 
-                if (args.inline_constant) {
+                if (ins->has_inline_constant) {
                         /* Encode inline 16-bit constant. See disassembler for
                          * where the algorithm is from */
 
@@ -443,8 +658,7 @@ install_registers_instr(
                 } else {
                         midgard_vector_alu_src mod2 =
                                 vector_alu_from_unsigned(ins->alu.src2);
-                        mod2.swizzle = compose_swizzle(
-                                               mod2.swizzle, uncomposed_mask, src2, dest);
+                        offset_swizzle(ins->swizzle[1], src2.offset, src2.size, dest_offset);
                         ins->alu.src2 = vector_alu_srco_unsigned(mod2);
 
                         ins->registers.src2_reg = src2.reg;
@@ -455,26 +669,102 @@ install_registers_instr(
         }
 
         case TAG_LOAD_STORE_4: {
-                if (OP_IS_STORE_R26(ins->load_store.op)) {
-                        /* TODO: use ssa_args for st_vary */
-                        ins->load_store.reg = 0;
-                } else {
-                        /* Which physical register we read off depends on
-                         * whether we are loading or storing -- think about the
-                         * logical dataflow */
+                /* Which physical register we read off depends on
+                 * whether we are loading or storing -- think about the
+                 * logical dataflow */
+
+                bool encodes_src = OP_IS_STORE(ins->load_store.op);
+
+                if (encodes_src) {
+                        struct phys_reg src = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
+                        assert(src.reg == 26 || src.reg == 27);
+
+                        ins->load_store.reg = src.reg - 26;
+                        offset_swizzle(ins->swizzle[0], src.offset, src.size, 0);
+               } else {
+                        struct phys_reg dst = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
+
+                        ins->load_store.reg = dst.reg;
+                        offset_swizzle(ins->swizzle[0], 0, 4, dst.offset);
+                        mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
+                }
+
+                /* We also follow up by actual arguments */
+
+                unsigned src2 = ins->src[1];
+                unsigned src3 = ins->src[2];
+                midgard_reg_mode m32 = midgard_reg_mode_32;
+
+                if (src2 != ~0) {
+                        struct phys_reg src = index_to_reg(ctx, l, src2, m32);
+                        unsigned component = src.offset / src.size;
+                        assert(component * src.size == src.offset);
+                        ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
+                }
 
-                        unsigned r = OP_IS_STORE(ins->load_store.op) ?
-                                     args.src0 : args.dest;
-                        struct phys_reg src = index_to_reg(ctx, g, r);
+                if (src3 != ~0) {
+                        struct phys_reg src = index_to_reg(ctx, l, src3, m32);
+                        unsigned component = src.offset / src.size;
+                        assert(component * src.size == src.offset);
+                        ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
+                }
+                break;
+        }
 
-                        ins->load_store.reg = src.reg;
+        case TAG_TEXTURE_4: {
+                if (ins->texture.op == TEXTURE_OP_BARRIER)
+                        break;
+
+                /* Grab RA results */
+                struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
+                struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
+                struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], mir_srcsize(ins, 2));
+                struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], mir_srcsize(ins, 2));
+
+                /* First, install the texture coordinate */
+                ins->texture.in_reg_full = 1;
+                ins->texture.in_reg_upper = 0;
+                ins->texture.in_reg_select = coord.reg & 1;
+                offset_swizzle(ins->swizzle[1], coord.offset, coord.size, 0);
+
+                /* Next, install the destination */
+                ins->texture.out_full = 1;
+                ins->texture.out_upper = 0;
+                ins->texture.out_reg_select = dest.reg & 1;
+                offset_swizzle(ins->swizzle[0], 0, 4, dest.offset);
+                mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
+
+                /* If there is a register LOD/bias, use it */
+                if (ins->src[2] != ~0) {
+                        assert(!(lod.offset & 3));
+                        midgard_tex_register_select sel = {
+                                .select = lod.reg & 1,
+                                .full = 1,
+                                .component = lod.offset / 4
+                        };
 
-                        ins->load_store.swizzle = compose_swizzle(
-                                                          ins->load_store.swizzle, 0xF,
-                                                          default_phys_reg(0), src);
+                        uint8_t packed;
+                        memcpy(&packed, &sel, sizeof(packed));
+                        ins->texture.bias = packed;
+                }
 
-                        ins->mask = compose_writemask(
-                                            ins->mask, src);
+                /* If there is an offset register, install it */
+                if (ins->src[3] != ~0) {
+                        unsigned x = offset.offset / 4;
+                        unsigned y = x + 1;
+                        unsigned z = x + 2;
+
+                        /* Check range, TODO: half-registers */
+                        assert(z < 4);
+
+                        ins->texture.offset =
+                                (1)                   | /* full */
+                                (offset.reg & 1) << 1 | /* select */
+                                (0 << 2)              | /* upper */
+                                (x << 3)              | /* swizzle */
+                                (y << 5)              | /* swizzle */
+                                (z << 7);               /* swizzle */
                 }
 
                 break;
@@ -485,14 +775,212 @@ install_registers_instr(
         }
 }
 
-void
-install_registers(compiler_context *ctx, struct ra_graph *g)
+static void
+install_registers(compiler_context *ctx, struct lcra_state *l)
 {
-        mir_foreach_block(ctx, block) {
+        mir_foreach_instr_global(ctx, ins)
+                install_registers_instr(ctx, l, ins);
+}
+
+
+/* If register allocation fails, find the best spill node */
+
+static signed
+mir_choose_spill_node(
+                compiler_context *ctx,
+                struct lcra_state *l)
+{
+        /* We can't spill a previously spilled value or an unspill */
+
+        mir_foreach_instr_global(ctx, ins) {
+                if (ins->no_spill & (1 << l->spill_class)) {
+                        lcra_set_node_spill_cost(l, ins->dest, -1);
+
+                        if (l->spill_class != REG_CLASS_WORK) {
+                                mir_foreach_src(ins, s)
+                                        lcra_set_node_spill_cost(l, ins->src[s], -1);
+                        }
+                }
+        }
+
+        return lcra_get_best_spill_node(l);
+}
+
+/* Once we've chosen a spill node, spill it */
+
+static void
+mir_spill_register(
+                compiler_context *ctx,
+                unsigned spill_node,
+                unsigned spill_class,
+                unsigned *spill_count)
+{
+        unsigned spill_index = ctx->temp_count;
+
+        /* We have a spill node, so check the class. Work registers
+         * legitimately spill to TLS, but special registers just spill to work
+         * registers */
+
+        bool is_special = spill_class != REG_CLASS_WORK;
+        bool is_special_w = spill_class == REG_CLASS_TEXW;
+
+        /* Allocate TLS slot (maybe) */
+        unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
+
+        /* For TLS, replace all stores to the spilled node. For
+         * special reads, just keep as-is; the class will be demoted
+         * implicitly. For special writes, spill to a work register */
+
+        if (!is_special || is_special_w) {
+                if (is_special_w)
+                        spill_slot = spill_index++;
+
+                mir_foreach_block(ctx, _block) {
+                midgard_block *block = (midgard_block *) _block;
+                mir_foreach_instr_in_block_safe(block, ins) {
+                        if (ins->dest != spill_node) continue;
+
+                        midgard_instruction st;
+
+                        if (is_special_w) {
+                                st = v_mov(spill_node, spill_slot);
+                                st.no_spill |= (1 << spill_class);
+                        } else {
+                                ins->dest = spill_index++;
+                                ins->no_spill |= (1 << spill_class);
+                                st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
+                        }
+
+                        /* Hint: don't rewrite this node */
+                        st.hint = true;
+
+                        mir_insert_instruction_after_scheduled(ctx, block, ins, st);
+
+                        if (!is_special)
+                                ctx->spills++;
+                }
+                }
+        }
+
+        /* For special reads, figure out how many bytes we need */
+        unsigned read_bytemask = 0;
+
+        mir_foreach_instr_global_safe(ctx, ins) {
+                read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
+        }
+
+        /* Insert a load from TLS before the first consecutive
+         * use of the node, rewriting to use spilled indices to
+         * break up the live range. Or, for special, insert a
+         * move. Ironically the latter *increases* register
+         * pressure, but the two uses of the spilling mechanism
+         * are somewhat orthogonal. (special spilling is to use
+         * work registers to back special registers; TLS
+         * spilling is to use memory to back work registers) */
+
+        mir_foreach_block(ctx, _block) {
+                midgard_block *block = (midgard_block *) _block;
                 mir_foreach_instr_in_block(block, ins) {
-                        if (ins->compact_branch) continue;
-                        install_registers_instr(ctx, g, ins);
+                        /* We can't rewrite the moves used to spill in the
+                         * first place. These moves are hinted. */
+                        if (ins->hint) continue;
+
+                        /* If we don't use the spilled value, nothing to do */
+                        if (!mir_has_arg(ins, spill_node)) continue;
+
+                        unsigned index = 0;
+
+                        if (!is_special_w) {
+                                index = ++spill_index;
+
+                                midgard_instruction *before = ins;
+                                midgard_instruction st;
+
+                                if (is_special) {
+                                        /* Move */
+                                        st = v_mov(spill_node, index);
+                                        st.no_spill |= (1 << spill_class);
+                                } else {
+                                        /* TLS load */
+                                        st = v_load_store_scratch(index, spill_slot, false, 0xF);
+                                }
+
+                                /* Mask the load based on the component count
+                                 * actually needed to prevent RA loops */
+
+                                st.mask = mir_from_bytemask(read_bytemask, midgard_reg_mode_32);
+
+                                mir_insert_instruction_before_scheduled(ctx, block, before, st);
+                        } else {
+                                /* Special writes already have their move spilled in */
+                                index = spill_slot;
+                        }
+
+
+                        /* Rewrite to use */
+                        mir_rewrite_index_src_single(ins, spill_node, index);
+
+                        if (!is_special)
+                                ctx->fills++;
+                }
+        }
+
+        /* Reset hints */
+
+        mir_foreach_instr_global(ctx, ins) {
+                ins->hint = false;
+        }
+}
+
+/* Run register allocation in a loop, spilling until we succeed */
+
+void
+mir_ra(compiler_context *ctx)
+{
+        struct lcra_state *l = NULL;
+        bool spilled = false;
+        int iter_count = 1000; /* max iterations */
+
+        /* Number of 128-bit slots in memory we've spilled into */
+        unsigned spill_count = 0;
+
+
+        mir_create_pipeline_registers(ctx);
+
+        do {
+                if (spilled) {
+                        signed spill_node = mir_choose_spill_node(ctx, l);
+
+                        if (spill_node == -1) {
+                                fprintf(stderr, "ERROR: Failed to choose spill node\n");
+                                return;
+                        }
+
+                        mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
                 }
+
+                mir_squeeze_index(ctx);
+                mir_invalidate_liveness(ctx);
+
+                if (l) {
+                        lcra_free(l);
+                        l = NULL;
+                }
+
+                l = allocate_registers(ctx, &spilled);
+        } while(spilled && ((iter_count--) > 0));
+
+        if (iter_count <= 0) {
+                fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
+                assert(0);
         }
 
+        /* Report spilling information. spill_count is in 128-bit slots (vec4 x
+         * fp32), but tls_size is in bytes, so multiply by 16 */
+
+        ctx->tls_size = spill_count * 16;
+
+        install_registers(ctx, l);
+
+        lcra_free(l);
 }