panfrost: Move lcra to panfrost/util
[mesa.git] / src / panfrost / midgard / midgard_ra.c
index 11bef79a42c6c8d6c4e9f49b36d0efeec2ef81c5..48122c4967a3bb9c31c9e513c99e4f60a25778d4 100644 (file)
 
 #include "compiler.h"
 #include "midgard_ops.h"
-#include "util/register_allocate.h"
 #include "util/u_math.h"
 #include "util/u_memory.h"
-
-/* For work registers, we can subdivide in various ways. So we create
- * classes for the various sizes and conflict accordingly, keeping in
- * mind that physical registers are divided along 128-bit boundaries.
- * The important part is that 128-bit boundaries are not crossed.
- *
- * For each 128-bit register, we can subdivide to 32-bits 10 ways
- *
- * vec4: xyzw
- * vec3: xyz, yzw
- * vec2: xy, yz, zw,
- * vec1: x, y, z, w
- *
- * For each 64-bit register, we can subdivide similarly to 16-bit
- * (TODO: half-float RA, not that we support fp16 yet)
- */
-
-#define WORK_STRIDE 10
-
-/* We have overlapping register classes for special registers, handled via
- * shadows */
-
-#define SHADOW_R0  17
-#define SHADOW_R28 18
-#define SHADOW_R29 19
-
-/* Prepacked masks/swizzles for virtual register types */
-static unsigned reg_type_to_mask[WORK_STRIDE] = {
-        0xF,                                    /* xyzw */
-        0x7, 0x7 << 1,                          /* xyz */
-                 0x3, 0x3 << 1, 0x3 << 2,                /* xy */
-                 0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3       /* x */
-};
-
-static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-};
+#include "midgard_quirks.h"
 
 struct phys_reg {
+        /* Physical register: 0-31 */
         unsigned reg;
-        unsigned mask;
-        unsigned swizzle;
-};
 
-/* Given the mask/swizzle of both the register and the original source,
- * compose to find the actual mask/swizzle to give the hardware */
+        /* Byte offset into the physical register: 0-15 */
+        unsigned offset;
 
-static unsigned
-compose_writemask(unsigned mask, struct phys_reg reg)
-{
-        /* Note: the reg mask is guaranteed to be contiguous. So we shift
-         * into the X place, compose via a simple AND, and shift back */
+        /* Number of bytes in a component of this register */
+        unsigned size;
+};
 
-        unsigned shift = __builtin_ctz(reg.mask);
-        return ((reg.mask >> shift) & mask) << shift;
-}
+/* Shift up by reg_offset and horizontally by dst_offset. */
 
-static unsigned
-compose_swizzle(unsigned swizzle, unsigned mask,
-                struct phys_reg reg, struct phys_reg dst)
+static void
+offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcsize, unsigned dst_offset)
 {
-        unsigned out = pan_compose_swizzle(swizzle, reg.swizzle);
+        unsigned out[MIR_VEC_COMPONENTS];
 
-        /* Based on the register mask, we need to adjust over. E.g if we're
-         * writing to yz, a base swizzle of xy__ becomes _xy_. Save the
-         * original first component (x). But to prevent duplicate shifting
-         * (only applies to ALU -- mask param is set to xyzw out on L/S to
-         * prevent changes), we have to account for the shift inherent to the
-         * original writemask */
+        signed reg_comp = reg_offset / srcsize;
+        signed dst_comp = dst_offset / srcsize;
 
-        unsigned rep = out & 0x3;
-        unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
-        unsigned shifted = out << (2*shift);
+        unsigned max_component = (16 / srcsize) - 1;
 
-        /* ..but we fill in the gaps so it appears to replicate */
+        assert(reg_comp * srcsize == reg_offset);
+        assert(dst_comp * srcsize == dst_offset);
 
-        for (unsigned s = 0; s < shift; ++s)
-                shifted |= rep << (2*s);
+        for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
+                signed comp = MAX2(c - dst_comp, 0);
+                out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
+        }
 
-        return shifted;
+        memcpy(swizzle, out, sizeof(out));
 }
 
 /* Helper to return the default phys_reg for a given register */
 
 static struct phys_reg
-default_phys_reg(int reg)
+default_phys_reg(int reg, midgard_reg_mode size)
 {
         struct phys_reg r = {
                 .reg = reg,
-                .mask = 0xF, /* xyzw */
-                .swizzle = 0xE4 /* xyzw */
+                .offset = 0,
+                .size = mir_bytes_for_mode(size)
         };
 
         return r;
@@ -139,206 +80,37 @@ default_phys_reg(int reg)
  * register corresponds to */
 
 static struct phys_reg
-index_to_reg(compiler_context *ctx, struct ra_graph *g, unsigned reg)
+index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, midgard_reg_mode size)
 {
         /* Check for special cases */
         if (reg == ~0)
-                return default_phys_reg(REGISTER_UNUSED);
+                return default_phys_reg(REGISTER_UNUSED, size);
         else if (reg >= SSA_FIXED_MINIMUM)
-                return default_phys_reg(SSA_REG_FROM_FIXED(reg));
-        else if (!g)
-                return default_phys_reg(REGISTER_UNUSED);
-
-        /* Special cases aside, we pick the underlying register */
-        int virt = ra_get_node_reg(g, reg);
-
-        /* Divide out the register and classification */
-        int phys = virt / WORK_STRIDE;
-        int type = virt % WORK_STRIDE;
-
-        /* Apply shadow registers */
-
-        if (phys >= SHADOW_R28 && phys <= SHADOW_R29)
-                phys += 28 - SHADOW_R28;
-        else if (phys == SHADOW_R0)
-                phys = 0;
+                return default_phys_reg(SSA_REG_FROM_FIXED(reg), size);
+        else if (!l)
+                return default_phys_reg(REGISTER_UNUSED, size);
 
         struct phys_reg r = {
-                .reg = phys,
-                .mask = reg_type_to_mask[type],
-                .swizzle = reg_type_to_swizzle[type]
+                .reg = l->solutions[reg] / 16,
+                .offset = l->solutions[reg] & 0xF,
+                .size = mir_bytes_for_mode(size)
         };
 
         /* Report that we actually use this register, and return it */
 
-        if (phys < 16)
-                ctx->work_registers = MAX2(ctx->work_registers, phys);
+        if (r.reg < 16)
+                ctx->work_registers = MAX2(ctx->work_registers, r.reg);
 
         return r;
 }
 
-/* This routine creates a register set. Should be called infrequently since
- * it's slow and can be cached. For legibility, variables are named in terms of
- * work registers, although it is also used to create the register set for
- * special register allocation */
-
-static void
-add_shadow_conflicts (struct ra_regs *regs, unsigned base, unsigned shadow, unsigned shadow_count)
-{
-        for (unsigned a = 0; a < WORK_STRIDE; ++a) {
-                unsigned reg_a = (WORK_STRIDE * base) + a;
-
-                for (unsigned b = 0; b < shadow_count; ++b) {
-                        unsigned reg_b = (WORK_STRIDE * shadow) + b;
-
-                        ra_add_reg_conflict(regs, reg_a, reg_b);
-                        ra_add_reg_conflict(regs, reg_b, reg_a);
-                }
-        }
-}
-
-static struct ra_regs *
-create_register_set(unsigned work_count, unsigned *classes)
-{
-        int virtual_count = 32 * WORK_STRIDE;
-
-        /* First, initialize the RA */
-        struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
-
-        for (unsigned c = 0; c < (NR_REG_CLASSES - 1); ++c) {
-                int work_vec4 = ra_alloc_reg_class(regs);
-                int work_vec3 = ra_alloc_reg_class(regs);
-                int work_vec2 = ra_alloc_reg_class(regs);
-                int work_vec1 = ra_alloc_reg_class(regs);
-
-                classes[4*c + 0] = work_vec1;
-                classes[4*c + 1] = work_vec2;
-                classes[4*c + 2] = work_vec3;
-                classes[4*c + 3] = work_vec4;
-
-                /* Special register classes have other register counts */
-                unsigned count =
-                        (c == REG_CLASS_WORK)   ? work_count : 2;
-
-                unsigned first_reg =
-                        (c == REG_CLASS_LDST)   ? 26 :
-                        (c == REG_CLASS_TEXR)   ? 28 :
-                        (c == REG_CLASS_TEXW)   ? SHADOW_R28 :
-                        0;
-
-                /* Add the full set of work registers */
-                for (unsigned i = first_reg; i < (first_reg + count); ++i) {
-                        int base = WORK_STRIDE * i;
-
-                        /* Build a full set of subdivisions */
-                        ra_class_add_reg(regs, work_vec4, base);
-                        ra_class_add_reg(regs, work_vec3, base + 1);
-                        ra_class_add_reg(regs, work_vec3, base + 2);
-                        ra_class_add_reg(regs, work_vec2, base + 3);
-                        ra_class_add_reg(regs, work_vec2, base + 4);
-                        ra_class_add_reg(regs, work_vec2, base + 5);
-                        ra_class_add_reg(regs, work_vec1, base + 6);
-                        ra_class_add_reg(regs, work_vec1, base + 7);
-                        ra_class_add_reg(regs, work_vec1, base + 8);
-                        ra_class_add_reg(regs, work_vec1, base + 9);
-
-                        for (unsigned a = 0; a < 10; ++a) {
-                                unsigned mask1 = reg_type_to_mask[a];
-
-                                for (unsigned b = 0; b < 10; ++b) {
-                                        unsigned mask2 = reg_type_to_mask[b];
-
-                                        if (mask1 & mask2)
-                                                ra_add_reg_conflict(regs,
-                                                                    base + a, base + b);
-                                }
-                        }
-                }
-        }
-
-        int fragc = ra_alloc_reg_class(regs);
-
-        classes[4*REG_CLASS_FRAGC + 0] = fragc;
-        classes[4*REG_CLASS_FRAGC + 1] = fragc;
-        classes[4*REG_CLASS_FRAGC + 2] = fragc;
-        classes[4*REG_CLASS_FRAGC + 3] = fragc;
-        ra_class_add_reg(regs, fragc, WORK_STRIDE * SHADOW_R0);
-
-        /* We have duplicate classes */
-        add_shadow_conflicts(regs,  0, SHADOW_R0,  1);
-        add_shadow_conflicts(regs, 28, SHADOW_R28, WORK_STRIDE);
-        add_shadow_conflicts(regs, 29, SHADOW_R29, WORK_STRIDE);
-
-        /* We're done setting up */
-        ra_set_finalize(regs, NULL);
-
-        return regs;
-}
-
-/* This routine gets a precomputed register set off the screen if it's able, or
- * otherwise it computes one on the fly */
-
-static struct ra_regs *
-get_register_set(struct midgard_screen *screen, unsigned work_count, unsigned **classes)
-{
-        /* Bounds check */
-        assert(work_count >= 8);
-        assert(work_count <= 16);
-
-        /* Compute index */
-        unsigned index = work_count - 8;
-
-        /* Find the reg set */
-        struct ra_regs *cached = screen->regs[index];
-
-        if (cached) {
-                assert(screen->reg_classes[index]);
-                *classes = screen->reg_classes[index];
-                return cached;
-        }
-
-        /* Otherwise, create one */
-        struct ra_regs *created = create_register_set(work_count, screen->reg_classes[index]);
-
-        /* Cache it and use it */
-        screen->regs[index] = created;
-
-        *classes = screen->reg_classes[index];
-        return created;
-}
-
-/* Assign a (special) class, ensuring that it is compatible with whatever class
- * was already set */
-
 static void
 set_class(unsigned *classes, unsigned node, unsigned class)
 {
-        /* Check that we're even a node */
-        if (node >= SSA_FIXED_MINIMUM)
-                return;
-
-        /* First 4 are work, next 4 are load/store.. */
-        unsigned current_class = classes[node] >> 2;
-
-        /* Nothing to do */
-        if (class == current_class)
-                return;
-
-        /* If we're changing, we haven't assigned a special class */
-        assert(current_class == REG_CLASS_WORK);
-
-        classes[node] &= 0x3;
-        classes[node] |= (class << 2);
-}
-
-static void
-force_vec4(unsigned *classes, unsigned node)
-{
-        if (node >= SSA_FIXED_MINIMUM)
-                return;
-
-        /* Force vec4 = 3 */
-        classes[node] |= 0x3;
+        if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
+                assert(classes[node] == REG_CLASS_WORK);
+                classes[node] = class;
+        }
 }
 
 /* Special register classes impose special constraints on who can read their
@@ -351,9 +123,7 @@ check_read_class(unsigned *classes, unsigned tag, unsigned node)
         if (node >= SSA_FIXED_MINIMUM)
                 return true;
 
-        unsigned current_class = classes[node] >> 2;
-
-        switch (current_class) {
+        switch (classes[node]) {
         case REG_CLASS_LDST:
                 return (tag == TAG_LOAD_STORE_4);
         case REG_CLASS_TEXR:
@@ -374,9 +144,7 @@ check_write_class(unsigned *classes, unsigned tag, unsigned node)
         if (node >= SSA_FIXED_MINIMUM)
                 return true;
 
-        unsigned current_class = classes[node] >> 2;
-
-        switch (current_class) {
+        switch (classes[node]) {
         case REG_CLASS_TEXR:
                 return true;
         case REG_CLASS_TEXW:
@@ -499,8 +267,7 @@ mir_lower_special_reads(compiler_context *ctx)
                         unsigned idx = spill_idx++;
 
                         midgard_instruction m = hazard_write ?
-                                v_mov(idx, blank_alu_src, i) :
-                                v_mov(i, blank_alu_src, idx);
+                                v_mov(idx, i) : v_mov(i, idx);
 
                         /* Insert move before each read/write, depending on the
                          * hazard we're trying to account for */
@@ -524,8 +291,8 @@ mir_lower_special_reads(compiler_context *ctx)
                                         mir_rewrite_index_dst_single(pre_use, i, idx);
                                 } else {
                                         idx = spill_idx++;
-                                        m = v_mov(i, blank_alu_src, idx);
-                                        m.mask = mir_mask_of_read_components(pre_use, i);
+                                        m = v_mov(i, idx);
+                                        m.mask = mir_from_bytemask(mir_bytemask_of_read_components(pre_use, i), midgard_reg_mode_32);
                                         mir_insert_instruction_before(ctx, pre_use, m);
                                         mir_rewrite_index_src_single(pre_use, i, idx);
                                 }
@@ -541,141 +308,106 @@ mir_lower_special_reads(compiler_context *ctx)
         free(texw);
 }
 
-/* Routines for liveness analysis */
+/* We register allocate after scheduling, so we need to ensure instructions
+ * executing in parallel within a segment of a bundle don't clobber each
+ * other's registers. This is mostly a non-issue thanks to scheduling, but
+ * there are edge cases. In particular, after a register is written in a
+ * segment, it interferes with anything reading. */
 
 static void
-liveness_gen(uint8_t *live, unsigned node, unsigned max, unsigned mask)
-{
-        if (node >= max)
-                return;
-
-        live[node] |= mask;
-}
-
-static void
-liveness_kill(uint8_t *live, unsigned node, unsigned max, unsigned mask)
+mir_compute_segment_interference(
+                compiler_context *ctx,
+                struct lcra_state *l,
+                midgard_bundle *bun,
+                unsigned pivot,
+                unsigned i)
 {
-        if (node >= max)
-                return;
+        for (unsigned j = pivot; j < i; ++j) {
+                mir_foreach_src(bun->instructions[j], s) {
+                        if (bun->instructions[j]->src[s] >= ctx->temp_count)
+                                continue;
 
-        live[node] &= ~mask;
-}
-
-/* Updates live_in for a single instruction */
-
-static void
-liveness_ins_update(uint8_t *live, midgard_instruction *ins, unsigned max)
-{
-        /* live_in[s] = GEN[s] + (live_out[s] - KILL[s]) */
+                        for (unsigned q = pivot; q < i; ++q) {
+                                if (bun->instructions[q]->dest >= ctx->temp_count)
+                                        continue;
 
-        liveness_kill(live, ins->dest, max, ins->mask);
+                                /* See dEQP-GLES2.functional.shaders.return.output_write_in_func_dynamic_fragment */
 
-        mir_foreach_src(ins, src) {
-                unsigned node = ins->src[src];
-                unsigned mask = mir_mask_of_read_components(ins, node);
+                                if (q >= j) {
+                                        if (!(bun->instructions[j]->unit == UNIT_SMUL && bun->instructions[q]->unit == UNIT_VLUT))
+                                                continue;
+                                }
 
-                liveness_gen(live, node, max, mask);
+                                unsigned mask = mir_bytemask(bun->instructions[q]);
+                                unsigned rmask = mir_bytemask_of_read_components(bun->instructions[j], bun->instructions[j]->src[s]);
+                                lcra_add_node_interference(l, bun->instructions[q]->dest, mask, bun->instructions[j]->src[s], rmask);
+                        }
+                }
         }
 }
 
-/* live_out[s] = sum { p in succ[s] } ( live_in[p] ) */
-
 static void
-liveness_block_live_out(compiler_context *ctx, midgard_block *blk)
-{
-        mir_foreach_successor(blk, succ) {
-                for (unsigned i = 0; i < ctx->temp_count; ++i)
-                        blk->live_out[i] |= succ->live_in[i];
-        }
-}
-
-/* Liveness analysis is a backwards-may dataflow analysis pass. Within a block,
- * we compute live_out from live_in. The intrablock pass is linear-time. It
- * returns whether progress was made. */
-
-static bool
-liveness_block_update(compiler_context *ctx, midgard_block *blk)
+mir_compute_bundle_interference(
+                compiler_context *ctx,
+                struct lcra_state *l,
+                midgard_bundle *bun)
 {
-        bool progress = false;
-
-        liveness_block_live_out(ctx, blk);
-
-        uint8_t *live = mem_dup(blk->live_out, ctx->temp_count);
-
-        mir_foreach_instr_in_block_rev(blk, ins)
-                liveness_ins_update(live, ins, ctx->temp_count);
+        if (!IS_ALU(bun->tag))
+                return;
 
-        /* To figure out progress, diff live_in */
+        bool old = bun->instructions[0]->unit >= UNIT_VADD;
+        unsigned pivot = 0;
 
-        for (unsigned i = 0; (i < ctx->temp_count) && !progress; ++i)
-                progress |= (blk->live_in[i] != live[i]);
+        for (unsigned i = 1; i < bun->instruction_count; ++i) {
+                bool new = bun->instructions[i]->unit >= UNIT_VADD;
 
-        free(blk->live_in);
-        blk->live_in = live;
+                if (old != new) {
+                        mir_compute_segment_interference(ctx, l, bun, 0, i);
+                        pivot = i;
+                        break;
+                }
+        }
 
-        return progress;
+        mir_compute_segment_interference(ctx, l, bun, pivot, bun->instruction_count);
 }
 
-/* Globally, liveness analysis uses a fixed-point algorithm based on a
- * worklist. We initialize a work list with the exit block. We iterate the work
- * list to compute live_in from live_out for each block on the work list,
- * adding the predecessors of the block to the work list if we made progress.
- */
-
 static void
-mir_compute_liveness(
+mir_compute_interference(
                 compiler_context *ctx,
-                struct ra_graph *g)
+                struct lcra_state *l)
 {
-        /* List of midgard_block */
-        struct set *work_list;
+        /* First, we need liveness information to be computed per block */
+        mir_compute_liveness(ctx);
 
-        work_list = _mesa_set_create(ctx,
-                        _mesa_hash_pointer,
-                        _mesa_key_pointer_equal);
+        /* We need to force r1.w live throughout a blend shader */
 
-        /* Allocate */
+        if (ctx->is_blend) {
+                unsigned r1w = ~0;
 
-        mir_foreach_block(ctx, block) {
-                block->live_in = calloc(ctx->temp_count, 1);
-                block->live_out = calloc(ctx->temp_count, 1);
-        }
-
-        /* Initialize the work list with the exit block */
-        struct set_entry *cur;
-
-        midgard_block *exit = mir_exit_block(ctx);
-        cur = _mesa_set_add(work_list, exit);
-
-        /* Iterate the work list */
-
-        do {
-                /* Pop off a block */
-                midgard_block *blk = (struct midgard_block *) cur->key;
-                _mesa_set_remove(work_list, cur);
-
-                /* Update its liveness information */
-                bool progress = liveness_block_update(ctx, blk);
+                mir_foreach_block(ctx, _block) {
+                        midgard_block *block = (midgard_block *) _block;
+                        mir_foreach_instr_in_block_rev(block, ins) {
+                                if (ins->writeout)
+                                        r1w = ins->src[2];
+                        }
 
-                /* If we made progress, we need to process the predecessors */
+                        if (r1w != ~0)
+                                break;
+                }
 
-                if (progress || (blk == exit)) {
-                        mir_foreach_predecessor(blk, pred)
-                                _mesa_set_add(work_list, pred);
+                mir_foreach_instr_global(ctx, ins) {
+                        if (ins->dest < ctx->temp_count)
+                                lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
                 }
-        } while((cur = _mesa_set_next_entry(work_list, NULL)) != NULL);
+        }
 
         /* Now that every block has live_in/live_out computed, we can determine
          * interference by walking each block linearly. Take live_out at the
          * end of each block and walk the block backwards. */
 
-        mir_foreach_block(ctx, blk) {
-                uint8_t *live = calloc(ctx->temp_count, 1);
-
-                mir_foreach_successor(blk, succ) {
-                        for (unsigned i = 0; i < ctx->temp_count; ++i)
-                                live[i] |= succ->live_in[i];
-                }
+        mir_foreach_block(ctx, _blk) {
+                midgard_block *blk = (midgard_block *) _blk;
+                uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
 
                 mir_foreach_instr_in_block_rev(blk, ins) {
                         /* Mark all registers live after the instruction as
@@ -685,55 +417,92 @@ mir_compute_liveness(
 
                         if (dest < ctx->temp_count) {
                                 for (unsigned i = 0; i < ctx->temp_count; ++i)
-                                        if (live[i])
-                                                ra_add_node_interference(g, dest, i);
+                                        if (live[i]) {
+                                                unsigned mask = mir_bytemask(ins);
+                                                lcra_add_node_interference(l, dest, mask, i, live[i]);
+                                        }
                         }
 
                         /* Update live_in */
-                        liveness_ins_update(live, ins, ctx->temp_count);
+                        mir_liveness_ins_update(live, ins, ctx->temp_count);
                 }
 
-                free(live);
-        }
+                mir_foreach_bundle_in_block(blk, bun)
+                        mir_compute_bundle_interference(ctx, l, bun);
 
-        mir_foreach_block(ctx, blk) {
-                free(blk->live_in);
-                free(blk->live_out);
+                free(live);
         }
 }
 
 /* This routine performs the actual register allocation. It should be succeeded
  * by install_registers */
 
-struct ra_graph *
+static struct lcra_state *
 allocate_registers(compiler_context *ctx, bool *spilled)
 {
         /* The number of vec4 work registers available depends on when the
          * uniforms start, so compute that first */
         int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
-        unsigned *classes = NULL;
-        struct ra_regs *regs = get_register_set(ctx->screen, work_count, &classes);
-
-        assert(regs != NULL);
-        assert(classes != NULL);
 
        /* No register allocation to do with no SSA */
 
         if (!ctx->temp_count)
                 return NULL;
 
-        /* Let's actually do register allocation */
-        int nodes = ctx->temp_count;
-        struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
-        
-        /* Register class (as known to the Mesa register allocator) is actually
-         * the product of both semantic class (work, load/store, texture..) and
-         * size (vec2/vec3..). First, we'll go through and determine the
-         * minimum size needed to hold values */
+        struct lcra_state *l = lcra_alloc_equations(ctx->temp_count, 1, 8, 16, 5);
+
+        /* Starts of classes, in bytes */
+        l->class_start[REG_CLASS_WORK]  = 16 * 0;
+        l->class_start[REG_CLASS_LDST]  = 16 * 26;
+        l->class_start[REG_CLASS_TEXR]  = 16 * 28;
+        l->class_start[REG_CLASS_TEXW]  = 16 * 28;
+
+        l->class_size[REG_CLASS_WORK] = 16 * work_count;
+        l->class_size[REG_CLASS_LDST]  = 16 * 2;
+        l->class_size[REG_CLASS_TEXR]  = 16 * 2;
+        l->class_size[REG_CLASS_TEXW]  = 16 * 2;
+
+        lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
+
+        /* To save space on T*20, we don't have real texture registers.
+         * Instead, tex inputs reuse the load/store pipeline registers, and
+         * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
+         * noting that this handles interferences and sizes correctly. */
+
+        if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
+                l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
+                l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
+        }
 
         unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
+        unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
 
         mir_foreach_instr_global(ctx, ins) {
+                /* Swizzles of 32-bit sources on 64-bit instructions need to be
+                 * aligned to either bottom (xy) or top (zw). More general
+                 * swizzle lowering should happen prior to scheduling (TODO),
+                 * but once we get RA we shouldn't disrupt this further. Align
+                 * sources of 64-bit instructions. */
+
+                if (ins->type == TAG_ALU_4 && ins->alu.reg_mode == midgard_reg_mode_64) {
+                        mir_foreach_src(ins, v) {
+                                unsigned s = ins->src[v];
+
+                                if (s < ctx->temp_count)
+                                        min_alignment[s] = 3;
+                        }
+                }
+
+                if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->load_store.op)) {
+                        mir_foreach_src(ins, v) {
+                                unsigned s = ins->src[v];
+                                unsigned size = mir_srcsize(ins, v);
+
+                                if (s < ctx->temp_count)
+                                        min_alignment[s] = (size == midgard_reg_mode_64) ? 3 : 2;
+                        }
+                }
+
                 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
 
                 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
@@ -744,8 +513,31 @@ allocate_registers(compiler_context *ctx, bool *spilled)
 
                 int dest = ins->dest;
                 found_class[dest] = MAX2(found_class[dest], class);
+
+                /* XXX: Ensure swizzles align the right way with more LCRA constraints? */
+                if (ins->type == TAG_ALU_4 && ins->alu.reg_mode != midgard_reg_mode_32)
+                        min_alignment[dest] = 3; /* (1 << 3) = 8 */
+
+                if (ins->type == TAG_LOAD_STORE_4 && ins->load_64)
+                        min_alignment[dest] = 3;
+
+                /* We don't have a swizzle for the conditional and we don't
+                 * want to muck with the conditional itself, so just force
+                 * alignment for now */
+
+                if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->alu.op))
+                        min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
+
         }
 
+        for (unsigned i = 0; i < ctx->temp_count; ++i) {
+                lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2);
+                lcra_restrict_range(l, i, (found_class[i] + 1) * 4);
+        }
+        
+        free(found_class);
+        free(min_alignment);
+
         /* Next, we'll determine semantic class. We default to zero (work).
          * But, if we're used with a special operation, that will force us to a
          * particular class. Each node must be assigned to exactly one class; a
@@ -757,59 +549,67 @@ allocate_registers(compiler_context *ctx, bool *spilled)
                 /* Check if this operation imposes any classes */
 
                 if (ins->type == TAG_LOAD_STORE_4) {
-                        bool force_vec4_only = OP_IS_VEC4_ONLY(ins->load_store.op);
-
-                        set_class(found_class, ins->src[0], REG_CLASS_LDST);
-                        set_class(found_class, ins->src[1], REG_CLASS_LDST);
-                        set_class(found_class, ins->src[2], REG_CLASS_LDST);
-
-                        if (force_vec4_only) {
-                                force_vec4(found_class, ins->dest);
-                                force_vec4(found_class, ins->src[0]);
-                                force_vec4(found_class, ins->src[1]);
-                                force_vec4(found_class, ins->src[2]);
+                        set_class(l->class, ins->src[0], REG_CLASS_LDST);
+                        set_class(l->class, ins->src[1], REG_CLASS_LDST);
+                        set_class(l->class, ins->src[2], REG_CLASS_LDST);
+
+                        if (OP_IS_VEC4_ONLY(ins->load_store.op)) {
+                                lcra_restrict_range(l, ins->dest, 16);
+                                lcra_restrict_range(l, ins->src[0], 16);
+                                lcra_restrict_range(l, ins->src[1], 16);
+                                lcra_restrict_range(l, ins->src[2], 16);
                         }
                 } else if (ins->type == TAG_TEXTURE_4) {
-                        set_class(found_class, ins->dest, REG_CLASS_TEXW);
-                        set_class(found_class, ins->src[0], REG_CLASS_TEXR);
-                        set_class(found_class, ins->src[1], REG_CLASS_TEXR);
-                        set_class(found_class, ins->src[2], REG_CLASS_TEXR);
+                        set_class(l->class, ins->dest, REG_CLASS_TEXW);
+                        set_class(l->class, ins->src[0], REG_CLASS_TEXR);
+                        set_class(l->class, ins->src[1], REG_CLASS_TEXR);
+                        set_class(l->class, ins->src[2], REG_CLASS_TEXR);
+                        set_class(l->class, ins->src[3], REG_CLASS_TEXR);
+
+                        /* Texture offsets need to be aligned to vec4, since
+                         * the swizzle for x is forced to x in hardware, while
+                         * the other components are free. TODO: Relax to 8 for
+                         * half-registers if that ever occurs. */
+
+                        //lcra_restrict_range(l, ins->src[3], 16);
                 }
         }
 
         /* Check that the semantics of the class are respected */
         mir_foreach_instr_global(ctx, ins) {
-                assert(check_write_class(found_class, ins->type, ins->dest));
-                assert(check_read_class(found_class, ins->type, ins->src[0]));
-                assert(check_read_class(found_class, ins->type, ins->src[1]));
-                assert(check_read_class(found_class, ins->type, ins->src[2]));
+                assert(check_write_class(l->class, ins->type, ins->dest));
+                assert(check_read_class(l->class, ins->type, ins->src[0]));
+                assert(check_read_class(l->class, ins->type, ins->src[1]));
+                assert(check_read_class(l->class, ins->type, ins->src[2]));
         }
 
-        /* Mark writeout to r0 */
+        /* Mark writeout to r0, render target to r1.z, unknown to r1.w */
         mir_foreach_instr_global(ctx, ins) {
-                if (ins->compact_branch && ins->writeout)
-                        set_class(found_class, ins->src[0], REG_CLASS_FRAGC);
-        }
-
-        for (unsigned i = 0; i < ctx->temp_count; ++i) {
-                unsigned class = found_class[i];
-                ra_set_node_class(g, i, classes[class]);
-        }
+                if (!(ins->compact_branch && ins->writeout)) continue;
+
+                if (ins->src[0] < ctx->temp_count) {
+                        if (ins->writeout_depth)
+                                l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_X * 4;
+                        else if (ins->writeout_stencil)
+                                l->solutions[ins->src[0]] = (16 * 1) + COMPONENT_Y * 4;
+                        else
+                                l->solutions[ins->src[0]] = 0;
+                }
 
-        mir_compute_liveness(ctx, g);
+                if (ins->src[1] < ctx->temp_count)
+                        l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
 
-        if (!ra_allocate(g)) {
-                *spilled = true;
-        } else {
-                *spilled = false;
+                if (ins->src[2] < ctx->temp_count)
+                        l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_W * 4;
         }
+        
+        mir_compute_interference(ctx, l);
 
-        /* Whether we were successful or not, report the graph so we can
-         * compute spill nodes */
-
-        return g;
+        *spilled = !lcra_solve(l);
+        return l;
 }
 
+
 /* Once registers have been decided via register allocation
  * (allocate_registers), we need to rewrite the MIR to use registers instead of
  * indices */
@@ -817,7 +617,7 @@ allocate_registers(compiler_context *ctx, bool *spilled)
 static void
 install_registers_instr(
         compiler_context *ctx,
-        struct ra_graph *g,
+        struct lcra_state *l,
         midgard_instruction *ins)
 {
         switch (ins->type) {
@@ -828,21 +628,17 @@ install_registers_instr(
                  if (ins->compact_branch)
                          return;
 
-                struct phys_reg src1 = index_to_reg(ctx, g, ins->src[0]);
-                struct phys_reg src2 = index_to_reg(ctx, g, ins->src[1]);
-                struct phys_reg dest = index_to_reg(ctx, g, ins->dest);
+                struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
+                struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
+                struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
 
-                unsigned uncomposed_mask = ins->mask;
-                ins->mask = compose_writemask(uncomposed_mask, dest);
+                mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
 
-                /* Adjust the dest mask if necessary. Mostly this is a no-op
-                 * but it matters for dot products */
-                dest.mask = effective_writemask(&ins->alu, ins->mask);
+                unsigned dest_offset =
+                        GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
+                        dest.offset;
 
-                midgard_vector_alu_src mod1 =
-                        vector_alu_from_unsigned(ins->alu.src1);
-                mod1.swizzle = compose_swizzle(mod1.swizzle, uncomposed_mask, src1, dest);
-                ins->alu.src1 = vector_alu_srco_unsigned(mod1);
+                offset_swizzle(ins->swizzle[0], src1.offset, src1.size, dest_offset);
 
                 ins->registers.src1_reg = src1.reg;
 
@@ -862,8 +658,7 @@ install_registers_instr(
                 } else {
                         midgard_vector_alu_src mod2 =
                                 vector_alu_from_unsigned(ins->alu.src2);
-                        mod2.swizzle = compose_swizzle(
-                                               mod2.swizzle, uncomposed_mask, src2, dest);
+                        offset_swizzle(ins->swizzle[1], src2.offset, src2.size, dest_offset);
                         ins->alu.src2 = vector_alu_srco_unsigned(mod2);
 
                         ins->registers.src2_reg = src2.reg;
@@ -881,54 +676,36 @@ install_registers_instr(
                 bool encodes_src = OP_IS_STORE(ins->load_store.op);
 
                 if (encodes_src) {
-                        struct phys_reg src = index_to_reg(ctx, g, ins->src[0]);
+                        struct phys_reg src = index_to_reg(ctx, l, ins->src[0], mir_srcsize(ins, 0));
                         assert(src.reg == 26 || src.reg == 27);
 
                         ins->load_store.reg = src.reg - 26;
-
-                        unsigned shift = __builtin_ctz(src.mask);
-                        unsigned adjusted_mask = src.mask >> shift;
-                        assert(((adjusted_mask + 1) & adjusted_mask) == 0);
-
-                        unsigned new_swizzle = 0;
-                        for (unsigned q = 0; q < 4; ++q) {
-                                unsigned c = (ins->load_store.swizzle >> (2*q)) & 3;
-                                new_swizzle |= (c + shift) << (2*q);
-                        }
-
-                        ins->load_store.swizzle = compose_swizzle(
-                                                          new_swizzle, src.mask,
-                                                          default_phys_reg(0), src);
+                        offset_swizzle(ins->swizzle[0], src.offset, src.size, 0);
                } else {
-                        struct phys_reg src = index_to_reg(ctx, g, ins->dest);
-
-                        ins->load_store.reg = src.reg;
-
-                        ins->load_store.swizzle = compose_swizzle(
-                                                          ins->load_store.swizzle, 0xF,
-                                                          default_phys_reg(0), src);
+                        struct phys_reg dst = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
 
-                        ins->mask = compose_writemask(
-                                            ins->mask, src);
+                        ins->load_store.reg = dst.reg;
+                        offset_swizzle(ins->swizzle[0], 0, 4, dst.offset);
+                        mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
                 }
 
                 /* We also follow up by actual arguments */
 
-                int src2 =
-                        encodes_src ? ins->src[1] : ins->src[0];
+                unsigned src2 = ins->src[1];
+                unsigned src3 = ins->src[2];
+                midgard_reg_mode m32 = midgard_reg_mode_32;
 
-                int src3 =
-                        encodes_src ? ins->src[2] : ins->src[1];
-
-                if (src2 >= 0) {
-                        struct phys_reg src = index_to_reg(ctx, g, src2);
-                        unsigned component = __builtin_ctz(src.mask);
+                if (src2 != ~0) {
+                        struct phys_reg src = index_to_reg(ctx, l, src2, m32);
+                        unsigned component = src.offset / src.size;
+                        assert(component * src.size == src.offset);
                         ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
                 }
 
-                if (src3 >= 0) {
-                        struct phys_reg src = index_to_reg(ctx, g, src3);
-                        unsigned component = __builtin_ctz(src.mask);
+                if (src3 != ~0) {
+                        struct phys_reg src = index_to_reg(ctx, l, src3, m32);
+                        unsigned component = src.offset / src.size;
+                        assert(component * src.size == src.offset);
                         ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
                 }
  
@@ -936,36 +713,35 @@ install_registers_instr(
         }
 
         case TAG_TEXTURE_4: {
-                /* Grab RA results */
-                struct phys_reg dest = index_to_reg(ctx, g, ins->dest);
-                struct phys_reg coord = index_to_reg(ctx, g, ins->src[0]);
-                struct phys_reg lod = index_to_reg(ctx, g, ins->src[1]);
+                if (ins->texture.op == TEXTURE_OP_BARRIER)
+                        break;
 
-                assert(dest.reg == 28 || dest.reg == 29);
-                assert(coord.reg == 28 || coord.reg == 29);
+                /* Grab RA results */
+                struct phys_reg dest = index_to_reg(ctx, l, ins->dest, mir_typesize(ins));
+                struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], mir_srcsize(ins, 1));
+                struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], mir_srcsize(ins, 2));
+                struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], mir_srcsize(ins, 2));
 
                 /* First, install the texture coordinate */
                 ins->texture.in_reg_full = 1;
                 ins->texture.in_reg_upper = 0;
-                ins->texture.in_reg_select = coord.reg - 28;
-                ins->texture.in_reg_swizzle =
-                        compose_swizzle(ins->texture.in_reg_swizzle, 0xF, coord, dest);
+                ins->texture.in_reg_select = coord.reg & 1;
+                offset_swizzle(ins->swizzle[1], coord.offset, coord.size, 0);
 
                 /* Next, install the destination */
                 ins->texture.out_full = 1;
                 ins->texture.out_upper = 0;
-                ins->texture.out_reg_select = dest.reg - 28;
-                ins->texture.swizzle =
-                        compose_swizzle(ins->texture.swizzle, dest.mask, dest, dest);
-                ins->mask =
-                        compose_writemask(ins->mask, dest);
+                ins->texture.out_reg_select = dest.reg & 1;
+                offset_swizzle(ins->swizzle[0], 0, 4, dest.offset);
+                mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
 
                 /* If there is a register LOD/bias, use it */
-                if (ins->src[1] != ~0) {
+                if (ins->src[2] != ~0) {
+                        assert(!(lod.offset & 3));
                         midgard_tex_register_select sel = {
-                                .select = lod.reg,
+                                .select = lod.reg & 1,
                                 .full = 1,
-                                .component = lod.swizzle & 3,
+                                .component = lod.offset / 4
                         };
 
                         uint8_t packed;
@@ -973,6 +749,24 @@ install_registers_instr(
                         ins->texture.bias = packed;
                 }
 
+                /* If there is an offset register, install it */
+                if (ins->src[3] != ~0) {
+                        unsigned x = offset.offset / 4;
+                        unsigned y = x + 1;
+                        unsigned z = x + 2;
+
+                        /* Check range, TODO: half-registers */
+                        assert(z < 4);
+
+                        ins->texture.offset =
+                                (1)                   | /* full */
+                                (offset.reg & 1) << 1 | /* select */
+                                (0 << 2)              | /* upper */
+                                (x << 3)              | /* swizzle */
+                                (y << 5)              | /* swizzle */
+                                (z << 7);               /* swizzle */
+                }
+
                 break;
         }
 
@@ -981,9 +775,212 @@ install_registers_instr(
         }
 }
 
-void
-install_registers(compiler_context *ctx, struct ra_graph *g)
+static void
+install_registers(compiler_context *ctx, struct lcra_state *l)
 {
         mir_foreach_instr_global(ctx, ins)
-                install_registers_instr(ctx, g, ins);
+                install_registers_instr(ctx, l, ins);
+}
+
+
+/* If register allocation fails, find the best spill node */
+
+static signed
+mir_choose_spill_node(
+                compiler_context *ctx,
+                struct lcra_state *l)
+{
+        /* We can't spill a previously spilled value or an unspill */
+
+        mir_foreach_instr_global(ctx, ins) {
+                if (ins->no_spill & (1 << l->spill_class)) {
+                        lcra_set_node_spill_cost(l, ins->dest, -1);
+
+                        if (l->spill_class != REG_CLASS_WORK) {
+                                mir_foreach_src(ins, s)
+                                        lcra_set_node_spill_cost(l, ins->src[s], -1);
+                        }
+                }
+        }
+
+        return lcra_get_best_spill_node(l);
+}
+
+/* Once we've chosen a spill node, spill it */
+
+static void
+mir_spill_register(
+                compiler_context *ctx,
+                unsigned spill_node,
+                unsigned spill_class,
+                unsigned *spill_count)
+{
+        unsigned spill_index = ctx->temp_count;
+
+        /* We have a spill node, so check the class. Work registers
+         * legitimately spill to TLS, but special registers just spill to work
+         * registers */
+
+        bool is_special = spill_class != REG_CLASS_WORK;
+        bool is_special_w = spill_class == REG_CLASS_TEXW;
+
+        /* Allocate TLS slot (maybe) */
+        unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
+
+        /* For TLS, replace all stores to the spilled node. For
+         * special reads, just keep as-is; the class will be demoted
+         * implicitly. For special writes, spill to a work register */
+
+        if (!is_special || is_special_w) {
+                if (is_special_w)
+                        spill_slot = spill_index++;
+
+                mir_foreach_block(ctx, _block) {
+                midgard_block *block = (midgard_block *) _block;
+                mir_foreach_instr_in_block_safe(block, ins) {
+                        if (ins->dest != spill_node) continue;
+
+                        midgard_instruction st;
+
+                        if (is_special_w) {
+                                st = v_mov(spill_node, spill_slot);
+                                st.no_spill |= (1 << spill_class);
+                        } else {
+                                ins->dest = spill_index++;
+                                ins->no_spill |= (1 << spill_class);
+                                st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
+                        }
+
+                        /* Hint: don't rewrite this node */
+                        st.hint = true;
+
+                        mir_insert_instruction_after_scheduled(ctx, block, ins, st);
+
+                        if (!is_special)
+                                ctx->spills++;
+                }
+                }
+        }
+
+        /* For special reads, figure out how many bytes we need */
+        unsigned read_bytemask = 0;
+
+        mir_foreach_instr_global_safe(ctx, ins) {
+                read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
+        }
+
+        /* Insert a load from TLS before the first consecutive
+         * use of the node, rewriting to use spilled indices to
+         * break up the live range. Or, for special, insert a
+         * move. Ironically the latter *increases* register
+         * pressure, but the two uses of the spilling mechanism
+         * are somewhat orthogonal. (special spilling is to use
+         * work registers to back special registers; TLS
+         * spilling is to use memory to back work registers) */
+
+        mir_foreach_block(ctx, _block) {
+                midgard_block *block = (midgard_block *) _block;
+                mir_foreach_instr_in_block(block, ins) {
+                        /* We can't rewrite the moves used to spill in the
+                         * first place. These moves are hinted. */
+                        if (ins->hint) continue;
+
+                        /* If we don't use the spilled value, nothing to do */
+                        if (!mir_has_arg(ins, spill_node)) continue;
+
+                        unsigned index = 0;
+
+                        if (!is_special_w) {
+                                index = ++spill_index;
+
+                                midgard_instruction *before = ins;
+                                midgard_instruction st;
+
+                                if (is_special) {
+                                        /* Move */
+                                        st = v_mov(spill_node, index);
+                                        st.no_spill |= (1 << spill_class);
+                                } else {
+                                        /* TLS load */
+                                        st = v_load_store_scratch(index, spill_slot, false, 0xF);
+                                }
+
+                                /* Mask the load based on the component count
+                                 * actually needed to prevent RA loops */
+
+                                st.mask = mir_from_bytemask(read_bytemask, midgard_reg_mode_32);
+
+                                mir_insert_instruction_before_scheduled(ctx, block, before, st);
+                        } else {
+                                /* Special writes already have their move spilled in */
+                                index = spill_slot;
+                        }
+
+
+                        /* Rewrite to use */
+                        mir_rewrite_index_src_single(ins, spill_node, index);
+
+                        if (!is_special)
+                                ctx->fills++;
+                }
+        }
+
+        /* Reset hints */
+
+        mir_foreach_instr_global(ctx, ins) {
+                ins->hint = false;
+        }
+}
+
+/* Run register allocation in a loop, spilling until we succeed */
+
+void
+mir_ra(compiler_context *ctx)
+{
+        struct lcra_state *l = NULL;
+        bool spilled = false;
+        int iter_count = 1000; /* max iterations */
+
+        /* Number of 128-bit slots in memory we've spilled into */
+        unsigned spill_count = 0;
+
+
+        mir_create_pipeline_registers(ctx);
+
+        do {
+                if (spilled) {
+                        signed spill_node = mir_choose_spill_node(ctx, l);
+
+                        if (spill_node == -1) {
+                                fprintf(stderr, "ERROR: Failed to choose spill node\n");
+                                return;
+                        }
+
+                        mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
+                }
+
+                mir_squeeze_index(ctx);
+                mir_invalidate_liveness(ctx);
+
+                if (l) {
+                        lcra_free(l);
+                        l = NULL;
+                }
+
+                l = allocate_registers(ctx, &spilled);
+        } while(spilled && ((iter_count--) > 0));
+
+        if (iter_count <= 0) {
+                fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
+                assert(0);
+        }
+
+        /* Report spilling information. spill_count is in 128-bit slots (vec4 x
+         * fp32), but tls_size is in bytes, so multiply by 16 */
+
+        ctx->tls_size = spill_count * 16;
+
+        install_registers(ctx, l);
+
+        lcra_free(l);
 }