X-Git-Url: https://git.libre-soc.org/?p=mesa.git;a=blobdiff_plain;f=src%2Fgallium%2Fdrivers%2Fradeonsi%2Fgfx10_shader_ngg.c;h=cc3ff50e8e06e2f6f51f9334a26cf7fdd3cd0c83;hp=4f814f7a05be14eb9d7b75c7f9cc09c6734f1ed3;hb=6ecb8b689976d21868e56a4f59f1354ea256d23d;hpb=3406a57ff3ff21f0be29a6f8396cc5d69f7581ad;ds=sidebyside diff --git a/src/gallium/drivers/radeonsi/gfx10_shader_ngg.c b/src/gallium/drivers/radeonsi/gfx10_shader_ngg.c index 4f814f7a05b..cc3ff50e8e0 100644 --- a/src/gallium/drivers/radeonsi/gfx10_shader_ngg.c +++ b/src/gallium/drivers/radeonsi/gfx10_shader_ngg.c @@ -21,180 +21,238 @@ * USE OR OTHER DEALINGS IN THE SOFTWARE. */ +#include "ac_llvm_cull.h" #include "si_pipe.h" #include "si_shader_internal.h" - #include "sid.h" - #include "util/u_memory.h" #include "util/u_prim.h" static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx) { - return si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4); + return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4); } static LLVMValueRef get_tgsize(struct si_shader_context *ctx) { - return si_unpack_param(ctx, ctx->param_merged_wave_info, 28, 4); + return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4); } static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx) { - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef tmp; - tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx), - LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), ""); - return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), ""); + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef tmp; + tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx), + LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), ""); + return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), ""); } static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx) { - return ac_build_bfe(&ctx->ac, ctx->gs_tg_info, - LLVMConstInt(ctx->ac.i32, 12, false), - LLVMConstInt(ctx->ac.i32, 9, false), - false); + return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9); } static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx) { - return ac_build_bfe(&ctx->ac, ctx->gs_tg_info, - LLVMConstInt(ctx->ac.i32, 22, false), - LLVMConstInt(ctx->ac.i32, 9, false), - false); + return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9); } static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx) { - return ac_build_bfe(&ctx->ac, ctx->gs_tg_info, - ctx->i32_0, - LLVMConstInt(ctx->ac.i32, 11, false), - false); + return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12); } static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx) { - LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn, - ctx->param_rw_buffers); + LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers); + + return ac_build_load_to_sgpr(&ctx->ac, buf_ptr, + LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false)); +} - return ac_build_load_to_sgpr(&ctx->ac, buf_ptr, - LLVMConstInt(ctx->i32, GFX10_GS_QUERY_BUF, false)); +static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index) +{ + if (ctx->stage == MESA_SHADER_VERTEX) { + LLVMValueRef tmp; + tmp = LLVMBuildLShr(ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id), + LLVMConstInt(ctx->ac.i32, 8 + index, false), ""); + return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, ""); + } + return ctx->ac.i1false; } -/* Send GS Alloc Req message from the first wave of the group to SPI. - * Message payload is: - * - bits 0..10: vertices in group - * - bits 12..22: primitives in group +/** + * Return the number of vertices as a constant in \p num_vertices, + * and return a more precise value as LLVMValueRef from the function. */ -static void build_sendmsg_gs_alloc_req(struct si_shader_context *ctx, - LLVMValueRef vtx_cnt, - LLVMValueRef prim_cnt) +static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx, unsigned *num_vertices) { - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef tmp; + const struct si_shader_info *info = &ctx->shader->selector->info; + + if (ctx->stage == MESA_SHADER_VERTEX) { + if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) { + /* Blits always use axis-aligned rectangles with 3 vertices. */ + *num_vertices = 3; + return LLVMConstInt(ctx->ac.i32, 3, 0); + } else { + /* We always build up all three indices for the prim export + * independent of the primitive type. The additional garbage + * data shouldn't hurt. This number doesn't matter with + * NGG passthrough. + */ + *num_vertices = 3; + + /* Extract OUTPRIM field. */ + LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2); + return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, ""); + } + } else { + assert(ctx->stage == MESA_SHADER_TESS_EVAL); + + if (info->properties[TGSI_PROPERTY_TES_POINT_MODE]) + *num_vertices = 1; + else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES) + *num_vertices = 2; + else + *num_vertices = 3; + + return LLVMConstInt(ctx->ac.i32, *num_vertices, false); + } +} - tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ""); - ac_build_ifcc(&ctx->ac, tmp, 5020); +bool gfx10_ngg_export_prim_early(struct si_shader *shader) +{ + struct si_shader_selector *sel = shader->selector; - tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),""); - tmp = LLVMBuildOr(builder, tmp, vtx_cnt, ""); - ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp); + assert(shader->key.as_ngg && !shader->key.as_es); - ac_build_endif(&ctx->ac, 5020); + return sel->info.stage != MESA_SHADER_GEOMETRY && !sel->info.writes_edgeflag; } -struct ngg_prim { - unsigned num_vertices; - LLVMValueRef isnull; - LLVMValueRef index[3]; - LLVMValueRef edgeflag[3]; -}; +void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx) +{ + ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ngg_get_vtx_cnt(ctx), + ngg_get_prim_cnt(ctx)); +} -static void build_export_prim(struct si_shader_context *ctx, - const struct ngg_prim *prim) +void gfx10_ngg_build_export_prim(struct si_shader_context *ctx, LLVMValueRef user_edgeflags[3], + LLVMValueRef prim_passthrough) { - LLVMBuilderRef builder = ctx->ac.builder; - struct ac_export_args args; - LLVMValueRef tmp; - - tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, ""); - args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), ""); - - for (unsigned i = 0; i < prim->num_vertices; ++i) { - tmp = LLVMBuildShl(builder, prim->index[i], - LLVMConstInt(ctx->ac.i32, 10 * i, false), ""); - args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, ""); - tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, ""); - tmp = LLVMBuildShl(builder, tmp, - LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), ""); - args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, ""); - } - - args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, ""); - args.out[1] = LLVMGetUndef(ctx->ac.f32); - args.out[2] = LLVMGetUndef(ctx->ac.f32); - args.out[3] = LLVMGetUndef(ctx->ac.f32); - - args.target = V_008DFC_SQ_EXP_PRIM; - args.enabled_channels = 1; - args.done = true; - args.valid_mask = false; - args.compr = false; - - ac_build_export(&ctx->ac, &args); + LLVMBuilderRef builder = ctx->ac.builder; + + if (gfx10_is_ngg_passthrough(ctx->shader) || ctx->shader->key.opt.ngg_culling) { + ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001); + { + struct ac_ngg_prim prim = {}; + + if (prim_passthrough) + prim.passthrough = prim_passthrough; + else + prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset); + + /* This is only used with NGG culling, which returns the NGG + * passthrough prim export encoding. + */ + if (ctx->shader->selector->info.writes_edgeflag) { + unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS; + LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0); + + unsigned num_vertices; + ngg_get_vertices_per_prim(ctx, &num_vertices); + + for (unsigned i = 0; i < num_vertices; i++) { + unsigned shift = 9 + i * 10; + LLVMValueRef edge; + + edge = LLVMBuildLoad(builder, user_edgeflags[i], ""); + edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, ""); + edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), ""); + edgeflags = LLVMBuildOr(builder, edgeflags, edge, ""); + } + prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, ""); + } + + ac_build_export_prim(&ctx->ac, &prim); + } + ac_build_endif(&ctx->ac, 6001); + return; + } + + ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001); + { + struct ac_ngg_prim prim = {}; + + ngg_get_vertices_per_prim(ctx, &prim.num_vertices); + + prim.isnull = ctx->ac.i1false; + prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16); + prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16); + prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16); + + for (unsigned i = 0; i < prim.num_vertices; ++i) { + prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i); + + if (ctx->shader->selector->info.writes_edgeflag) { + LLVMValueRef edge; + + edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], ""); + edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, ""); + prim.edgeflag[i] = edge; + } + } + + ac_build_export_prim(&ctx->ac, &prim); + } + ac_build_endif(&ctx->ac, 6001); } -static void build_streamout_vertex(struct si_shader_context *ctx, - LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw, - unsigned stream, LLVMValueRef offset_vtx, - LLVMValueRef vertexptr) +static void build_streamout_vertex(struct si_shader_context *ctx, LLVMValueRef *so_buffer, + LLVMValueRef *wg_offset_dw, unsigned stream, + LLVMValueRef offset_vtx, LLVMValueRef vertexptr) { - struct tgsi_shader_info *info = &ctx->shader->selector->info; - struct pipe_stream_output_info *so = &ctx->shader->selector->so; - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef offset[4] = {}; - LLVMValueRef tmp; - - for (unsigned buffer = 0; buffer < 4; ++buffer) { - if (!wg_offset_dw[buffer]) - continue; - - tmp = LLVMBuildMul(builder, offset_vtx, - LLVMConstInt(ctx->i32, so->stride[buffer], false), ""); - tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, ""); - offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->i32, 2, false), ""); - } - - for (unsigned i = 0; i < so->num_outputs; ++i) { - if (so->output[i].stream != stream) - continue; - - unsigned reg = so->output[i].register_index; - struct si_shader_output_values out; - out.semantic_name = info->output_semantic_name[reg]; - out.semantic_index = info->output_semantic_index[reg]; - - for (unsigned comp = 0; comp < 4; comp++) { - tmp = ac_build_gep0(&ctx->ac, vertexptr, - LLVMConstInt(ctx->i32, 4 * reg + comp, false)); - out.values[comp] = LLVMBuildLoad(builder, tmp, ""); - out.vertex_stream[comp] = - (info->output_streams[reg] >> (2 * comp)) & 3; - } - - si_emit_streamout_output(ctx, so_buffer, offset, &so->output[i], &out); - } + struct si_shader_info *info = &ctx->shader->selector->info; + struct pipe_stream_output_info *so = &ctx->shader->selector->so; + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef offset[4] = {}; + LLVMValueRef tmp; + + for (unsigned buffer = 0; buffer < 4; ++buffer) { + if (!wg_offset_dw[buffer]) + continue; + + tmp = LLVMBuildMul(builder, offset_vtx, LLVMConstInt(ctx->ac.i32, so->stride[buffer], false), + ""); + tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, ""); + offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), ""); + } + + for (unsigned i = 0; i < so->num_outputs; ++i) { + if (so->output[i].stream != stream) + continue; + + unsigned reg = so->output[i].register_index; + struct si_shader_output_values out; + out.semantic = info->output_semantic[reg]; + + for (unsigned comp = 0; comp < 4; comp++) { + tmp = ac_build_gep0(&ctx->ac, vertexptr, LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false)); + out.values[comp] = LLVMBuildLoad(builder, tmp, ""); + out.vertex_stream[comp] = (info->output_streams[reg] >> (2 * comp)) & 3; + } + + si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out); + } } struct ngg_streamout { - LLVMValueRef num_vertices; + LLVMValueRef num_vertices; - /* per-thread data */ - LLVMValueRef prim_enable[4]; /* i1 per stream */ - LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */ + /* per-thread data */ + LLVMValueRef prim_enable[4]; /* i1 per stream */ + LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */ - /* Output */ - LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */ + /* Output */ + LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */ }; /** @@ -206,626 +264,1174 @@ struct ngg_streamout { * * Clobbers gs_ngg_scratch[8:]. */ -static void build_streamout(struct si_shader_context *ctx, - struct ngg_streamout *nggso) +static void build_streamout(struct si_shader_context *ctx, struct ngg_streamout *nggso) { - struct tgsi_shader_info *info = &ctx->shader->selector->info; - struct pipe_stream_output_info *so = &ctx->shader->selector->so; - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers); - LLVMValueRef tid = get_thread_id_in_tg(ctx); - LLVMValueRef tmp, tmp2; - LLVMValueRef i32_2 = LLVMConstInt(ctx->i32, 2, false); - LLVMValueRef i32_4 = LLVMConstInt(ctx->i32, 4, false); - LLVMValueRef i32_8 = LLVMConstInt(ctx->i32, 8, false); - LLVMValueRef so_buffer[4] = {}; - unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + - (nggso->vertices[2] ? 1 : 0); - LLVMValueRef prim_stride_dw[4] = {}; - LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->i32); - int stream_for_buffer[4] = { -1, -1, -1, -1 }; - unsigned bufmask_for_stream[4] = {}; - bool isgs = ctx->type == PIPE_SHADER_GEOMETRY; - unsigned scratch_emit_base = isgs ? 4 : 0; - LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->i32_0; - unsigned scratch_offset_base = isgs ? 8 : 4; - LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4; - - ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256); - - /* Determine the mapping of streamout buffers to vertex streams. */ - for (unsigned i = 0; i < so->num_outputs; ++i) { - unsigned buf = so->output[i].output_buffer; - unsigned stream = so->output[i].stream; - assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream); - stream_for_buffer[buf] = stream; - bufmask_for_stream[stream] |= 1 << buf; - } - - for (unsigned buffer = 0; buffer < 4; ++buffer) { - if (stream_for_buffer[buffer] == -1) - continue; - - assert(so->stride[buffer]); - - tmp = LLVMConstInt(ctx->i32, so->stride[buffer], false); - prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, ""); - prim_stride_dw_vgpr = ac_build_writelane( - &ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer], - LLVMConstInt(ctx->i32, buffer, false)); - - so_buffer[buffer] = ac_build_load_to_sgpr( - &ctx->ac, buf_ptr, - LLVMConstInt(ctx->i32, SI_VS_STREAMOUT_BUF0 + buffer, false)); - } - - tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->i32_0, ""); - ac_build_ifcc(&ctx->ac, tmp, 5200); - { - LLVMTypeRef gdsptr = LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS); - LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->i32_0, gdsptr, ""); - - /* Advance the streamout offsets in GDS. */ - LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, ""); - LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, ""); - - tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, ""); - ac_build_ifcc(&ctx->ac, tmp, 5210); - { - if (isgs) { - tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid); - tmp = LLVMBuildLoad(builder, tmp, ""); - } else { - tmp = ac_build_writelane(&ctx->ac, ctx->i32_0, - ngg_get_prim_cnt(ctx), ctx->i32_0); - } - LLVMBuildStore(builder, tmp, generated_by_stream_vgpr); - - unsigned swizzle[4]; - int unused_stream = -1; - for (unsigned stream = 0; stream < 4; ++stream) { - if (!info->num_stream_output_components[stream]) { - unused_stream = stream; - break; - } - } - for (unsigned buffer = 0; buffer < 4; ++buffer) { - if (stream_for_buffer[buffer] >= 0) { - swizzle[buffer] = stream_for_buffer[buffer]; - } else { - assert(unused_stream >= 0); - swizzle[buffer] = unused_stream; - } - } - - tmp = ac_build_quad_swizzle(&ctx->ac, tmp, - swizzle[0], swizzle[1], swizzle[2], swizzle[3]); - tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, ""); - - LLVMValueRef args[] = { - LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""), - tmp, - ctx->i32_0, // ordering - ctx->i32_0, // scope - ctx->ac.i1false, // isVolatile - LLVMConstInt(ctx->i32, 4 << 24, false), // OA index - ctx->ac.i1true, // wave release - ctx->ac.i1true, // wave done - }; - tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", - ctx->i32, args, ARRAY_SIZE(args), 0); - - /* Keep offsets in a VGPR for quick retrieval via readlane by - * the first wave for bounds checking, and also store in LDS - * for retrieval by all waves later. */ - LLVMBuildStore(builder, tmp, offsets_vgpr); - - tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), - scratch_offset_basev, ""); - tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2); - LLVMBuildStore(builder, tmp, tmp2); - } - ac_build_endif(&ctx->ac, 5210); - - /* Determine the max emit per buffer. This is done via the SALU, in part - * because LLVM can't generate divide-by-multiply if we try to do this - * via VALU with one lane per buffer. - */ - LLVMValueRef max_emit[4] = {}; - for (unsigned buffer = 0; buffer < 4; ++buffer) { - if (stream_for_buffer[buffer] == -1) - continue; - - LLVMValueRef bufsize_dw = - LLVMBuildLShr(builder, - LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), - i32_2, ""); - - tmp = LLVMBuildLoad(builder, offsets_vgpr, ""); - LLVMValueRef offset_dw = - ac_build_readlane(&ctx->ac, tmp, - LLVMConstInt(ctx->i32, buffer, false)); - - tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, ""); - tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], ""); - - tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, ""); - max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->i32_0, tmp, ""); - } - - /* Determine the number of emitted primitives per stream and fixup the - * GDS counter if necessary. - * - * This is complicated by the fact that a single stream can emit to - * multiple buffers (but luckily not vice versa). - */ - LLVMValueRef emit_vgpr = ctx->i32_0; - - for (unsigned stream = 0; stream < 4; ++stream) { - if (!info->num_stream_output_components[stream]) - continue; - - tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, ""); - LLVMValueRef generated = - ac_build_readlane(&ctx->ac, tmp, - LLVMConstInt(ctx->i32, stream, false)); - - LLVMValueRef emit = generated; - for (unsigned buffer = 0; buffer < 4; ++buffer) { - if (stream_for_buffer[buffer] == stream) - emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]); - } - - emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit, - LLVMConstInt(ctx->i32, stream, false)); - - /* Fixup the offset using a plain GDS atomic if we overflowed. */ - tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, ""); - ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */ - tmp = LLVMBuildLShr(builder, - LLVMConstInt(ctx->i32, bufmask_for_stream[stream], false), - ac_get_thread_id(&ctx->ac), ""); - tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, ""); - ac_build_ifcc(&ctx->ac, tmp, 5222); - { - tmp = LLVMBuildSub(builder, generated, emit, ""); - tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, ""); - tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, ""); - LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp, - LLVMAtomicOrderingMonotonic, false); - } - ac_build_endif(&ctx->ac, 5222); - ac_build_endif(&ctx->ac, 5221); - } - - tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, ""); - ac_build_ifcc(&ctx->ac, tmp, 5225); - { - tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), - scratch_emit_basev, ""); - tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp); - LLVMBuildStore(builder, emit_vgpr, tmp); - } - ac_build_endif(&ctx->ac, 5225); - } - ac_build_endif(&ctx->ac, 5200); - - /* Determine the workgroup-relative per-thread / primitive offset into - * the streamout buffers */ - struct ac_wg_scan primemit_scan[4] = {}; - - if (isgs) { - for (unsigned stream = 0; stream < 4; ++stream) { - if (!info->num_stream_output_components[stream]) - continue; - - primemit_scan[stream].enable_exclusive = true; - primemit_scan[stream].op = nir_op_iadd; - primemit_scan[stream].src = nggso->prim_enable[stream]; - primemit_scan[stream].scratch = - ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, - LLVMConstInt(ctx->i32, 12 + 8 * stream, false)); - primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx); - primemit_scan[stream].numwaves = get_tgsize(ctx); - primemit_scan[stream].maxwaves = 8; - ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]); - } - } - - ac_build_s_barrier(&ctx->ac); - - /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */ - LLVMValueRef wgoffset_dw[4] = {}; - - { - LLVMValueRef scratch_vgpr; - - tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac)); - scratch_vgpr = LLVMBuildLoad(builder, tmp, ""); - - for (unsigned buffer = 0; buffer < 4; ++buffer) { - if (stream_for_buffer[buffer] >= 0) { - wgoffset_dw[buffer] = ac_build_readlane( - &ctx->ac, scratch_vgpr, - LLVMConstInt(ctx->i32, scratch_offset_base + buffer, false)); - } - } - - for (unsigned stream = 0; stream < 4; ++stream) { - if (info->num_stream_output_components[stream]) { - nggso->emit[stream] = ac_build_readlane( - &ctx->ac, scratch_vgpr, - LLVMConstInt(ctx->i32, scratch_emit_base + stream, false)); - } - } - } - - /* Write out primitive data */ - for (unsigned stream = 0; stream < 4; ++stream) { - if (!info->num_stream_output_components[stream]) - continue; - - if (isgs) { - ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]); - } else { - primemit_scan[stream].result_exclusive = tid; - } - - tmp = LLVMBuildICmp(builder, LLVMIntULT, - primemit_scan[stream].result_exclusive, - nggso->emit[stream], ""); - tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], ""); - ac_build_ifcc(&ctx->ac, tmp, 5240); - { - LLVMValueRef offset_vtx = - LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, - nggso->num_vertices, ""); - - for (unsigned i = 0; i < max_num_vertices; ++i) { - tmp = LLVMBuildICmp(builder, LLVMIntULT, - LLVMConstInt(ctx->i32, i, false), - nggso->num_vertices, ""); - ac_build_ifcc(&ctx->ac, tmp, 5241); - build_streamout_vertex(ctx, so_buffer, wgoffset_dw, - stream, offset_vtx, nggso->vertices[i]); - ac_build_endif(&ctx->ac, 5241); - offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->i32_1, ""); - } - } - ac_build_endif(&ctx->ac, 5240); - } + struct si_shader_info *info = &ctx->shader->selector->info; + struct pipe_stream_output_info *so = &ctx->shader->selector->so; + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers); + LLVMValueRef tid = get_thread_id_in_tg(ctx); + LLVMValueRef tmp, tmp2; + LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false); + LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false); + LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false); + LLVMValueRef so_buffer[4] = {}; + unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + (nggso->vertices[2] ? 1 : 0); + LLVMValueRef prim_stride_dw[4] = {}; + LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32); + int stream_for_buffer[4] = {-1, -1, -1, -1}; + unsigned bufmask_for_stream[4] = {}; + bool isgs = ctx->stage == MESA_SHADER_GEOMETRY; + unsigned scratch_emit_base = isgs ? 4 : 0; + LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0; + unsigned scratch_offset_base = isgs ? 8 : 4; + LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4; + + ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256); + + /* Determine the mapping of streamout buffers to vertex streams. */ + for (unsigned i = 0; i < so->num_outputs; ++i) { + unsigned buf = so->output[i].output_buffer; + unsigned stream = so->output[i].stream; + assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream); + stream_for_buffer[buf] = stream; + bufmask_for_stream[stream] |= 1 << buf; + } + + for (unsigned buffer = 0; buffer < 4; ++buffer) { + if (stream_for_buffer[buffer] == -1) + continue; + + assert(so->stride[buffer]); + + tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false); + prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, ""); + prim_stride_dw_vgpr = + ac_build_writelane(&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer], + LLVMConstInt(ctx->ac.i32, buffer, false)); + + so_buffer[buffer] = ac_build_load_to_sgpr( + &ctx->ac, buf_ptr, LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false)); + } + + tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ""); + ac_build_ifcc(&ctx->ac, tmp, 5200); + { + LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS); + LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, ""); + + /* Advance the streamout offsets in GDS. */ + LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, ""); + LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, ""); + + tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, ""); + ac_build_ifcc(&ctx->ac, tmp, 5210); + { + if (isgs) { + tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid); + tmp = LLVMBuildLoad(builder, tmp, ""); + } else { + tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0, ngg_get_prim_cnt(ctx), ctx->ac.i32_0); + } + LLVMBuildStore(builder, tmp, generated_by_stream_vgpr); + + unsigned swizzle[4]; + int unused_stream = -1; + for (unsigned stream = 0; stream < 4; ++stream) { + if (!info->num_stream_output_components[stream]) { + unused_stream = stream; + break; + } + } + for (unsigned buffer = 0; buffer < 4; ++buffer) { + if (stream_for_buffer[buffer] >= 0) { + swizzle[buffer] = stream_for_buffer[buffer]; + } else { + assert(unused_stream >= 0); + swizzle[buffer] = unused_stream; + } + } + + tmp = ac_build_quad_swizzle(&ctx->ac, tmp, swizzle[0], swizzle[1], swizzle[2], swizzle[3]); + tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, ""); + + LLVMValueRef args[] = { + LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""), + tmp, + ctx->ac.i32_0, // ordering + ctx->ac.i32_0, // scope + ctx->ac.i1false, // isVolatile + LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index + ctx->ac.i1true, // wave release + ctx->ac.i1true, // wave done + }; + tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32, args, + ARRAY_SIZE(args), 0); + + /* Keep offsets in a VGPR for quick retrieval via readlane by + * the first wave for bounds checking, and also store in LDS + * for retrieval by all waves later. */ + LLVMBuildStore(builder, tmp, offsets_vgpr); + + tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_offset_basev, ""); + tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2); + LLVMBuildStore(builder, tmp, tmp2); + } + ac_build_endif(&ctx->ac, 5210); + + /* Determine the max emit per buffer. This is done via the SALU, in part + * because LLVM can't generate divide-by-multiply if we try to do this + * via VALU with one lane per buffer. + */ + LLVMValueRef max_emit[4] = {}; + for (unsigned buffer = 0; buffer < 4; ++buffer) { + if (stream_for_buffer[buffer] == -1) + continue; + + LLVMValueRef bufsize_dw = LLVMBuildLShr( + builder, LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), i32_2, ""); + + tmp = LLVMBuildLoad(builder, offsets_vgpr, ""); + LLVMValueRef offset_dw = + ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, buffer, false)); + + tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, ""); + tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], ""); + + tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, ""); + max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, ""); + } + + /* Determine the number of emitted primitives per stream and fixup the + * GDS counter if necessary. + * + * This is complicated by the fact that a single stream can emit to + * multiple buffers (but luckily not vice versa). + */ + LLVMValueRef emit_vgpr = ctx->ac.i32_0; + + for (unsigned stream = 0; stream < 4; ++stream) { + if (!info->num_stream_output_components[stream]) + continue; + + tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, ""); + LLVMValueRef generated = + ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, stream, false)); + + LLVMValueRef emit = generated; + for (unsigned buffer = 0; buffer < 4; ++buffer) { + if (stream_for_buffer[buffer] == stream) + emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]); + } + + emit_vgpr = + ac_build_writelane(&ctx->ac, emit_vgpr, emit, LLVMConstInt(ctx->ac.i32, stream, false)); + + /* Fixup the offset using a plain GDS atomic if we overflowed. */ + tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, ""); + ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */ + tmp = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false), + ac_get_thread_id(&ctx->ac), ""); + tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); + ac_build_ifcc(&ctx->ac, tmp, 5222); + { + tmp = LLVMBuildSub(builder, generated, emit, ""); + tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, ""); + tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, ""); + LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp, + LLVMAtomicOrderingMonotonic, false); + } + ac_build_endif(&ctx->ac, 5222); + ac_build_endif(&ctx->ac, 5221); + } + + tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, ""); + ac_build_ifcc(&ctx->ac, tmp, 5225); + { + tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_emit_basev, ""); + tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp); + LLVMBuildStore(builder, emit_vgpr, tmp); + } + ac_build_endif(&ctx->ac, 5225); + } + ac_build_endif(&ctx->ac, 5200); + + /* Determine the workgroup-relative per-thread / primitive offset into + * the streamout buffers */ + struct ac_wg_scan primemit_scan[4] = {}; + + if (isgs) { + for (unsigned stream = 0; stream < 4; ++stream) { + if (!info->num_stream_output_components[stream]) + continue; + + primemit_scan[stream].enable_exclusive = true; + primemit_scan[stream].op = nir_op_iadd; + primemit_scan[stream].src = nggso->prim_enable[stream]; + primemit_scan[stream].scratch = ac_build_gep0( + &ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false)); + primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx); + primemit_scan[stream].numwaves = get_tgsize(ctx); + primemit_scan[stream].maxwaves = 8; + ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]); + } + } + + ac_build_s_barrier(&ctx->ac); + + /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */ + LLVMValueRef wgoffset_dw[4] = {}; + + { + LLVMValueRef scratch_vgpr; + + tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac)); + scratch_vgpr = LLVMBuildLoad(builder, tmp, ""); + + for (unsigned buffer = 0; buffer < 4; ++buffer) { + if (stream_for_buffer[buffer] >= 0) { + wgoffset_dw[buffer] = + ac_build_readlane(&ctx->ac, scratch_vgpr, + LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false)); + } + } + + for (unsigned stream = 0; stream < 4; ++stream) { + if (info->num_stream_output_components[stream]) { + nggso->emit[stream] = + ac_build_readlane(&ctx->ac, scratch_vgpr, + LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false)); + } + } + } + + /* Write out primitive data */ + for (unsigned stream = 0; stream < 4; ++stream) { + if (!info->num_stream_output_components[stream]) + continue; + + if (isgs) { + ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]); + } else { + primemit_scan[stream].result_exclusive = tid; + } + + tmp = LLVMBuildICmp(builder, LLVMIntULT, primemit_scan[stream].result_exclusive, + nggso->emit[stream], ""); + tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], ""); + ac_build_ifcc(&ctx->ac, tmp, 5240); + { + LLVMValueRef offset_vtx = + LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, nggso->num_vertices, ""); + + for (unsigned i = 0; i < max_num_vertices; ++i) { + tmp = LLVMBuildICmp(builder, LLVMIntULT, LLVMConstInt(ctx->ac.i32, i, false), + nggso->num_vertices, ""); + ac_build_ifcc(&ctx->ac, tmp, 5241); + build_streamout_vertex(ctx, so_buffer, wgoffset_dw, stream, offset_vtx, + nggso->vertices[i]); + ac_build_endif(&ctx->ac, 5241); + offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, ""); + } + } + ac_build_endif(&ctx->ac, 5240); + } } -static unsigned ngg_nogs_vertex_size(struct si_shader *shader) +/* LDS layout of ES vertex data for NGG culling. */ +enum { - unsigned lds_vertex_size = 0; + /* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old + * ES thread ID. After vertex compaction, compacted ES threads + * store the old thread ID here to copy input VGPRs from uncompacted + * ES threads. + * Byte 1: New ES thread ID, loaded by GS to prepare the prim export value. + * Byte 2: TES rel patch ID + * Byte 3: Unused + */ + lds_byte0_accept_flag = 0, + lds_byte0_old_thread_id = 0, + lds_byte1_new_thread_id, + lds_byte2_tes_rel_patch_id, + lds_byte3_unused, + + lds_packed_data = 0, /* lds_byteN_... */ + + lds_pos_x, + lds_pos_y, + lds_pos_z, + lds_pos_w, + lds_pos_x_div_w, + lds_pos_y_div_w, + /* If VS: */ + lds_vertex_id, + lds_instance_id, /* optional */ + /* If TES: */ + lds_tes_u = lds_vertex_id, + lds_tes_v = lds_instance_id, + lds_tes_patch_id, /* optional */ +}; + +static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx, LLVMValueRef ptr, + unsigned byte_index) +{ + assert(byte_index < 4); + LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS); + LLVMValueRef index = LLVMConstInt(ctx->ac.i32, byte_index, 0); - /* The edgeflag is always stored in the last element that's also - * used for padding to reduce LDS bank conflicts. */ - if (shader->selector->so.num_outputs) - lds_vertex_size = 4 * shader->selector->info.num_outputs + 1; - if (shader->selector->ngg_writes_edgeflag) - lds_vertex_size = MAX2(lds_vertex_size, 1); + return LLVMBuildGEP(ctx->ac.builder, LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""), &index, + 1, ""); +} - return lds_vertex_size; +static unsigned ngg_nogs_vertex_size(struct si_shader *shader) +{ + unsigned lds_vertex_size = 0; + + /* The edgeflag is always stored in the last element that's also + * used for padding to reduce LDS bank conflicts. */ + if (shader->selector->so.num_outputs) + lds_vertex_size = 4 * shader->selector->info.num_outputs + 1; + if (shader->selector->info.writes_edgeflag) + lds_vertex_size = MAX2(lds_vertex_size, 1); + + /* LDS size for passing data from GS to ES. + * GS stores Primitive IDs into LDS at the address corresponding + * to the ES thread of the provoking vertex. All ES threads + * load and export PrimitiveID for their thread. + */ + if (shader->selector->info.stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id) + lds_vertex_size = MAX2(lds_vertex_size, 1); + + if (shader->key.opt.ngg_culling) { + if (shader->selector->info.stage == MESA_SHADER_VERTEX) { + STATIC_ASSERT(lds_instance_id + 1 == 9); + lds_vertex_size = MAX2(lds_vertex_size, 9); + } else { + assert(shader->selector->info.stage == MESA_SHADER_TESS_EVAL); + + if (shader->selector->info.uses_primid || shader->key.mono.u.vs_export_prim_id) { + STATIC_ASSERT(lds_tes_patch_id + 2 == 11); + lds_vertex_size = MAX2(lds_vertex_size, 11); + } else { + STATIC_ASSERT(lds_tes_v + 1 == 9); + lds_vertex_size = MAX2(lds_vertex_size, 9); + } + } + } + + return lds_vertex_size; } /** * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage * for the vertex outputs. */ -static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, - LLVMValueRef vtxid) +static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vtxid) { - /* The extra dword is used to avoid LDS bank conflicts. */ - unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader); - LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, vertex_size); - LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS); - LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, ""); - return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, ""); + /* The extra dword is used to avoid LDS bank conflicts. */ + unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader); + LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size); + LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS); + LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, ""); + return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, ""); +} + +static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx, LLVMValueRef ret, + struct ac_arg param, unsigned return_index) +{ + LLVMValueRef v = ac_get_arg(&ctx->ac, param); + + for (unsigned i = 0; i < 4; i++) { + ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_llvm_extract_elem(&ctx->ac, v, i), + return_index + i, ""); + } + return ret; +} + +static void load_bitmasks_2x64(struct si_shader_context *ctx, LLVMValueRef lds_ptr, + unsigned dw_offset, LLVMValueRef mask[2], + LLVMValueRef *total_bitcount) +{ + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef ptr64 = LLVMBuildPointerCast( + builder, lds_ptr, LLVMPointerType(LLVMArrayType(ctx->ac.i64, 2), AC_ADDR_SPACE_LDS), ""); + for (unsigned i = 0; i < 2; i++) { + LLVMValueRef index = LLVMConstInt(ctx->ac.i32, dw_offset / 2 + i, 0); + mask[i] = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ptr64, index), ""); + } + + /* We get better code if we don't use the 128-bit bitcount. */ + *total_bitcount = LLVMBuildAdd(builder, ac_build_bit_count(&ctx->ac, mask[0]), + ac_build_bit_count(&ctx->ac, mask[1]), ""); +} + +/** + * Given a total thread count, update total and per-wave thread counts in input SGPRs + * and return the per-wave thread count. + * + * \param new_num_threads Total thread count on the input, per-wave thread count on the output. + * \param tg_info tg_info SGPR value + * \param tg_info_num_bits the bit size of thread count field in tg_info + * \param tg_info_shift the bit offset of the thread count field in tg_info + * \param wave_info merged_wave_info SGPR value + * \param wave_info_num_bits the bit size of thread count field in merged_wave_info + * \param wave_info_shift the bit offset of the thread count field in merged_wave_info + */ +static void update_thread_counts(struct si_shader_context *ctx, LLVMValueRef *new_num_threads, + LLVMValueRef *tg_info, unsigned tg_info_num_bits, + unsigned tg_info_shift, LLVMValueRef *wave_info, + unsigned wave_info_num_bits, unsigned wave_info_shift) +{ + LLVMBuilderRef builder = ctx->ac.builder; + + /* Update the total thread count. */ + unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift); + *tg_info = LLVMBuildAnd(builder, *tg_info, LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), ""); + *tg_info = LLVMBuildOr( + builder, *tg_info, + LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), ""); + + /* Update the per-wave thread count. */ + LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx), + LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""); + *new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, ""); + *new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0); + *new_num_threads = + ac_build_imin(&ctx->ac, *new_num_threads, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0)); + unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift); + *wave_info = LLVMBuildAnd(builder, *wave_info, LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), ""); + *wave_info = LLVMBuildOr( + builder, *wave_info, + LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""), + ""); +} + +/** + * Cull primitives for NGG VS or TES, then compact vertices, which happens + * before the VS or TES main function. Return values for the main function. + * Also return the position, which is passed to the shader as an input, + * so that we don't compute it twice. + */ +void gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, + LLVMValueRef *addrs) +{ + struct si_shader_context *ctx = si_shader_context_from_abi(abi); + struct si_shader *shader = ctx->shader; + struct si_shader_selector *sel = shader->selector; + struct si_shader_info *info = &sel->info; + LLVMBuilderRef builder = ctx->ac.builder; + unsigned max_waves = ctx->ac.wave_size == 64 ? 2 : 4; + LLVMValueRef ngg_scratch = ctx->gs_ngg_scratch; + + if (ctx->ac.wave_size == 64) { + ngg_scratch = LLVMBuildPointerCast(builder, ngg_scratch, + LLVMPointerType(LLVMArrayType(ctx->ac.i64, max_waves), + AC_ADDR_SPACE_LDS), ""); + } + + assert(shader->key.opt.ngg_culling); + assert(shader->key.as_ngg); + assert(sel->info.stage == MESA_SHADER_VERTEX || + (sel->info.stage == MESA_SHADER_TESS_EVAL && !shader->key.as_es)); + + LLVMValueRef position[4] = {}; + for (unsigned i = 0; i < info->num_outputs; i++) { + switch (info->output_semantic[i]) { + case VARYING_SLOT_POS: + for (unsigned j = 0; j < 4; j++) { + position[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], ""); + } + break; + } + } + assert(position[0]); + + /* Store Position.XYZW into LDS. */ + LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx)); + for (unsigned chan = 0; chan < 4; chan++) { + LLVMBuildStore( + builder, ac_to_integer(&ctx->ac, position[chan]), + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0))); + } + /* Store Position.XY / W into LDS. */ + for (unsigned chan = 0; chan < 2; chan++) { + LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]); + LLVMBuildStore( + builder, ac_to_integer(&ctx->ac, val), + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_x_div_w + chan, 0))); + } + + /* Store VertexID and InstanceID. ES threads will have to load them + * from LDS after vertex compaction and use them instead of their own + * system values. + */ + bool uses_instance_id = false; + bool uses_tes_prim_id = false; + LLVMValueRef packed_data = ctx->ac.i32_0; + + if (ctx->stage == MESA_SHADER_VERTEX) { + uses_instance_id = sel->info.uses_instanceid || + shader->key.part.vs.prolog.instance_divisor_is_one || + shader->key.part.vs.prolog.instance_divisor_is_fetched; + + LLVMBuildStore( + builder, ctx->abi.vertex_id, + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0))); + if (uses_instance_id) { + LLVMBuildStore( + builder, ctx->abi.instance_id, + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0))); + } + } else { + uses_tes_prim_id = sel->info.uses_primid || shader->key.mono.u.vs_export_prim_id; + + assert(ctx->stage == MESA_SHADER_TESS_EVAL); + LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_u)), + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_u, 0))); + LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_v)), + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_v, 0))); + packed_data = LLVMBuildShl(builder, ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id), + LLVMConstInt(ctx->ac.i32, lds_byte2_tes_rel_patch_id * 8, 0), ""); + if (uses_tes_prim_id) { + LLVMBuildStore( + builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id), + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0))); + } + } + /* Initialize the packed data. */ + LLVMBuildStore( + builder, packed_data, + ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_packed_data, 0))); + ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label); + + LLVMValueRef tid = ac_get_thread_id(&ctx->ac); + + /* Initialize all but the first element of ngg_scratch to 0, because we may have less + * than the maximum number of waves, but we always read all values. This is where + * the thread bitmasks of unculled threads will be stored. + * + * ngg_scratch layout: iN_wavemask esmask[0..n] + */ + ac_build_ifcc(&ctx->ac, + LLVMBuildICmp(builder, LLVMIntULT, get_thread_id_in_tg(ctx), + LLVMConstInt(ctx->ac.i32, max_waves - 1, 0), ""), + 16101); + { + LLVMValueRef index = LLVMBuildAdd(builder, tid, ctx->ac.i32_1, ""); + LLVMBuildStore(builder, LLVMConstInt(ctx->ac.iN_wavemask, 0, 0), + ac_build_gep0(&ctx->ac, ngg_scratch, index)); + } + ac_build_endif(&ctx->ac, 16101); + ac_build_s_barrier(&ctx->ac); + + /* The hardware requires that there are no holes between unculled vertices, + * which means we have to pack ES threads, i.e. reduce the ES thread count + * and move ES input VGPRs to lower threads. The upside is that varyings + * are only fetched and computed for unculled vertices. + * + * Vertex compaction in GS threads: + * + * Part 1: Compute the surviving vertex mask in GS threads: + * - Compute 4 32-bit surviving vertex masks in LDS. (max 4 waves) + * - In GS, notify ES threads whether the vertex survived. + * - Barrier + * - ES threads will create the mask and store it in LDS. + * - Barrier + * - Each GS thread loads the vertex masks from LDS. + * + * Part 2: Compact ES threads in GS threads: + * - Compute the prefix sum for all 3 vertices from the masks. These are the new + * thread IDs for each vertex within the primitive. + * - Write the value of the old thread ID into the LDS address of the new thread ID. + * The ES thread will load the old thread ID and use it to load the position, VertexID, + * and InstanceID. + * - Update vertex indices and null flag in the GS input VGPRs. + * - Barrier + * + * Part 3: Update inputs GPRs + * - For all waves, update per-wave thread counts in input SGPRs. + * - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs). + */ + + LLVMValueRef vtxindex[3]; + if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL) { + /* For the GS fast launch, the VS prologs simply puts the Vertex IDs + * into these VGPRs. + */ + vtxindex[0] = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset); + vtxindex[1] = ac_get_arg(&ctx->ac, ctx->gs_vtx23_offset); + vtxindex[2] = ac_get_arg(&ctx->ac, ctx->gs_vtx45_offset); + } else { + vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16); + vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16); + vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16); + }; + LLVMValueRef gs_vtxptr[] = { + ngg_nogs_vertex_ptr(ctx, vtxindex[0]), + ngg_nogs_vertex_ptr(ctx, vtxindex[1]), + ngg_nogs_vertex_ptr(ctx, vtxindex[2]), + }; + es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx)); + + LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, ""); + + /* Do culling in GS threads. */ + ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002); + { + /* Load positions. */ + LLVMValueRef pos[3][4] = {}; + for (unsigned vtx = 0; vtx < 3; vtx++) { + for (unsigned chan = 0; chan < 4; chan++) { + unsigned index; + if (chan == 0 || chan == 1) + index = lds_pos_x_div_w + chan; + else if (chan == 3) + index = lds_pos_w; + else + continue; + + LLVMValueRef addr = + ac_build_gep0(&ctx->ac, gs_vtxptr[vtx], LLVMConstInt(ctx->ac.i32, index, 0)); + pos[vtx][chan] = LLVMBuildLoad(builder, addr, ""); + pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]); + } + } + + /* Load the viewport state for small prim culling. */ + LLVMValueRef vp = ac_build_load_invariant( + &ctx->ac, ac_get_arg(&ctx->ac, ctx->small_prim_cull_info), ctx->ac.i32_0); + vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, ""); + LLVMValueRef vp_scale[2], vp_translate[2]; + vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0); + vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1); + vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2); + vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3); + + /* Get the small prim filter precision. */ + LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4); + small_prim_precision = + LLVMBuildOr(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 0x70, 0), ""); + small_prim_precision = + LLVMBuildShl(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 23, 0), ""); + small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, ""); + + /* Execute culling code. */ + struct ac_cull_options options = {}; + options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE; + options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE; + options.cull_view_xy = shader->key.opt.ngg_culling & SI_NGG_CULL_VIEW_SMALLPRIMS; + options.cull_small_prims = options.cull_view_xy; + options.cull_zero_area = options.cull_front || options.cull_back; + options.cull_w = true; + + /* Tell ES threads whether their vertex survived. */ + ac_build_ifcc(&ctx->ac, + ac_cull_triangle(&ctx->ac, pos, ctx->ac.i1true, vp_scale, vp_translate, + small_prim_precision, &options), + 16003); + { + LLVMBuildStore(builder, ctx->ac.i32_1, gs_accepted); + for (unsigned vtx = 0; vtx < 3; vtx++) { + LLVMBuildStore(builder, ctx->ac.i8_1, + si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag)); + } + } + ac_build_endif(&ctx->ac, 16003); + } + ac_build_endif(&ctx->ac, 16002); + ac_build_s_barrier(&ctx->ac); + + gs_accepted = LLVMBuildLoad(builder, gs_accepted, ""); + + LLVMValueRef es_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, ""); + + /* Convert the per-vertex flag to a thread bitmask in ES threads and store it in LDS. */ + ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007); + { + LLVMValueRef es_accepted_flag = + LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), ""); + + LLVMValueRef es_accepted_bool = + LLVMBuildICmp(builder, LLVMIntNE, es_accepted_flag, ctx->ac.i8_0, ""); + LLVMValueRef es_mask = ac_get_i1_sgpr_mask(&ctx->ac, es_accepted_bool); + + LLVMBuildStore(builder, es_accepted_bool, es_accepted); + + ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 16008); + { + LLVMBuildStore(builder, es_mask, + ac_build_gep0(&ctx->ac, ngg_scratch, get_wave_id_in_tg(ctx))); + } + ac_build_endif(&ctx->ac, 16008); + } + ac_build_endif(&ctx->ac, 16007); + ac_build_s_barrier(&ctx->ac); + + /* Load the vertex masks and compute the new ES thread count. */ + LLVMValueRef es_mask[2], new_num_es_threads, kill_wave; + load_bitmasks_2x64(ctx, ngg_scratch, 0, es_mask, &new_num_es_threads); + new_num_es_threads = ac_build_readlane_no_opt_barrier(&ctx->ac, new_num_es_threads, NULL); + + /* ES threads compute their prefix sum, which is the new ES thread ID. + * Then they write the value of the old thread ID into the LDS address + * of the new thread ID. It will be used it to load input VGPRs from + * the old thread's LDS location. + */ + ac_build_ifcc(&ctx->ac, LLVMBuildLoad(builder, es_accepted, ""), 16009); + { + LLVMValueRef old_id = get_thread_id_in_tg(ctx); + LLVMValueRef new_id = ac_prefix_bitcount_2x64(&ctx->ac, es_mask, old_id); + + LLVMBuildStore( + builder, LLVMBuildTrunc(builder, old_id, ctx->ac.i8, ""), + si_build_gep_i8(ctx, ngg_nogs_vertex_ptr(ctx, new_id), lds_byte0_old_thread_id)); + LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""), + si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id)); + } + ac_build_endif(&ctx->ac, 16009); + + /* Kill waves that have inactive threads. */ + kill_wave = LLVMBuildICmp(builder, LLVMIntULE, + ac_build_imax(&ctx->ac, new_num_es_threads, ngg_get_prim_cnt(ctx)), + LLVMBuildMul(builder, get_wave_id_in_tg(ctx), + LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""), + ""); + ac_build_ifcc(&ctx->ac, kill_wave, 19202); + { + /* If we are killing wave 0, send that there are no primitives + * in this threadgroup. + */ + ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ctx->ac.i32_0); + ac_build_s_endpgm(&ctx->ac); + } + ac_build_endif(&ctx->ac, 19202); + ac_build_s_barrier(&ctx->ac); + + /* Send the final vertex and primitive counts. */ + ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), new_num_es_threads, + ngg_get_prim_cnt(ctx)); + + /* Update thread counts in SGPRs. */ + LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->gs_tg_info); + LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->merged_wave_info); + + /* This also converts the thread count from the total count to the per-wave count. */ + update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12, &new_merged_wave_info, 8, + 0); + + /* Update vertex indices in VGPR0 (same format as NGG passthrough). */ + LLVMValueRef new_vgpr0 = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, ""); + + /* Set the null flag at the beginning (culled), and then + * overwrite it for accepted primitives. + */ + LLVMBuildStore(builder, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), new_vgpr0); + + /* Get vertex indices after vertex compaction. */ + ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011); + { + struct ac_ngg_prim prim = {}; + prim.num_vertices = 3; + prim.isnull = ctx->ac.i1false; + + for (unsigned vtx = 0; vtx < 3; vtx++) { + prim.index[vtx] = LLVMBuildLoad( + builder, si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte1_new_thread_id), ""); + prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, ""); + prim.edgeflag[vtx] = ngg_get_initial_edgeflag(ctx, vtx); + } + + /* Set the new GS input VGPR. */ + LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0); + } + ac_build_endif(&ctx->ac, 16011); + + if (gfx10_ngg_export_prim_early(shader)) + gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, "")); + + /* Set the new ES input VGPRs. */ + LLVMValueRef es_data[4]; + LLVMValueRef old_thread_id = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, ""); + + for (unsigned i = 0; i < 4; i++) + es_data[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, ""); + + ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, tid, new_num_es_threads, ""), + 16012); + { + LLVMValueRef old_id, old_es_vtxptr, tmp; + + /* Load ES input VGPRs from the ES thread before compaction. */ + old_id = LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_old_thread_id), ""); + old_id = LLVMBuildZExt(builder, old_id, ctx->ac.i32, ""); + + LLVMBuildStore(builder, old_id, old_thread_id); + old_es_vtxptr = ngg_nogs_vertex_ptr(ctx, old_id); + + for (unsigned i = 0; i < 2; i++) { + tmp = LLVMBuildLoad( + builder, + ac_build_gep0(&ctx->ac, old_es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id + i, 0)), + ""); + LLVMBuildStore(builder, tmp, es_data[i]); + } + + if (ctx->stage == MESA_SHADER_TESS_EVAL) { + tmp = LLVMBuildLoad(builder, + si_build_gep_i8(ctx, old_es_vtxptr, lds_byte2_tes_rel_patch_id), ""); + tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, ""); + LLVMBuildStore(builder, tmp, es_data[2]); + + if (uses_tes_prim_id) { + tmp = LLVMBuildLoad(builder, + ac_build_gep0(&ctx->ac, old_es_vtxptr, + LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)), + ""); + LLVMBuildStore(builder, tmp, es_data[3]); + } + } + } + ac_build_endif(&ctx->ac, 16012); + + /* Return values for the main function. */ + LLVMValueRef ret = ctx->return_value; + LLVMValueRef val; + + ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, ""); + ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, ""); + if (ctx->stage == MESA_SHADER_TESS_EVAL) + ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 4); + + ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers, 8 + SI_SGPR_RW_BUFFERS); + ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images, + 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES); + ret = si_insert_input_ptr(ctx, ret, ctx->const_and_shader_buffers, + 8 + SI_SGPR_CONST_AND_SHADER_BUFFERS); + ret = si_insert_input_ptr(ctx, ret, ctx->samplers_and_images, 8 + SI_SGPR_SAMPLERS_AND_IMAGES); + ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS); + + if (ctx->stage == MESA_SHADER_VERTEX) { + ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex, 8 + SI_SGPR_BASE_VERTEX); + ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance, 8 + SI_SGPR_START_INSTANCE); + ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id, 8 + SI_SGPR_DRAWID); + ret = si_insert_input_ptr(ctx, ret, ctx->vertex_buffers, 8 + SI_VS_NUM_USER_SGPR); + + for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) { + ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i], + 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4); + } + } else { + assert(ctx->stage == MESA_SHADER_TESS_EVAL); + ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout, 8 + SI_SGPR_TES_OFFCHIP_LAYOUT); + ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr, 8 + SI_SGPR_TES_OFFCHIP_ADDR); + } + + unsigned vgpr; + if (ctx->stage == MESA_SHADER_VERTEX) { + if (shader->selector->num_vbos_in_user_sgprs) { + vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4; + } else { + vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1; + } + } else { + vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR; + } + + val = LLVMBuildLoad(builder, new_vgpr0, ""); + ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, ""); + vgpr++; /* gs_vtx23_offset */ + + ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++); + ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++); + vgpr++; /* gs_vtx45_offset */ + + if (ctx->stage == MESA_SHADER_VERTEX) { + val = LLVMBuildLoad(builder, es_data[0], ""); + ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, + ""); /* VGPR5 - VertexID */ + vgpr += 2; + if (uses_instance_id) { + val = LLVMBuildLoad(builder, es_data[1], ""); + ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, + ""); /* VGPR8 - InstanceID */ + } else { + vgpr++; + } + } else { + assert(ctx->stage == MESA_SHADER_TESS_EVAL); + unsigned num_vgprs = uses_tes_prim_id ? 4 : 3; + for (unsigned i = 0; i < num_vgprs; i++) { + val = LLVMBuildLoad(builder, es_data[i], ""); + ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, ""); + } + if (num_vgprs == 3) + vgpr++; + } + /* Return the old thread ID. */ + val = LLVMBuildLoad(builder, old_thread_id, ""); + ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, ""); + + /* These two also use LDS. */ + if (sel->info.writes_edgeflag || + (ctx->stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id)) + ac_build_s_barrier(&ctx->ac); + + ctx->return_value = ret; } /** * Emit the epilogue of an API VS or TES shader compiled as ESGS shader. */ -void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi, - unsigned max_outputs, - LLVMValueRef *addrs) +void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi, unsigned max_outputs, LLVMValueRef *addrs) { - struct si_shader_context *ctx = si_shader_context_from_abi(abi); - struct si_shader_selector *sel = ctx->shader->selector; - struct tgsi_shader_info *info = &sel->info; - struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS]; - LLVMBuilderRef builder = ctx->ac.builder; - struct lp_build_if_state if_state; - LLVMValueRef tmp, tmp2; - - assert(!ctx->shader->is_gs_copy_shader); - assert(info->num_outputs <= max_outputs); - - LLVMValueRef vertex_ptr = NULL; - - if (sel->so.num_outputs || sel->ngg_writes_edgeflag) - vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx)); - - for (unsigned i = 0; i < info->num_outputs; i++) { - outputs[i].semantic_name = info->output_semantic_name[i]; - outputs[i].semantic_index = info->output_semantic_index[i]; - - for (unsigned j = 0; j < 4; j++) { - outputs[i].vertex_stream[j] = - (info->output_streams[i] >> (2 * j)) & 3; - - /* TODO: we may store more outputs than streamout needs, - * but streamout performance isn't that important. - */ - if (sel->so.num_outputs) { - tmp = ac_build_gep0(&ctx->ac, vertex_ptr, - LLVMConstInt(ctx->i32, 4 * i + j, false)); - tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], ""); - tmp2 = ac_to_integer(&ctx->ac, tmp2); - LLVMBuildStore(builder, tmp2, tmp); - } - } - - /* Store the edgeflag at the end (if streamout is enabled) */ - if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG && - sel->ngg_writes_edgeflag) { - LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], ""); - /* The output is a float, but the hw expects a 1-bit integer. */ - edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->i32, ""); - edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->i32_1); - - tmp = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0); - tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp); - LLVMBuildStore(builder, edgeflag, tmp); - } - } - - lp_build_endif(&ctx->merged_wrap_if_state); - - LLVMValueRef prims_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8); - LLVMValueRef vtx_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8); - LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT, - ac_get_thread_id(&ctx->ac), prims_in_wave, ""); - LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT, - ac_get_thread_id(&ctx->ac), vtx_in_wave, ""); - LLVMValueRef vtxindex[] = { - si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 0, 16), - si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 16, 16), - si_unpack_param(ctx, ctx->param_gs_vtx23_offset, 0, 16), - }; - - /* Determine the number of vertices per primitive. */ - unsigned num_vertices; - LLVMValueRef num_vertices_val; - - if (ctx->type == PIPE_SHADER_VERTEX) { - if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) { - /* Blits always use axis-aligned rectangles with 3 vertices. */ - num_vertices = 3; - num_vertices_val = LLVMConstInt(ctx->i32, 3, 0); - } else { - /* Extract OUTPRIM field. */ - tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 2, 2); - num_vertices_val = LLVMBuildAdd(builder, tmp, ctx->i32_1, ""); - num_vertices = 3; /* TODO: optimize for points & lines */ - } - } else { - assert(ctx->type == PIPE_SHADER_TESS_EVAL); - - if (info->properties[TGSI_PROPERTY_TES_POINT_MODE]) - num_vertices = 1; - else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES) - num_vertices = 2; - else - num_vertices = 3; - - num_vertices_val = LLVMConstInt(ctx->i32, num_vertices, false); - } - - /* Streamout */ - LLVMValueRef emitted_prims = NULL; - - if (sel->so.num_outputs) { - struct ngg_streamout nggso = {}; - - nggso.num_vertices = num_vertices_val; - nggso.prim_enable[0] = is_gs_thread; - - for (unsigned i = 0; i < num_vertices; ++i) - nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]); - - build_streamout(ctx, &nggso); - emitted_prims = nggso.emit[0]; - } - - LLVMValueRef user_edgeflags[3] = {}; - - if (sel->ngg_writes_edgeflag) { - /* Streamout already inserted the barrier, so don't insert it again. */ - if (!sel->so.num_outputs) - ac_build_s_barrier(&ctx->ac); - - ac_build_ifcc(&ctx->ac, is_gs_thread, 5400); - /* Load edge flags from ES threads and store them into VGPRs in GS threads. */ - for (unsigned i = 0; i < num_vertices; i++) { - tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]); - tmp2 = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0); - tmp = ac_build_gep0(&ctx->ac, tmp, tmp2); - tmp = LLVMBuildLoad(builder, tmp, ""); - tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, ""); - - user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->i1, ""); - LLVMBuildStore(builder, tmp, user_edgeflags[i]); - } - ac_build_endif(&ctx->ac, 5400); - } - - /* Copy Primitive IDs from GS threads to the LDS address corresponding - * to the ES thread of the provoking vertex. - */ - if (ctx->type == PIPE_SHADER_VERTEX && - ctx->shader->key.mono.u.vs_export_prim_id) { - /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */ - if (sel->so.num_outputs || sel->ngg_writes_edgeflag) - ac_build_s_barrier(&ctx->ac); - - ac_build_ifcc(&ctx->ac, is_gs_thread, 5400); - /* Extract the PROVOKING_VTX_INDEX field. */ - LLVMValueRef provoking_vtx_in_prim = - si_unpack_param(ctx, ctx->param_vs_state_bits, 4, 2); - - /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */ - LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3); - LLVMValueRef provoking_vtx_index = - LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, ""); - - LLVMBuildStore(builder, ctx->abi.gs_prim_id, - ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index)); - ac_build_endif(&ctx->ac, 5400); - } - - build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx)); - - /* Update query buffer */ - /* TODO: this won't catch 96-bit clear_buffer via transform feedback. */ - if (!info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) { - tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 6, 1); - tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, ""); - ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */ - tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ""); - ac_build_ifcc(&ctx->ac, tmp, 5030); - tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac), - sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, ""); - ac_build_ifcc(&ctx->ac, tmp, 5031); - { - LLVMValueRef args[] = { - ngg_get_prim_cnt(ctx), - ngg_get_query_buf(ctx), - LLVMConstInt(ctx->i32, 16, false), /* offset of stream[0].generated_primitives */ - ctx->i32_0, /* soffset */ - ctx->i32_0, /* cachepolicy */ - }; - - if (sel->so.num_outputs) { - args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->i32_1); - args[2] = ac_build_writelane(&ctx->ac, args[2], - LLVMConstInt(ctx->i32, 24, false), ctx->i32_1); - } - - /* TODO: should this be 64-bit atomics? */ - ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", - ctx->i32, args, 5, 0); - } - ac_build_endif(&ctx->ac, 5031); - ac_build_endif(&ctx->ac, 5030); - ac_build_endif(&ctx->ac, 5029); - } - - /* Export primitive data to the index buffer. Format is: - * - bits 0..8: index 0 - * - bit 9: edge flag 0 - * - bits 10..18: index 1 - * - bit 19: edge flag 1 - * - bits 20..28: index 2 - * - bit 29: edge flag 2 - * - bit 31: null primitive (skip) - * - * For the first version, we will always build up all three indices - * independent of the primitive type. The additional garbage data - * shouldn't hurt. - * - * TODO: culling depends on the primitive type, so can have some - * interaction here. - */ - lp_build_if(&if_state, &ctx->gallivm, is_gs_thread); - { - struct ngg_prim prim = {}; - - prim.num_vertices = num_vertices; - prim.isnull = ctx->ac.i1false; - memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3); - - for (unsigned i = 0; i < num_vertices; ++i) { - if (ctx->type != PIPE_SHADER_VERTEX) { - prim.edgeflag[i] = ctx->i1false; - continue; - } - - tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id, - LLVMConstInt(ctx->ac.i32, 8 + i, false), ""); - prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); - - if (sel->ngg_writes_edgeflag) { - tmp2 = LLVMBuildLoad(builder, user_edgeflags[i], ""); - prim.edgeflag[i] = LLVMBuildAnd(builder, prim.edgeflag[i], - tmp2, ""); - } - } - - build_export_prim(ctx, &prim); - } - lp_build_endif(&if_state); - - /* Export per-vertex data (positions and parameters). */ - lp_build_if(&if_state, &ctx->gallivm, is_es_thread); - { - unsigned i; - - /* Unconditionally (re-)load the values for proper SSA form. */ - for (i = 0; i < info->num_outputs; i++) { - for (unsigned j = 0; j < 4; j++) { - outputs[i].values[j] = - LLVMBuildLoad(builder, - addrs[4 * i + j], - ""); - } - } - - if (ctx->shader->key.mono.u.vs_export_prim_id) { - outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID; - outputs[i].semantic_index = 0; - - if (ctx->type == PIPE_SHADER_VERTEX) { - /* Wait for GS stores to finish. */ - ac_build_s_barrier(&ctx->ac); - - tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring, - get_thread_id_in_tg(ctx)); - outputs[i].values[0] = LLVMBuildLoad(builder, tmp, ""); - } else { - assert(ctx->type == PIPE_SHADER_TESS_EVAL); - outputs[i].values[0] = si_get_primitive_id(ctx, 0); - } - - outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]); - for (unsigned j = 1; j < 4; j++) - outputs[i].values[j] = LLVMGetUndef(ctx->f32); - - memset(outputs[i].vertex_stream, 0, - sizeof(outputs[i].vertex_stream)); - i++; - } - - si_llvm_export_vs(ctx, outputs, i); - } - lp_build_endif(&if_state); + struct si_shader_context *ctx = si_shader_context_from_abi(abi); + struct si_shader_selector *sel = ctx->shader->selector; + struct si_shader_info *info = &sel->info; + struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS]; + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef tmp, tmp2; + + assert(!ctx->shader->is_gs_copy_shader); + assert(info->num_outputs <= max_outputs); + + LLVMValueRef vertex_ptr = NULL; + + if (sel->so.num_outputs || sel->info.writes_edgeflag) + vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx)); + + for (unsigned i = 0; i < info->num_outputs; i++) { + outputs[i].semantic = info->output_semantic[i]; + + for (unsigned j = 0; j < 4; j++) { + outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3; + + /* TODO: we may store more outputs than streamout needs, + * but streamout performance isn't that important. + */ + if (sel->so.num_outputs) { + tmp = ac_build_gep0(&ctx->ac, vertex_ptr, LLVMConstInt(ctx->ac.i32, 4 * i + j, false)); + tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], ""); + tmp2 = ac_to_integer(&ctx->ac, tmp2); + LLVMBuildStore(builder, tmp2, tmp); + } + } + + /* Store the edgeflag at the end (if streamout is enabled) */ + if (info->output_semantic[i] == VARYING_SLOT_EDGE && sel->info.writes_edgeflag) { + LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], ""); + /* The output is a float, but the hw expects a 1-bit integer. */ + edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, ""); + edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1); + + tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0); + tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp); + LLVMBuildStore(builder, edgeflag, tmp); + } + } + + bool unterminated_es_if_block = + !sel->so.num_outputs && !sel->info.writes_edgeflag && + !ctx->screen->use_ngg_streamout && /* no query buffer */ + (ctx->stage != MESA_SHADER_VERTEX || !ctx->shader->key.mono.u.vs_export_prim_id); + + if (!unterminated_es_if_block) + ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label); + + LLVMValueRef is_gs_thread = si_is_gs_thread(ctx); + LLVMValueRef is_es_thread = si_is_es_thread(ctx); + LLVMValueRef vtxindex[3]; + + if (ctx->shader->key.opt.ngg_culling) { + vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 9); + vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 10, 9); + vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 20, 9); + } else { + vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16); + vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16); + vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16); + } + + /* Determine the number of vertices per primitive. */ + unsigned num_vertices; + LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices); + + /* Streamout */ + LLVMValueRef emitted_prims = NULL; + + if (sel->so.num_outputs) { + assert(!unterminated_es_if_block); + + struct ngg_streamout nggso = {}; + nggso.num_vertices = num_vertices_val; + nggso.prim_enable[0] = is_gs_thread; + + for (unsigned i = 0; i < num_vertices; ++i) + nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]); + + build_streamout(ctx, &nggso); + emitted_prims = nggso.emit[0]; + } + + LLVMValueRef user_edgeflags[3] = {}; + + if (sel->info.writes_edgeflag) { + assert(!unterminated_es_if_block); + + /* Streamout already inserted the barrier, so don't insert it again. */ + if (!sel->so.num_outputs) + ac_build_s_barrier(&ctx->ac); + + ac_build_ifcc(&ctx->ac, is_gs_thread, 5400); + /* Load edge flags from ES threads and store them into VGPRs in GS threads. */ + for (unsigned i = 0; i < num_vertices; i++) { + tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]); + tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0); + tmp = ac_build_gep0(&ctx->ac, tmp, tmp2); + tmp = LLVMBuildLoad(builder, tmp, ""); + tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); + + user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i1, ""); + LLVMBuildStore(builder, tmp, user_edgeflags[i]); + } + ac_build_endif(&ctx->ac, 5400); + } + + /* Copy Primitive IDs from GS threads to the LDS address corresponding + * to the ES thread of the provoking vertex. + */ + if (ctx->stage == MESA_SHADER_VERTEX && ctx->shader->key.mono.u.vs_export_prim_id) { + assert(!unterminated_es_if_block); + + /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */ + if (sel->so.num_outputs || sel->info.writes_edgeflag) + ac_build_s_barrier(&ctx->ac); + + ac_build_ifcc(&ctx->ac, is_gs_thread, 5400); + /* Extract the PROVOKING_VTX_INDEX field. */ + LLVMValueRef provoking_vtx_in_prim = si_unpack_param(ctx, ctx->vs_state_bits, 4, 2); + + /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */ + LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3); + LLVMValueRef provoking_vtx_index = + LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, ""); + LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index); + + LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id), + ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0)); + ac_build_endif(&ctx->ac, 5400); + } + + /* Update query buffer */ + if (ctx->screen->use_ngg_streamout && !info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) { + assert(!unterminated_es_if_block); + + tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1); + tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); + ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */ + tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ""); + ac_build_ifcc(&ctx->ac, tmp, 5030); + tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac), + sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, ""); + ac_build_ifcc(&ctx->ac, tmp, 5031); + { + LLVMValueRef args[] = { + ngg_get_prim_cnt(ctx), + ngg_get_query_buf(ctx), + LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */ + ctx->ac.i32_0, /* soffset */ + ctx->ac.i32_0, /* cachepolicy */ + }; + + if (sel->so.num_outputs) { + args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1); + args[2] = ac_build_writelane(&ctx->ac, args[2], LLVMConstInt(ctx->ac.i32, 24, false), + ctx->ac.i32_1); + } + + /* TODO: should this be 64-bit atomics? */ + ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5, + 0); + } + ac_build_endif(&ctx->ac, 5031); + ac_build_endif(&ctx->ac, 5030); + ac_build_endif(&ctx->ac, 5029); + } + + /* Build the primitive export. */ + if (!gfx10_ngg_export_prim_early(ctx->shader)) { + assert(!unterminated_es_if_block); + gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL); + } + + /* Export per-vertex data (positions and parameters). */ + if (!unterminated_es_if_block) + ac_build_ifcc(&ctx->ac, is_es_thread, 6002); + { + unsigned i; + + /* Unconditionally (re-)load the values for proper SSA form. */ + for (i = 0; i < info->num_outputs; i++) { + /* If the NGG cull shader part computed the position, don't + * use the position from the current shader part. Instead, + * load it from LDS. + */ + if (info->output_semantic[i] == VARYING_SLOT_POS && + ctx->shader->key.opt.ngg_culling) { + vertex_ptr = ngg_nogs_vertex_ptr(ctx, ac_get_arg(&ctx->ac, ctx->ngg_old_thread_id)); + + for (unsigned j = 0; j < 4; j++) { + tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0); + tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp); + tmp = LLVMBuildLoad(builder, tmp, ""); + outputs[i].values[j] = ac_to_float(&ctx->ac, tmp); + } + } else { + for (unsigned j = 0; j < 4; j++) { + outputs[i].values[j] = LLVMBuildLoad(builder, addrs[4 * i + j], ""); + } + } + } + + if (ctx->shader->key.mono.u.vs_export_prim_id) { + outputs[i].semantic = VARYING_SLOT_PRIMITIVE_ID; + + if (ctx->stage == MESA_SHADER_VERTEX) { + /* Wait for GS stores to finish. */ + ac_build_s_barrier(&ctx->ac); + + tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx)); + tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0); + outputs[i].values[0] = LLVMBuildLoad(builder, tmp, ""); + } else { + assert(ctx->stage == MESA_SHADER_TESS_EVAL); + outputs[i].values[0] = si_get_primitive_id(ctx, 0); + } + + outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]); + for (unsigned j = 1; j < 4; j++) + outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32); + + memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream)); + i++; + } + + si_llvm_build_vs_exports(ctx, outputs, i); + } + ac_build_endif(&ctx->ac, 6002); } -static LLVMValueRef -ngg_gs_get_vertex_storage(struct si_shader_context *ctx) +static LLVMValueRef ngg_gs_get_vertex_storage(struct si_shader_context *ctx) { - const struct si_shader_selector *sel = ctx->shader->selector; - const struct tgsi_shader_info *info = &sel->info; - - LLVMTypeRef elements[2] = { - LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs), - LLVMArrayType(ctx->ac.i8, 4), - }; - LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false); - type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS); - return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, ""); + const struct si_shader_selector *sel = ctx->shader->selector; + const struct si_shader_info *info = &sel->info; + + LLVMTypeRef elements[2] = { + LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs), + LLVMArrayType(ctx->ac.i8, 4), + }; + LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false); + type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS); + return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, ""); } /** @@ -858,448 +1464,433 @@ ngg_gs_get_vertex_storage(struct si_shader_context *ctx) * * \return an LDS pointer to type {[N x i32], [4 x i8]} */ -static LLVMValueRef -ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx) +static LLVMValueRef ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx) { - struct si_shader_selector *sel = ctx->shader->selector; - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx); - - /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */ - unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1; - if (write_stride_2exp) { - LLVMValueRef row = - LLVMBuildLShr(builder, vertexidx, - LLVMConstInt(ctx->ac.i32, 5, false), ""); - LLVMValueRef swizzle = - LLVMBuildAnd(builder, row, - LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, - false), ""); - vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, ""); - } - - return ac_build_gep0(&ctx->ac, storage, vertexidx); + struct si_shader_selector *sel = ctx->shader->selector; + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx); + + /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */ + unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1; + if (write_stride_2exp) { + LLVMValueRef row = LLVMBuildLShr(builder, vertexidx, LLVMConstInt(ctx->ac.i32, 5, false), ""); + LLVMValueRef swizzle = LLVMBuildAnd( + builder, row, LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, false), ""); + vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, ""); + } + + return ac_build_gep0(&ctx->ac, storage, vertexidx); } -static LLVMValueRef -ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread, - LLVMValueRef emitidx) +static LLVMValueRef ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread, + LLVMValueRef emitidx) { - struct si_shader_selector *sel = ctx->shader->selector; - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef tmp; - - tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false); - tmp = LLVMBuildMul(builder, tmp, gsthread, ""); - const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, ""); - return ngg_gs_vertex_ptr(ctx, vertexidx); + struct si_shader_selector *sel = ctx->shader->selector; + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef tmp; + + tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false); + tmp = LLVMBuildMul(builder, tmp, gsthread, ""); + const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, ""); + return ngg_gs_vertex_ptr(ctx, vertexidx); } -void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, - unsigned stream, - LLVMValueRef *addrs) +static LLVMValueRef ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx, + LLVMValueRef vertexptr, unsigned out_idx) { - const struct si_shader_selector *sel = ctx->shader->selector; - const struct tgsi_shader_info *info = &sel->info; - LLVMBuilderRef builder = ctx->ac.builder; - struct lp_build_if_state if_state; - LLVMValueRef tmp; - const LLVMValueRef vertexidx = - LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], ""); - - /* If this thread has already emitted the declared maximum number of - * vertices, skip the write: excessive vertex emissions are not - * supposed to have any effect. - */ - const LLVMValueRef can_emit = - LLVMBuildICmp(builder, LLVMIntULT, vertexidx, - LLVMConstInt(ctx->i32, sel->gs_max_out_vertices, false), ""); - - tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, ""); - tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, ""); - LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]); - - lp_build_if(&if_state, &ctx->gallivm, can_emit); - - const LLVMValueRef vertexptr = - ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx); - unsigned out_idx = 0; - for (unsigned i = 0; i < info->num_outputs; i++) { - for (unsigned chan = 0; chan < 4; chan++, out_idx++) { - if (!(info->output_usagemask[i] & (1 << chan)) || - ((info->output_streams[i] >> (2 * chan)) & 3) != stream) - continue; - - LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], ""); - LLVMValueRef gep_idx[3] = { - ctx->ac.i32_0, /* implied C-style array */ - ctx->ac.i32_0, /* first entry of struct */ - LLVMConstInt(ctx->ac.i32, out_idx, false), - }; - LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, ""); - - out_val = ac_to_integer(&ctx->ac, out_val); - LLVMBuildStore(builder, out_val, ptr); - } - } - assert(out_idx * 4 == sel->gsvs_vertex_size); - - /* Determine and store whether this vertex completed a primitive. */ - const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], ""); - - tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false); - const LLVMValueRef iscompleteprim = - LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, ""); - - tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, ""); - LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]); - - LLVMValueRef gep_idx[3] = { - ctx->ac.i32_0, /* implied C-style array */ - ctx->ac.i32_1, /* second struct entry */ - LLVMConstInt(ctx->ac.i32, stream, false), - }; - const LLVMValueRef primflagptr = - LLVMBuildGEP(builder, vertexptr, gep_idx, 3, ""); - - tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, ""); - LLVMBuildStore(builder, tmp, primflagptr); - - tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], ""); - tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), ""); - LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]); - - lp_build_endif(&if_state); + LLVMValueRef gep_idx[3] = { + ctx->ac.i32_0, /* implied C-style array */ + ctx->ac.i32_0, /* first struct entry */ + LLVMConstInt(ctx->ac.i32, out_idx, false), + }; + return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, ""); +} + +static LLVMValueRef ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx, + LLVMValueRef vertexptr, unsigned stream) +{ + LLVMValueRef gep_idx[3] = { + ctx->ac.i32_0, /* implied C-style array */ + ctx->ac.i32_1, /* second struct entry */ + LLVMConstInt(ctx->ac.i32, stream, false), + }; + return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, ""); +} + +void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, unsigned stream, LLVMValueRef *addrs) +{ + const struct si_shader_selector *sel = ctx->shader->selector; + const struct si_shader_info *info = &sel->info; + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef tmp; + const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], ""); + + /* If this thread has already emitted the declared maximum number of + * vertices, skip the write: excessive vertex emissions are not + * supposed to have any effect. + */ + const LLVMValueRef can_emit = + LLVMBuildICmp(builder, LLVMIntULT, vertexidx, + LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), ""); + + tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, ""); + tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, ""); + LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]); + + ac_build_ifcc(&ctx->ac, can_emit, 9001); + + const LLVMValueRef vertexptr = ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx); + unsigned out_idx = 0; + for (unsigned i = 0; i < info->num_outputs; i++) { + for (unsigned chan = 0; chan < 4; chan++, out_idx++) { + if (!(info->output_usagemask[i] & (1 << chan)) || + ((info->output_streams[i] >> (2 * chan)) & 3) != stream) + continue; + + LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], ""); + out_val = ac_to_integer(&ctx->ac, out_val); + LLVMBuildStore(builder, out_val, ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx)); + } + } + assert(out_idx * 4 == sel->gsvs_vertex_size); + + /* Determine and store whether this vertex completed a primitive. */ + const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], ""); + + tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false); + const LLVMValueRef iscompleteprim = LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, ""); + + /* Since the geometry shader emits triangle strips, we need to + * track which primitive is odd and swap vertex indices to get + * the correct vertex order. + */ + LLVMValueRef is_odd = ctx->ac.i1false; + if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) { + tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, ""); + is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, ""); + } + + tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, ""); + LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]); + + /* The per-vertex primitive flag encoding: + * bit 0: whether this vertex finishes a primitive + * bit 1: whether the primitive is odd (if we are emitting triangle strips) + */ + tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, ""); + tmp = LLVMBuildOr( + builder, tmp, + LLVMBuildShl(builder, LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""), ctx->ac.i8_1, ""), ""); + LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream)); + + tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], ""); + tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), ""); + LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]); + + ac_build_endif(&ctx->ac, 9001); } void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx) { - /* Zero out the part of LDS scratch that is used to accumulate the - * per-stream generated primitive count. - */ - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef scratchptr = ctx->gs_ngg_scratch; - LLVMValueRef tid = get_thread_id_in_tg(ctx); - LLVMValueRef tmp; - - tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->i32, 4, false), ""); - ac_build_ifcc(&ctx->ac, tmp, 5090); - { - LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid); - LLVMBuildStore(builder, ctx->i32_0, ptr); - } - ac_build_endif(&ctx->ac, 5090); - - ac_build_s_barrier(&ctx->ac); + /* Zero out the part of LDS scratch that is used to accumulate the + * per-stream generated primitive count. + */ + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef scratchptr = ctx->gs_ngg_scratch; + LLVMValueRef tid = get_thread_id_in_tg(ctx); + LLVMValueRef tmp; + + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), ""); + ac_build_ifcc(&ctx->ac, tmp, 5090); + { + LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid); + LLVMBuildStore(builder, ctx->ac.i32_0, ptr); + } + ac_build_endif(&ctx->ac, 5090); + + ac_build_s_barrier(&ctx->ac); } void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx) { - const struct si_shader_selector *sel = ctx->shader->selector; - const struct tgsi_shader_info *info = &sel->info; - const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim); - LLVMBuilderRef builder = ctx->ac.builder; - LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false); - LLVMValueRef tmp, tmp2; - - /* Zero out remaining (non-emitted) primitive flags. - * - * Note: Alternatively, we could pass the relevant gs_next_vertex to - * the emit threads via LDS. This is likely worse in the expected - * typical case where each GS thread emits the full set of - * vertices. - */ - for (unsigned stream = 0; stream < 4; ++stream) { - if (!info->num_stream_output_components[stream]) - continue; - - const LLVMValueRef gsthread = get_thread_id_in_tg(ctx); - - ac_build_bgnloop(&ctx->ac, 5100); - - const LLVMValueRef vertexidx = - LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], ""); - tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx, - LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), ""); - ac_build_ifcc(&ctx->ac, tmp, 5101); - ac_build_break(&ctx->ac); - ac_build_endif(&ctx->ac, 5101); - - tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, ""); - LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]); - - tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx); - LLVMValueRef gep_idx[3] = { - ctx->ac.i32_0, /* implied C-style array */ - ctx->ac.i32_1, /* second entry of struct */ - LLVMConstInt(ctx->ac.i32, stream, false), - }; - tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, ""); - LLVMBuildStore(builder, i8_0, tmp); - - ac_build_endloop(&ctx->ac, 5100); - } - - /* Accumulate generated primitives counts across the entire threadgroup. */ - for (unsigned stream = 0; stream < 4; ++stream) { - if (!info->num_stream_output_components[stream]) - continue; - - LLVMValueRef numprims = - LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], ""); - numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size); - - tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->i32_0, ""); - ac_build_ifcc(&ctx->ac, tmp, 5105); - { - LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd, - ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, - LLVMConstInt(ctx->i32, stream, false)), - numprims, LLVMAtomicOrderingMonotonic, false); - } - ac_build_endif(&ctx->ac, 5105); - } - - lp_build_endif(&ctx->merged_wrap_if_state); - - ac_build_s_barrier(&ctx->ac); - - const LLVMValueRef tid = get_thread_id_in_tg(ctx); - LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx); - - /* Streamout */ - if (sel->so.num_outputs) { - struct ngg_streamout nggso = {}; - - nggso.num_vertices = LLVMConstInt(ctx->i32, verts_per_prim, false); - - LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid); - for (unsigned stream = 0; stream < 4; ++stream) { - if (!info->num_stream_output_components[stream]) - continue; - - LLVMValueRef gep_idx[3] = { - ctx->i32_0, /* implicit C-style array */ - ctx->i32_1, /* second value of struct */ - LLVMConstInt(ctx->i32, stream, false), - }; - tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, ""); - tmp = LLVMBuildLoad(builder, tmp, ""); - tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, ""); - tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, ""); - nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, ""); - } - - for (unsigned i = 0; i < verts_per_prim; ++i) { - tmp = LLVMBuildSub(builder, tid, - LLVMConstInt(ctx->i32, verts_per_prim - i - 1, false), ""); - tmp = ngg_gs_vertex_ptr(ctx, tmp); - nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->i32_0); - } - - build_streamout(ctx, &nggso); - } - - /* Write shader query data. */ - tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 6, 1); - tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, ""); - ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */ - unsigned num_query_comps = sel->so.num_outputs ? 8 : 4; - tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, - LLVMConstInt(ctx->i32, num_query_comps, false), ""); - ac_build_ifcc(&ctx->ac, tmp, 5110); - { - LLVMValueRef offset; - tmp = tid; - if (sel->so.num_outputs) - tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->i32, 3, false), ""); - offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 32, false), ""); - if (sel->so.num_outputs) { - tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->i32, 2, false), ""); - tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 8, false), ""); - offset = LLVMBuildAdd(builder, offset, tmp, ""); - } - - tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), ""); - LLVMValueRef args[] = { - tmp, - ngg_get_query_buf(ctx), - offset, - LLVMConstInt(ctx->i32, 16, false), /* soffset */ - ctx->i32_0, /* cachepolicy */ - }; - ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", - ctx->i32, args, 5, 0); - } - ac_build_endif(&ctx->ac, 5110); - ac_build_endif(&ctx->ac, 5109); - - /* TODO: culling */ - - /* Determine vertex liveness. */ - LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive"); - - tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, ""); - ac_build_ifcc(&ctx->ac, tmp, 5120); - { - for (unsigned i = 0; i < verts_per_prim; ++i) { - const LLVMValueRef primidx = - LLVMBuildAdd(builder, tid, - LLVMConstInt(ctx->ac.i32, i, false), ""); - - if (i > 0) { - tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, ""); - ac_build_ifcc(&ctx->ac, tmp, 5121 + i); - } - - /* Load primitive liveness */ - tmp = ngg_gs_vertex_ptr(ctx, primidx); - LLVMValueRef gep_idx[3] = { - ctx->ac.i32_0, /* implicit C-style array */ - ctx->ac.i32_1, /* second value of struct */ - ctx->ac.i32_0, /* stream 0 */ - }; - tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, ""); - tmp = LLVMBuildLoad(builder, tmp, ""); - const LLVMValueRef primlive = - LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); - - tmp = LLVMBuildLoad(builder, vertliveptr, ""); - tmp = LLVMBuildOr(builder, tmp, primlive, ""), - LLVMBuildStore(builder, tmp, vertliveptr); - - if (i > 0) - ac_build_endif(&ctx->ac, 5121 + i); - } - } - ac_build_endif(&ctx->ac, 5120); - - /* Inclusive scan addition across the current wave. */ - LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, ""); - struct ac_wg_scan vertlive_scan = {}; - vertlive_scan.op = nir_op_iadd; - vertlive_scan.enable_reduce = true; - vertlive_scan.enable_exclusive = true; - vertlive_scan.src = vertlive; - vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->i32_0); - vertlive_scan.waveidx = get_wave_id_in_tg(ctx); - vertlive_scan.numwaves = get_tgsize(ctx); - vertlive_scan.maxwaves = 8; - - ac_build_wg_scan(&ctx->ac, &vertlive_scan); - - /* Skip all exports (including index exports) when possible. At least on - * early gfx10 revisions this is also to avoid hangs. - */ - LLVMValueRef have_exports = - LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, ""); - num_emit_threads = - LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, ""); - - /* Allocate export space. Send this message as early as possible, to - * hide the latency of the SQ <-> SPI roundtrip. - * - * Note: We could consider compacting primitives for export as well. - * PA processes 1 non-null prim / clock, but it fetches 4 DW of - * prim data per clock and skips null primitives at no additional - * cost. So compacting primitives can only be beneficial when - * there are 4 or more contiguous null primitives in the export - * (in the common case of single-dword prim exports). - */ - build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads); - - /* Setup the reverse vertex compaction permutation. We re-use stream 1 - * of the primitive liveness flags, relying on the fact that each - * threadgroup can have at most 256 threads. */ - ac_build_ifcc(&ctx->ac, vertlive, 5130); - { - tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive); - LLVMValueRef gep_idx[3] = { - ctx->ac.i32_0, /* implicit C-style array */ - ctx->ac.i32_1, /* second value of struct */ - ctx->ac.i32_1, /* stream 1 */ - }; - tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, ""); - tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, ""); - LLVMBuildStore(builder, tmp2, tmp); - } - ac_build_endif(&ctx->ac, 5130); - - ac_build_s_barrier(&ctx->ac); - - /* Export primitive data */ - tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, ""); - ac_build_ifcc(&ctx->ac, tmp, 5140); - { - struct ngg_prim prim = {}; - prim.num_vertices = verts_per_prim; - - tmp = ngg_gs_vertex_ptr(ctx, tid); - LLVMValueRef gep_idx[3] = { - ctx->ac.i32_0, /* implicit C-style array */ - ctx->ac.i32_1, /* second value of struct */ - ctx->ac.i32_0, /* primflag */ - }; - tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, ""); - tmp = LLVMBuildLoad(builder, tmp, ""); - prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp, - LLVMConstInt(ctx->ac.i8, 0, false), ""); - - for (unsigned i = 0; i < verts_per_prim; ++i) { - prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive, - LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), ""); - prim.edgeflag[i] = ctx->ac.i1false; - } - - build_export_prim(ctx, &prim); - } - ac_build_endif(&ctx->ac, 5140); - - /* Export position and parameter data */ - tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, ""); - ac_build_ifcc(&ctx->ac, tmp, 5145); - { - struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS]; - - tmp = ngg_gs_vertex_ptr(ctx, tid); - LLVMValueRef gep_idx[3] = { - ctx->ac.i32_0, /* implicit C-style array */ - ctx->ac.i32_1, /* second value of struct */ - ctx->ac.i32_1, /* stream 1: source data index */ - }; - tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, ""); - tmp = LLVMBuildLoad(builder, tmp, ""); - tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, ""); - const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp); - - unsigned out_idx = 0; - gep_idx[1] = ctx->ac.i32_0; - for (unsigned i = 0; i < info->num_outputs; i++) { - outputs[i].semantic_name = info->output_semantic_name[i]; - outputs[i].semantic_index = info->output_semantic_index[i]; - - for (unsigned j = 0; j < 4; j++, out_idx++) { - gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false); - tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, ""); - tmp = LLVMBuildLoad(builder, tmp, ""); - outputs[i].values[j] = ac_to_float(&ctx->ac, tmp); - outputs[i].vertex_stream[j] = - (info->output_streams[i] >> (2 * j)) & 3; - } - } - - si_llvm_export_vs(ctx, outputs, info->num_outputs); - } - ac_build_endif(&ctx->ac, 5145); + const struct si_shader_selector *sel = ctx->shader->selector; + const struct si_shader_info *info = &sel->info; + const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim); + LLVMBuilderRef builder = ctx->ac.builder; + LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false); + LLVMValueRef tmp, tmp2; + + /* Zero out remaining (non-emitted) primitive flags. + * + * Note: Alternatively, we could pass the relevant gs_next_vertex to + * the emit threads via LDS. This is likely worse in the expected + * typical case where each GS thread emits the full set of + * vertices. + */ + for (unsigned stream = 0; stream < 4; ++stream) { + if (!info->num_stream_output_components[stream]) + continue; + + const LLVMValueRef gsthread = get_thread_id_in_tg(ctx); + + ac_build_bgnloop(&ctx->ac, 5100); + + const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], ""); + tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx, + LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), ""); + ac_build_ifcc(&ctx->ac, tmp, 5101); + ac_build_break(&ctx->ac); + ac_build_endif(&ctx->ac, 5101); + + tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, ""); + LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]); + + tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx); + LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream)); + + ac_build_endloop(&ctx->ac, 5100); + } + + /* Accumulate generated primitives counts across the entire threadgroup. */ + for (unsigned stream = 0; stream < 4; ++stream) { + if (!info->num_stream_output_components[stream]) + continue; + + LLVMValueRef numprims = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], ""); + numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size); + + tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, ""); + ac_build_ifcc(&ctx->ac, tmp, 5105); + { + LLVMBuildAtomicRMW( + builder, LLVMAtomicRMWBinOpAdd, + ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, stream, false)), + numprims, LLVMAtomicOrderingMonotonic, false); + } + ac_build_endif(&ctx->ac, 5105); + } + + ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label); + + ac_build_s_barrier(&ctx->ac); + + const LLVMValueRef tid = get_thread_id_in_tg(ctx); + LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx); + + /* Streamout */ + if (sel->so.num_outputs) { + struct ngg_streamout nggso = {}; + + nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false); + + LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid); + for (unsigned stream = 0; stream < 4; ++stream) { + if (!info->num_stream_output_components[stream]) + continue; + + tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), ""); + tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); + tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, ""); + nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, ""); + } + + for (unsigned i = 0; i < verts_per_prim; ++i) { + tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), + ""); + tmp = ngg_gs_vertex_ptr(ctx, tmp); + nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0); + } + + build_streamout(ctx, &nggso); + } + + /* Write shader query data. */ + if (ctx->screen->use_ngg_streamout) { + tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1); + tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); + ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */ + unsigned num_query_comps = sel->so.num_outputs ? 8 : 4; + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, + LLVMConstInt(ctx->ac.i32, num_query_comps, false), ""); + ac_build_ifcc(&ctx->ac, tmp, 5110); + { + LLVMValueRef offset; + tmp = tid; + if (sel->so.num_outputs) + tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), ""); + offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), ""); + if (sel->so.num_outputs) { + tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), ""); + tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), ""); + offset = LLVMBuildAdd(builder, offset, tmp, ""); + } + + tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), ""); + LLVMValueRef args[] = { + tmp, ngg_get_query_buf(ctx), + offset, LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */ + ctx->ac.i32_0, /* cachepolicy */ + }; + ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5, + 0); + } + ac_build_endif(&ctx->ac, 5110); + ac_build_endif(&ctx->ac, 5109); + } + + /* Determine vertex liveness. */ + LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive"); + + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, ""); + ac_build_ifcc(&ctx->ac, tmp, 5120); + { + for (unsigned i = 0; i < verts_per_prim; ++i) { + const LLVMValueRef primidx = + LLVMBuildAdd(builder, tid, LLVMConstInt(ctx->ac.i32, i, false), ""); + + if (i > 0) { + tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, ""); + ac_build_ifcc(&ctx->ac, tmp, 5121 + i); + } + + /* Load primitive liveness */ + tmp = ngg_gs_vertex_ptr(ctx, primidx); + tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), ""); + const LLVMValueRef primlive = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, ""); + + tmp = LLVMBuildLoad(builder, vertliveptr, ""); + tmp = LLVMBuildOr(builder, tmp, primlive, ""), LLVMBuildStore(builder, tmp, vertliveptr); + + if (i > 0) + ac_build_endif(&ctx->ac, 5121 + i); + } + } + ac_build_endif(&ctx->ac, 5120); + + /* Inclusive scan addition across the current wave. */ + LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, ""); + struct ac_wg_scan vertlive_scan = {}; + vertlive_scan.op = nir_op_iadd; + vertlive_scan.enable_reduce = true; + vertlive_scan.enable_exclusive = true; + vertlive_scan.src = vertlive; + vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0); + vertlive_scan.waveidx = get_wave_id_in_tg(ctx); + vertlive_scan.numwaves = get_tgsize(ctx); + vertlive_scan.maxwaves = 8; + + ac_build_wg_scan(&ctx->ac, &vertlive_scan); + + /* Skip all exports (including index exports) when possible. At least on + * early gfx10 revisions this is also to avoid hangs. + */ + LLVMValueRef have_exports = + LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, ""); + num_emit_threads = LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, ""); + + /* Allocate export space. Send this message as early as possible, to + * hide the latency of the SQ <-> SPI roundtrip. + * + * Note: We could consider compacting primitives for export as well. + * PA processes 1 non-null prim / clock, but it fetches 4 DW of + * prim data per clock and skips null primitives at no additional + * cost. So compacting primitives can only be beneficial when + * there are 4 or more contiguous null primitives in the export + * (in the common case of single-dword prim exports). + */ + ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), vertlive_scan.result_reduce, + num_emit_threads); + + /* Setup the reverse vertex compaction permutation. We re-use stream 1 + * of the primitive liveness flags, relying on the fact that each + * threadgroup can have at most 256 threads. */ + ac_build_ifcc(&ctx->ac, vertlive, 5130); + { + tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive); + tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, ""); + LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1)); + } + ac_build_endif(&ctx->ac, 5130); + + ac_build_s_barrier(&ctx->ac); + + /* Export primitive data */ + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, ""); + ac_build_ifcc(&ctx->ac, tmp, 5140); + { + LLVMValueRef flags; + struct ac_ngg_prim prim = {}; + prim.num_vertices = verts_per_prim; + + tmp = ngg_gs_vertex_ptr(ctx, tid); + flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), ""); + prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), ""); + + for (unsigned i = 0; i < verts_per_prim; ++i) { + prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive, + LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), ""); + prim.edgeflag[i] = ctx->ac.i1false; + } + + /* Geometry shaders output triangle strips, but NGG expects triangles. */ + if (verts_per_prim == 3) { + LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, ""); + is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, ""); + LLVMValueRef flatshade_first = LLVMBuildICmp( + builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, ""); + + ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, prim.index); + } + + ac_build_export_prim(&ctx->ac, &prim); + } + ac_build_endif(&ctx->ac, 5140); + + /* Export position and parameter data */ + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, ""); + ac_build_ifcc(&ctx->ac, tmp, 5145); + { + struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS]; + + tmp = ngg_gs_vertex_ptr(ctx, tid); + tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), ""); + tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, ""); + const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp); + + unsigned out_idx = 0; + for (unsigned i = 0; i < info->num_outputs; i++) { + outputs[i].semantic = info->output_semantic[i]; + + for (unsigned j = 0; j < 4; j++, out_idx++) { + tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx); + tmp = LLVMBuildLoad(builder, tmp, ""); + outputs[i].values[j] = ac_to_float(&ctx->ac, tmp); + outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3; + } + } + + si_llvm_build_vs_exports(ctx, outputs, info->num_outputs); + } + ac_build_endif(&ctx->ac, 5145); } static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, - unsigned min_verts_per_prim, bool use_adjacency) + unsigned min_verts_per_prim, bool use_adjacency) { - unsigned max_reuse = max_esverts - min_verts_per_prim; - if (use_adjacency) - max_reuse /= 2; - *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse); + unsigned max_reuse = max_esverts - min_verts_per_prim; + if (use_adjacency) + max_reuse /= 2; + *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse); +} + +unsigned gfx10_ngg_get_scratch_dw_size(struct si_shader *shader) +{ + const struct si_shader_selector *sel = shader->selector; + + if (sel->info.stage == MESA_SHADER_GEOMETRY && sel->so.num_outputs) + return 44; + + return 8; } /** @@ -1308,175 +1899,190 @@ static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts * This happens before the shader is uploaded, since LDS relocations during * upload depend on the subgroup size. */ -void gfx10_ngg_calculate_subgroup_info(struct si_shader *shader) +bool gfx10_ngg_calculate_subgroup_info(struct si_shader *shader) { - const struct si_shader_selector *gs_sel = shader->selector; - const struct si_shader_selector *es_sel = - shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel; - const enum pipe_shader_type gs_type = gs_sel->type; - const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1); - const unsigned input_prim = si_get_input_prim(gs_sel); - const bool use_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY && - input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY; - const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim); - const unsigned min_verts_per_prim = - gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1; - - /* All these are in dwords: */ - /* We can't allow using the whole LDS, because GS waves compete with - * other shader stages for LDS space. - * - * TODO: We should really take the shader's internal LDS use into - * account. The linker will fail if the size is greater than - * 8K dwords. - */ - const unsigned max_lds_size = 8 * 1024 - 768; - const unsigned target_lds_size = max_lds_size; - unsigned esvert_lds_size = 0; - unsigned gsprim_lds_size = 0; - - /* All these are per subgroup: */ - bool max_vert_out_per_gs_instance = false; - unsigned max_esverts_base = 128; - unsigned max_gsprims_base = 128; /* default prim group size clamp */ - - /* Hardware has the following non-natural restrictions on the value - * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of - * the draw: - * - at most 252 for any line input primitive type - * - at most 251 for any quad input primitive type - * - at most 251 for triangle strips with adjacency (this happens to - * be the natural limit for triangle *lists* with adjacency) - */ - max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1); - - if (gs_type == PIPE_SHADER_GEOMETRY) { - unsigned max_out_verts_per_gsprim = - gs_sel->gs_max_out_vertices * gs_num_invocations; - - if (max_out_verts_per_gsprim <= 256) { - if (max_out_verts_per_gsprim) { - max_gsprims_base = MIN2(max_gsprims_base, - 256 / max_out_verts_per_gsprim); - } - } else { - /* Use special multi-cycling mode in which each GS - * instance gets its own subgroup. Does not work with - * tessellation. */ - max_vert_out_per_gs_instance = true; - max_gsprims_base = 1; - max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices; - } - - esvert_lds_size = es_sel->esgs_itemsize / 4; - gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim; - } else { - /* VS and TES. */ - /* LDS size for passing data from ES to GS. */ - esvert_lds_size = ngg_nogs_vertex_size(shader); - - /* LDS size for passing data from GS to ES. - * GS stores Primitive IDs into LDS at the address corresponding - * to the ES thread of the provoking vertex. All ES threads - * load and export PrimitiveID for their thread. - */ - if (gs_sel->type == PIPE_SHADER_VERTEX && - shader->key.mono.u.vs_export_prim_id) - esvert_lds_size = MAX2(esvert_lds_size, 1); - } - - unsigned max_gsprims = max_gsprims_base; - unsigned max_esverts = max_esverts_base; - - if (esvert_lds_size) - max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size); - if (gsprim_lds_size) - max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size); - - max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); - clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency); - assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); - - if (esvert_lds_size || gsprim_lds_size) { - /* Now that we have a rough proportionality between esverts - * and gsprims based on the primitive type, scale both of them - * down simultaneously based on required LDS space. - * - * We could be smarter about this if we knew how much vertex - * reuse to expect. - */ - unsigned lds_total = max_esverts * esvert_lds_size + - max_gsprims * gsprim_lds_size; - if (lds_total > target_lds_size) { - max_esverts = max_esverts * target_lds_size / lds_total; - max_gsprims = max_gsprims * target_lds_size / lds_total; - - max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); - clamp_gsprims_to_esverts(&max_gsprims, max_esverts, - min_verts_per_prim, use_adjacency); - assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); - } - } - - /* Round up towards full wave sizes for better ALU utilization. */ - if (!max_vert_out_per_gs_instance) { - const unsigned wavesize = gs_sel->screen->ge_wave_size; - unsigned orig_max_esverts; - unsigned orig_max_gsprims; - do { - orig_max_esverts = max_esverts; - orig_max_gsprims = max_gsprims; - - max_esverts = align(max_esverts, wavesize); - max_esverts = MIN2(max_esverts, max_esverts_base); - if (esvert_lds_size) - max_esverts = MIN2(max_esverts, - (max_lds_size - max_gsprims * gsprim_lds_size) / - esvert_lds_size); - max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); - - max_gsprims = align(max_gsprims, wavesize); - max_gsprims = MIN2(max_gsprims, max_gsprims_base); - if (gsprim_lds_size) - max_gsprims = MIN2(max_gsprims, - (max_lds_size - max_esverts * esvert_lds_size) / - gsprim_lds_size); - clamp_gsprims_to_esverts(&max_gsprims, max_esverts, - min_verts_per_prim, use_adjacency); - assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); - } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims); - } - - /* Hardware restriction: minimum value of max_esverts */ - max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim); - - unsigned max_out_vertices = - max_vert_out_per_gs_instance ? gs_sel->gs_max_out_vertices : - gs_type == PIPE_SHADER_GEOMETRY ? - max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices : - max_esverts; - assert(max_out_vertices <= 256); - - unsigned prim_amp_factor = 1; - if (gs_type == PIPE_SHADER_GEOMETRY) { - /* Number of output primitives per GS input primitive after - * GS instancing. */ - prim_amp_factor = gs_sel->gs_max_out_vertices; - } - - /* The GE only checks against the maximum number of ES verts after - * allocating a full GS primitive. So we need to ensure that whenever - * this check passes, there is enough space for a full primitive without - * vertex reuse. - */ - shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1; - shader->ngg.max_gsprims = max_gsprims; - shader->ngg.max_out_verts = max_out_vertices; - shader->ngg.prim_amp_factor = prim_amp_factor; - shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance; - - shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size; - shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size; - - assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */ + const struct si_shader_selector *gs_sel = shader->selector; + const struct si_shader_selector *es_sel = + shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel; + const gl_shader_stage gs_stage = gs_sel->info.stage; + const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1); + const unsigned input_prim = si_get_input_prim(gs_sel); + const bool use_adjacency = + input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY; + const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim); + const unsigned min_verts_per_prim = gs_stage == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1; + + /* All these are in dwords: */ + /* GE can only use 8K dwords (32KB) of LDS per workgroup. + */ + const unsigned max_lds_size = 8 * 1024 - gfx10_ngg_get_scratch_dw_size(shader); + const unsigned target_lds_size = max_lds_size; + unsigned esvert_lds_size = 0; + unsigned gsprim_lds_size = 0; + + /* All these are per subgroup: */ + const unsigned min_esverts = gs_sel->screen->info.chip_class >= GFX10_3 ? 29 : 24; + bool max_vert_out_per_gs_instance = false; + unsigned max_gsprims_base = 128; /* default prim group size clamp */ + unsigned max_esverts_base = 128; + + if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) { + max_gsprims_base = 128 / 3; + max_esverts_base = max_gsprims_base * 3; + } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) { + max_gsprims_base = 126; + max_esverts_base = 128; + } + + /* Hardware has the following non-natural restrictions on the value + * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of + * the draw: + * - at most 252 for any line input primitive type + * - at most 251 for any quad input primitive type + * - at most 251 for triangle strips with adjacency (this happens to + * be the natural limit for triangle *lists* with adjacency) + */ + max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1); + + if (gs_stage == MESA_SHADER_GEOMETRY) { + bool force_multi_cycling = false; + unsigned max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices * gs_num_invocations; + +retry_select_mode: + if (max_out_verts_per_gsprim <= 256 && !force_multi_cycling) { + if (max_out_verts_per_gsprim) { + max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim); + } + } else { + /* Use special multi-cycling mode in which each GS + * instance gets its own subgroup. Does not work with + * tessellation. */ + max_vert_out_per_gs_instance = true; + max_gsprims_base = 1; + max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices; + } + + esvert_lds_size = es_sel->esgs_itemsize / 4; + gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim; + + if (gsprim_lds_size > target_lds_size && !force_multi_cycling) { + if (gs_sel->tess_turns_off_ngg || es_sel->info.stage != MESA_SHADER_TESS_EVAL) { + force_multi_cycling = true; + goto retry_select_mode; + } + } + } else { + /* VS and TES. */ + /* LDS size for passing data from ES to GS. */ + esvert_lds_size = ngg_nogs_vertex_size(shader); + } + + unsigned max_gsprims = max_gsprims_base; + unsigned max_esverts = max_esverts_base; + + if (esvert_lds_size) + max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size); + if (gsprim_lds_size) + max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size); + + max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); + clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency); + assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); + + if (esvert_lds_size || gsprim_lds_size) { + /* Now that we have a rough proportionality between esverts + * and gsprims based on the primitive type, scale both of them + * down simultaneously based on required LDS space. + * + * We could be smarter about this if we knew how much vertex + * reuse to expect. + */ + unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size; + if (lds_total > target_lds_size) { + max_esverts = max_esverts * target_lds_size / lds_total; + max_gsprims = max_gsprims * target_lds_size / lds_total; + + max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); + clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency); + assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); + } + } + + /* Round up towards full wave sizes for better ALU utilization. */ + if (!max_vert_out_per_gs_instance) { + const unsigned wavesize = si_get_shader_wave_size(shader); + unsigned orig_max_esverts; + unsigned orig_max_gsprims; + do { + orig_max_esverts = max_esverts; + orig_max_gsprims = max_gsprims; + + max_esverts = align(max_esverts, wavesize); + max_esverts = MIN2(max_esverts, max_esverts_base); + if (esvert_lds_size) + max_esverts = + MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size); + max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); + /* Hardware restriction: minimum value of max_esverts */ + max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); + + max_gsprims = align(max_gsprims, wavesize); + max_gsprims = MIN2(max_gsprims, max_gsprims_base); + if (gsprim_lds_size) { + /* Don't count unusable vertices to the LDS size. Those are vertices above + * the maximum number of vertices that can occur in the workgroup, + * which is e.g. max_gsprims * 3 for triangles. + */ + unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); + max_gsprims = + MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size); + } + clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency); + assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); + } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims); + + /* Verify the restriction. */ + assert(max_esverts >= min_esverts - 1 + max_verts_per_prim); + } else { + /* Hardware restriction: minimum value of max_esverts */ + max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); + } + + unsigned max_out_vertices = + max_vert_out_per_gs_instance + ? gs_sel->gs_max_out_vertices + : gs_stage == MESA_SHADER_GEOMETRY + ? max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices + : max_esverts; + assert(max_out_vertices <= 256); + + unsigned prim_amp_factor = 1; + if (gs_stage == MESA_SHADER_GEOMETRY) { + /* Number of output primitives per GS input primitive after + * GS instancing. */ + prim_amp_factor = gs_sel->gs_max_out_vertices; + } + + /* The GE only checks against the maximum number of ES verts after + * allocating a full GS primitive. So we need to ensure that whenever + * this check passes, there is enough space for a full primitive without + * vertex reuse. + */ + shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1; + shader->ngg.max_gsprims = max_gsprims; + shader->ngg.max_out_verts = max_out_vertices; + shader->ngg.prim_amp_factor = prim_amp_factor; + shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance; + + /* Don't count unusable vertices. */ + shader->gs_info.esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) * + esvert_lds_size; + shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size; + + assert(shader->ngg.hw_max_esverts >= min_esverts); /* HW limitation */ + + /* If asserts are disabled, we use the same conditions to return false */ + return max_esverts >= max_verts_per_prim && max_gsprims >= 1 && + max_out_vertices <= 256 && + shader->ngg.hw_max_esverts >= min_esverts; }