From 97f6d50f7247c40eeef33219e5cf5ccb7bf6d4ea Mon Sep 17 00:00:00 2001 From: Brian Paul Date: Sat, 7 Mar 2015 13:15:22 -0700 Subject: [PATCH] mesa: reindent querymatrix.c Use 3-space indents, not 4. Move some comments after the case statements. Acked-by: Matt Turner --- src/mesa/main/querymatrix.c | 229 ++++++++++++++++++------------------ 1 file changed, 115 insertions(+), 114 deletions(-) diff --git a/src/mesa/main/querymatrix.c b/src/mesa/main/querymatrix.c index 095817cf5b9..ca6b023379e 100644 --- a/src/mesa/main/querymatrix.c +++ b/src/mesa/main/querymatrix.c @@ -38,119 +38,120 @@ #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0)) -GLbitfield GLAPIENTRY _mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]) +GLbitfield GLAPIENTRY +_mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]) { - GLfloat matrix[16]; - GLint tmp; - GLenum currentMode = GL_FALSE; - GLenum desiredMatrix = GL_FALSE; - /* The bitfield returns 1 for each component that is invalid (i.e. - * NaN or Inf). In case of error, everything is invalid. - */ - GLbitfield rv; - register unsigned int i; - unsigned int bit; - - /* This data structure defines the mapping between the current matrix - * mode and the desired matrix identifier. - */ - static struct { - GLenum currentMode; - GLenum desiredMatrix; - } modes[] = { - {GL_MODELVIEW, GL_MODELVIEW_MATRIX}, - {GL_PROJECTION, GL_PROJECTION_MATRIX}, - {GL_TEXTURE, GL_TEXTURE_MATRIX}, - }; - - /* Call Mesa to get the current matrix in floating-point form. First, - * we have to figure out what the current matrix mode is. - */ - _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp); - currentMode = (GLenum) tmp; - - /* The mode is either GL_FALSE, if for some reason we failed to query - * the mode, or a given mode from the above table. Search for the - * returned mode to get the desired matrix; if we don't find it, - * we can return immediately, as _mesa_GetInteger() will have - * logged the necessary error already. - */ - for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) { - if (modes[i].currentMode == currentMode) { - desiredMatrix = modes[i].desiredMatrix; - break; - } - } - if (desiredMatrix == GL_FALSE) { - /* Early error means all values are invalid. */ - return 0xffff; - } - - /* Now pull the matrix itself. */ - _mesa_GetFloatv(desiredMatrix, matrix); - - rv = 0; - for (i = 0, bit = 1; i < 16; i++, bit<<=1) { - float normalizedFraction; - int exp; - - switch (fpclassify(matrix[i])) { - /* A "subnormal" or denormalized number is too small to be - * represented in normal format; but despite that it's a - * valid floating point number. FP_ZERO and FP_NORMAL - * are both valid as well. We should be fine treating - * these three cases as legitimate floating-point numbers. - */ - case FP_SUBNORMAL: - case FP_NORMAL: - case FP_ZERO: - normalizedFraction = (GLfloat)frexp(matrix[i], &exp); - mantissa[i] = FLOAT_TO_FIXED(normalizedFraction); - exponent[i] = (GLint) exp; - break; - - /* If the entry is not-a-number or an infinity, then the - * matrix component is invalid. The invalid flag for - * the component is already set; might as well set the - * other return values to known values. We'll set - * distinct values so that a savvy end user could determine - * whether the matrix component was a NaN or an infinity, - * but this is more useful for debugging than anything else - * since the standard doesn't specify any such magic - * values to return. - */ - case FP_NAN: - mantissa[i] = INT_TO_FIXED(0); - exponent[i] = (GLint) 0; - rv |= bit; - break; - - case FP_INFINITE: - /* Return +/- 1 based on whether it's a positive or - * negative infinity. - */ - if (matrix[i] > 0) { - mantissa[i] = INT_TO_FIXED(1); - } - else { - mantissa[i] = -INT_TO_FIXED(1); - } - exponent[i] = (GLint) 0; - rv |= bit; - break; - - /* We should never get here; but here's a catching case - * in case fpclassify() is returnings something unexpected. - */ - default: - mantissa[i] = INT_TO_FIXED(2); - exponent[i] = (GLint) 0; - rv |= bit; - break; - } - - } /* for each component */ - - /* All done */ - return rv; + GLfloat matrix[16]; + GLint tmp; + GLenum currentMode = GL_FALSE; + GLenum desiredMatrix = GL_FALSE; + /* The bitfield returns 1 for each component that is invalid (i.e. + * NaN or Inf). In case of error, everything is invalid. + */ + GLbitfield rv; + register unsigned int i; + unsigned int bit; + + /* This data structure defines the mapping between the current matrix + * mode and the desired matrix identifier. + */ + static struct { + GLenum currentMode; + GLenum desiredMatrix; + } modes[] = { + {GL_MODELVIEW, GL_MODELVIEW_MATRIX}, + {GL_PROJECTION, GL_PROJECTION_MATRIX}, + {GL_TEXTURE, GL_TEXTURE_MATRIX}, + }; + + /* Call Mesa to get the current matrix in floating-point form. First, + * we have to figure out what the current matrix mode is. + */ + _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp); + currentMode = (GLenum) tmp; + + /* The mode is either GL_FALSE, if for some reason we failed to query + * the mode, or a given mode from the above table. Search for the + * returned mode to get the desired matrix; if we don't find it, + * we can return immediately, as _mesa_GetInteger() will have + * logged the necessary error already. + */ + for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) { + if (modes[i].currentMode == currentMode) { + desiredMatrix = modes[i].desiredMatrix; + break; + } + } + if (desiredMatrix == GL_FALSE) { + /* Early error means all values are invalid. */ + return 0xffff; + } + + /* Now pull the matrix itself. */ + _mesa_GetFloatv(desiredMatrix, matrix); + + rv = 0; + for (i = 0, bit = 1; i < 16; i++, bit<<=1) { + float normalizedFraction; + int exp; + + switch (fpclassify(matrix[i])) { + case FP_SUBNORMAL: + case FP_NORMAL: + case FP_ZERO: + /* A "subnormal" or denormalized number is too small to be + * represented in normal format; but despite that it's a + * valid floating point number. FP_ZERO and FP_NORMAL + * are both valid as well. We should be fine treating + * these three cases as legitimate floating-point numbers. + */ + normalizedFraction = (GLfloat)frexp(matrix[i], &exp); + mantissa[i] = FLOAT_TO_FIXED(normalizedFraction); + exponent[i] = (GLint) exp; + break; + + case FP_NAN: + /* If the entry is not-a-number or an infinity, then the + * matrix component is invalid. The invalid flag for + * the component is already set; might as well set the + * other return values to known values. We'll set + * distinct values so that a savvy end user could determine + * whether the matrix component was a NaN or an infinity, + * but this is more useful for debugging than anything else + * since the standard doesn't specify any such magic + * values to return. + */ + mantissa[i] = INT_TO_FIXED(0); + exponent[i] = (GLint) 0; + rv |= bit; + break; + + case FP_INFINITE: + /* Return +/- 1 based on whether it's a positive or + * negative infinity. + */ + if (matrix[i] > 0) { + mantissa[i] = INT_TO_FIXED(1); + } + else { + mantissa[i] = -INT_TO_FIXED(1); + } + exponent[i] = (GLint) 0; + rv |= bit; + break; + + default: + /* We should never get here; but here's a catching case + * in case fpclassify() is returnings something unexpected. + */ + mantissa[i] = INT_TO_FIXED(2); + exponent[i] = (GLint) 0; + rv |= bit; + break; + } + + } /* for each component */ + + /* All done */ + return rv; } -- 2.30.2