acd4a12c8eac2de6f9a84486bd8282e5edd30e33
[riscv-tests.git] / mt / af_matmul / failedattempt.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArray( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109
110 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
111 {
112 size_t i;
113 size_t i2;
114 size_t j;
115 size_t j2;
116 size_t k;
117 size_t k2;
118 size_t max_dim = lda*lda;
119 size_t block_size = lda/2;
120 data_t temp_mat[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
121 if (coreid == 0) {
122 //making a 16x16 block
123 //First block: Top 16x16 block left of A and top left of B = top left of C
124 //Second block: top right 16x16 right block of A and top right of B = top right of C
125 for (j2= 0; j2 < 2; j2++) {
126 for (i2 = 0; i2 < 2; i2++) {
127 //for (j2= 0; j2 < 2; j2++) {
128 //K represents which row of A and C
129 for (k = 0; k < block_size; k++) {
130 int rowIndex = k*32;
131 for (i = i2*block_size; i < i2*block_size+block_size; i++) {
132 int elementA = A[rowIndex+i];
133 int columnIndex = i%32*32;
134 for (j = 0; j < block_size; j++) {
135 temp_mat[j] += elementA*B[columnIndex+j+j2*block_size];
136 }
137 }
138 //Put temp_mat into actual result Matrix
139 for (k2 = 0; k2 < block_size; k2++) {
140 C[rowIndex+k2+j2*block_size] += temp_mat[k2];
141 temp_mat[k2] = 0;
142 }
143 }
144 }
145 }
146 } else {
147 for (j2= 0; j2 < 2; j2++) {
148 for (i2 = 0; i2 < 2; i2++) {
149 //for (j2= 0; j2 < 2; j2++) {
150 //K represents which row of A and C
151 for (k = block_size; k < lda; k++) {
152 int rowIndex = k*32;
153 for (i = i2*block_size; i < i2*block_size+block_size; i++) {
154 int elementA = A[rowIndex+i];
155 int columnIndex = i%32*32;
156 for (j = 0; j < block_size; j++) {
157 temp_mat[j] += elementA*B[columnIndex+j+j2*block_size];
158 }
159 }
160 //Put temp_mat into actual result Matrix
161 for (k2 = 0; k2 < block_size; k2++) {
162 C[rowIndex+k2+j2*block_size] += temp_mat[k2];
163 temp_mat[k2] = 0;
164 }
165 }
166 }
167 }
168 }
169
170
171 //size_t half_lda = lda/2;
172 // k = which pair of row we're on
173
174
175
176
177
178
179 /*
180 for (k = coreid*lda/ncores; k < (lda/ncores + coreid*lda/ncores); k += 2) {
181 //printf("%d", k);
182 for (i = 0; i < lda ; i++) {
183 int elementA = A[32*k+i];
184 int elementA2 = A[i + 32*(k+1)];
185 int column = i%32*32;
186 for (j = 0; j < lda; j++) {
187 C[32*k + j] += elementA*B[column+j];
188 C[32*(k+1) + j] += elementA2*B[column+j];
189 }
190 }
191
192 }
193 */
194
195 /*
196 data_t element=A[i];
197 data_t element2 = A[i+1];
198 data_t element3 = A[i+2];
199 data_t element4 = A[i+3];
200 data_t element5 = A[i+4];
201 data_t element6 = A[i+5];
202 data_t element7 = A[i+6];
203 data_t element8 = A[i+7];
204 int row= (int)(i/32)*32;
205 int row2 = (i+1)/32*32;
206 int row3 = (i+2)/32*32;
207 int row4 = (i+3)/32*32;
208 int row5 = (i+4)/32*32;
209 int row6 = (i+5)/32*32;
210 int row7 = (i+6)/32*32;
211 int row8 = (i+7)/32*32;
212 int column = i%32*32;
213 int column2 = (i+1)%32*32;
214 int column3 = (i+2)%32*32;
215 int column4 = (i+3)%32*32;
216 int column5 = (i+4)%32*32;
217 int column6 = (i+5)%32*32;
218 int column7 = (i+6)%32*32;
219
220 */
221
222 //int column8 = (i+7)%32*32;
223
224 /*
225 for (j=0; j < lda; j++) {
226 sum = B[
227 C[row+j]+=element*B[column+j];
228 C[row2+j]+=element2*B[column2+j];
229 C[row3+j]+=element3*B[column3+j];
230 C[row4+j]+=element4*B[column4+j];
231 C[row5+j]+=element5*B[column5+j];
232 C[row6+j]+=element6*B[column6+j];
233 C[row7+j]+=element7*B[column7+j];
234 C[row8+j]+=element8*B[column8+j];
235 C[row+j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j]+element5*B[column5+j]+element6*B[column6+j]+element7*B[column7+j]+element8*B[column8+j];
236 }
237 }
238 */
239
240
241
242
243
244
245 // ***************************** //
246 // **** ADD YOUR CODE HERE ***** //
247 // ***************************** //
248 //
249 // feel free to make a separate function for MI and MSI versions.
250
251 }
252
253 //--------------------------------------------------------------------------
254 // Main
255 //
256 // all threads start executing thread_entry(). Use their "coreid" to
257 // differentiate between threads (each thread is running on a separate core).
258
259 void thread_entry(int cid, int nc)
260 {
261 coreid = cid;
262 ncores = nc;
263
264 // static allocates data in the binary, which is visible to both threads
265 static data_t results_data[ARRAY_SIZE];
266
267
268 // Execute the provided, naive matmul
269 barrier();
270 stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
271
272
273 // verify
274 verify(ARRAY_SIZE, results_data, verify_data);
275
276 // clear results from the first trial
277 size_t i;
278 if (coreid == 0)
279 for (i=0; i < ARRAY_SIZE; i++)
280 results_data[i] = 0;
281 barrier();
282
283
284 // Execute your faster matmul
285 barrier();
286 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
287
288 #ifdef DEBUG
289 printArray("results:", ARRAY_SIZE, results_data);
290 printArray("verify :", ARRAY_SIZE, verify_data);
291 #endif
292
293 // verify
294 verify(ARRAY_SIZE, results_data, verify_data);
295 barrier();
296
297 exit(0);
298 }