Updated mt tests
[riscv-tests.git] / mt / ai_matmul / ai_matmul.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArrayMT( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
110 {
111
112 // ***************************** //
113 // **** ADD YOUR CODE HERE ***** //
114 // ***************************** //
115 //
116 // feel free to make a separate function for MI and MSI versions.
117
118 //----------MSI--------------
119 ///*
120 int i,j,k;
121 barrier(ncores);
122 for(j = coreid*lda/ncores; j < coreid*lda/ncores + lda/ncores; j++) {
123 for(i = 0; i < lda; i+=4) {
124 data_t Cval0 = 0;
125 data_t Cval1 = 0;
126 data_t Cval2 = 0;
127 data_t Cval3 = 0;
128 for(k = 0; k < lda; k++) {
129 Cval0 += A[j*lda+k]*B[k*lda+i];
130 Cval1 += A[j*lda+k]*B[k*lda+i+1];
131 Cval2 += A[j*lda+k]*B[k*lda+i+2];
132 Cval3 += A[j*lda+k]*B[k*lda+i+3];
133 }
134 C[j*lda+i] = Cval0;
135 C[j*lda+i+1] = Cval1;
136 C[j*lda+i+2] = Cval2;
137 C[j*lda+i+3] = Cval3;
138 }
139 }
140 //*/
141
142 //------------------MI-------------------
143 /*
144 int i,j,k;
145 barrier(nc);
146 for(j = coreid*lda/ncores; j < coreid*lda/ncores + lda/ncores; j++) {
147 for(i = 0; i < lda; i+=4) {
148 data_t Cval0 = 0;
149 data_t Cval1 = 0;
150 data_t Cval2 = 0;
151 data_t Cval3 = 0;
152 if(coreid == 0) {
153 for(k = 0; k < lda; k++) {
154 Cval0 += A[j*lda+k]*B[k*lda+i];
155 Cval1 += A[j*lda+k]*B[k*lda+i+1];
156 Cval2 += A[j*lda+k]*B[k*lda+i+2];
157 Cval3 += A[j*lda+k]*B[k*lda+i+3];
158 }
159 } else {
160 for(k = lda-1; k >= 0; k--) {
161 Cval0 += A[j*lda+k]*B[k*lda+i];
162 Cval1 += A[j*lda+k]*B[k*lda+i+1];
163 Cval2 += A[j*lda+k]*B[k*lda+i+2];
164 Cval3 += A[j*lda+k]*B[k*lda+i+3];
165 }
166 }
167 C[j*lda+i] = Cval0;
168 C[j*lda+i+1] = Cval1;
169 C[j*lda+i+2] = Cval2;
170 C[j*lda+i+3] = Cval3;
171 }
172 }
173 */
174 }
175
176 //--------------------------------------------------------------------------
177 // Main
178 //
179 // all threads start executing thread_entry(). Use their "coreid" to
180 // differentiate between threads (each thread is running on a separate core).
181
182 void thread_entry(int cid, int nc)
183 {
184 coreid = cid;
185 ncores = nc;
186
187 // static allocates data in the binary, which is visible to both threads
188 static data_t results_data[ARRAY_SIZE];
189
190
191 // // Execute the provided, naive matmul
192 // barrier(nc);
193 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
194 //
195 //
196 // // verify
197 // verifyMT(ARRAY_SIZE, results_data, verify_data);
198 //
199 // // clear results from the first trial
200 // size_t i;
201 // if (coreid == 0)
202 // for (i=0; i < ARRAY_SIZE; i++)
203 // results_data[i] = 0;
204 // barrier(nc);
205
206
207 // Execute your faster matmul
208 barrier(nc);
209 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
210
211 #ifdef DEBUG
212 printArrayMT("results:", ARRAY_SIZE, results_data);
213 printArrayMT("verify :", ARRAY_SIZE, verify_data);
214 #endif
215
216 // verify
217 verifyMT(ARRAY_SIZE, results_data, verify_data);
218 barrier(nc);
219
220 exit(0);
221 }
222