614a81f06b67775b384da8133f03aa3a7675bf04
[riscv-tests.git] / mt / ak_matmul / ak_matmul.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArray( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109
110 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
111 {
112
113 // ***************************** //
114 // **** ADD YOUR CODE HERE ***** //
115 // ***************************** //
116 //
117 // feel free to make a separate function for MI and MSI versions.
118 int i, j, k, ii, jj, bsize;
119 bsize = 16;
120 for ( jj = bsize*coreid; jj < lda; jj += bsize*ncores) {
121 for ( ii = 0; ii < lda; ii += bsize) {
122 for ( j = jj; j < lda && j < jj + bsize; j++) {
123 for ( i = ii; i < lda && i < ii + bsize; i += 8) {
124 data_t c1 = C[i + j*lda];
125 data_t c2 = C[i + j*lda + 1];
126 data_t c3 = C[i + j*lda + 2];
127 data_t c4 = C[i + j*lda + 3];
128 data_t c5 = C[i + j*lda + 4];
129 data_t c6 = C[i + j*lda + 5];
130 data_t c7 = C[i + j*lda + 6];
131 data_t c8 = C[i + j*lda + 7];
132 for ( k = 0; k < lda; k+=4 ) {
133 for (int x = 0; x < 4; x++) {
134 data_t a = A[j*lda + k+x];
135 data_t b1 = B[(k+x)*lda + i];
136 data_t b2 = B[(k+x)*lda + i + 1];
137 data_t b3 = B[(k+x)*lda + i + 2];
138 data_t b4 = B[(k+x)*lda + i + 3];
139 data_t b5 = B[(k+x)*lda + i + 4];
140 data_t b6 = B[(k+x)*lda + i + 5];
141 data_t b7 = B[(k+x)*lda + i + 6];
142 data_t b8 = B[(k+x)*lda + i + 7];
143 c1 += a * b1;
144 c2 += a * b2;
145 c3 += a * b3;
146 c4 += a * b4;
147 c5 += a * b5;
148 c6 += a * b6;
149 c7 += a * b7;
150 c8 += a * b8;
151 }
152 }
153 C[i + j*lda] = c1;
154 C[i + j*lda + 1] = c2;
155 C[i + j*lda + 2] = c3;
156 C[i + j*lda + 3] = c4;
157 C[i + j*lda + 4] = c5;
158 C[i + j*lda + 5] = c6;
159 C[i + j*lda + 6] = c7;
160 C[i + j*lda + 7] = c8;
161 }
162 }
163 }
164 }
165
166 }
167 //--------------------------------------------------------------------------
168 // Main
169 //
170 // all threads start executing thread_entry(). Use their "coreid" to
171 // differentiate between threads (each thread is running on a separate core).
172
173 void thread_entry(int cid, int nc)
174 {
175 coreid = cid;
176 ncores = nc;
177
178 // static allocates data in the binary, which is visible to both threads
179 static data_t results_data[ARRAY_SIZE];
180
181
182 // // Execute the provided, naive matmul
183 // barrier();
184 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
185 //
186 //
187 // // verify
188 // verify(ARRAY_SIZE, results_data, verify_data);
189 //
190 // // clear results from the first trial
191 // size_t i;
192 // if (coreid == 0)
193 // for (i=0; i < ARRAY_SIZE; i++)
194 // results_data[i] = 0;
195 // barrier();
196
197
198 // Execute your faster matmul
199 barrier();
200 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
201
202 #ifdef DEBUG
203 printArray("results:", ARRAY_SIZE, results_data);
204 printArray("verify :", ARRAY_SIZE, verify_data);
205 #endif
206
207 // verify
208 verify(ARRAY_SIZE, results_data, verify_data);
209 barrier();
210
211 exit(0);
212 }
213