47b0992ab6b458ee8fb3c6eb4c4185fd59459a72
[riscv-tests.git] / mt / al_matmul / matmul_mi.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArray( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109
110 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
111 {
112 // feel free to make a separate function for MI and MSI versions.
113 int i, j, k, x;
114 data_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
115 data_t temp8, temp9, temp10, temp11, temp12, temp13, temp14, temp15;
116
117
118 if(coreid == 0) {
119 for(j = 0; j < 32; j++) {
120 temp0 = C[j*lda];
121 temp1 = C[1 + j*lda];
122 temp2 = C[2 + j*lda];
123 temp3 = C[3 + j*lda];
124 temp4 = C[4 + j*lda];
125 temp5 = C[5 + j*lda];
126 temp6 = C[6 + j*lda];
127 temp7 = C[7 + j*lda];
128 temp8 = C[8 + j*lda];
129 temp9 = C[9 + j*lda];
130 temp10 = C[10 + j*lda];
131 temp11 = C[11 + j*lda];
132 temp12 = C[12 + j*lda];
133 temp13 = C[13 + j*lda];
134 temp14 = C[14 + j*lda];
135 temp15 = C[15 + j*lda];
136 for(k = 0; k < 32; k++) {
137 temp0 += A[j*lda + k] * B[k*lda];
138 temp1 += A[j*lda + k] * B[1 + k*lda];
139 temp2 += A[j*lda + k] * B[2 + k*lda];
140 temp3 += A[j*lda + k] * B[3 + k*lda];
141 temp4 += A[j*lda + k] * B[4 + k*lda];
142 temp5 += A[j*lda + k] * B[5 + k*lda];
143 temp6 += A[j*lda + k] * B[6 + k*lda];
144 temp7 += A[j*lda + k] * B[7 + k*lda];
145 temp8 += A[j*lda + k] * B[8 + k*lda];
146 temp9 += A[j*lda + k] * B[9 + k*lda];
147 temp10 += A[j*lda + k] * B[10 + k*lda];
148 temp11 += A[j*lda + k] * B[11 + k*lda];
149 temp12 += A[j*lda + k] * B[12 + k*lda];
150 temp13 += A[j*lda + k] * B[13 + k*lda];
151 temp14 += A[j*lda + k] * B[14 + k*lda];
152 temp15 += A[j*lda + k] * B[15 + k*lda];
153 }
154 C[j*lda] = temp0;
155 C[1 + j*lda] = temp1;
156 C[2 + j*lda] = temp2;
157 C[3 + j*lda] = temp3;
158 C[4 + j*lda] = temp4;
159 C[5 + j*lda] = temp5;
160 C[6 + j*lda] = temp6;
161 C[7 + j*lda] = temp7;
162 C[8 + j*lda] = temp8;
163 C[9 + j*lda] = temp9;
164 C[10 + j*lda] = temp10;
165 C[11 + j*lda] = temp11;
166 C[12 + j*lda] = temp12;
167 C[13 + j*lda] = temp13;
168 C[14 + j*lda] = temp14;
169 C[15 + j*lda] = temp15;
170 }
171 }
172
173 else {
174 for(j = 16; j < 32; j++) {
175 temp0 = C[16 + j*lda];
176 temp1 = C[17 + j*lda];
177 temp2 = C[18 + j*lda];
178 temp3 = C[19 + j*lda];
179 temp4 = C[20 + j*lda];
180 temp5 = C[21 + j*lda];
181 temp6 = C[22 + j*lda];
182 temp7 = C[23 + j*lda];
183 temp8 = C[24 + j*lda];
184 temp9 = C[25 + j*lda];
185 temp10 = C[26 + j*lda];
186 temp11 = C[27 + j*lda];
187 temp12 = C[28 + j*lda];
188 temp13 = C[29 + j*lda];
189 temp14 = C[30 + j*lda];
190 temp15 = C[31 + j*lda];
191 for(k = 0; k < 32; k++) {
192 temp0 += A[j*lda + k] * B[16 + k*lda];
193 temp1 += A[j*lda + k] * B[17 + k*lda];
194 temp2 += A[j*lda + k] * B[18 + k*lda];
195 temp3 += A[j*lda + k] * B[19 + k*lda];
196 temp4 += A[j*lda + k] * B[20 + k*lda];
197 temp5 += A[j*lda + k] * B[21 + k*lda];
198 temp6 += A[j*lda + k] * B[22 + k*lda];
199 temp7 += A[j*lda + k] * B[23 + k*lda];
200 temp8 += A[j*lda + k] * B[24 + k*lda];
201 temp9 += A[j*lda + k] * B[25 + k*lda];
202 temp10 += A[j*lda + k] * B[26 + k*lda];
203 temp11 += A[j*lda + k] * B[27 + k*lda];
204 temp12 += A[j*lda + k] * B[28 + k*lda];
205 temp13 += A[j*lda + k] * B[29 + k*lda];
206 temp14 += A[j*lda + k] * B[30 + k*lda];
207 temp15 += A[j*lda + k] * B[31 + k*lda];
208 }
209 C[16 + j*lda] = temp0;
210 C[17 + j*lda] = temp1;
211 C[18 + j*lda] = temp2;
212 C[19 + j*lda] = temp3;
213 C[20 + j*lda] = temp4;
214 C[21 + j*lda] = temp5;
215 C[22 + j*lda] = temp6;
216 C[23 + j*lda] = temp7;
217 C[24 + j*lda] = temp8;
218 C[25 + j*lda] = temp9;
219 C[26 + j*lda] = temp10;
220 C[27 + j*lda] = temp11;
221 C[28 + j*lda] = temp12;
222 C[29 + j*lda] = temp13;
223 C[30 + j*lda] = temp14;
224 C[31 + j*lda] = temp15;
225 }
226 for(j = 0; j <16; j++) {
227 temp0 = C[16 + j*lda];
228 temp1 = C[17 + j*lda];
229 temp2 = C[18 + j*lda];
230 temp3 = C[19 + j*lda];
231 temp4 = C[20 + j*lda];
232 temp5 = C[21 + j*lda];
233 temp6 = C[22 + j*lda];
234 temp7 = C[23 + j*lda];
235 temp8 = C[24 + j*lda];
236 temp9 = C[25 + j*lda];
237 temp10 = C[26 + j*lda];
238 temp11 = C[27 + j*lda];
239 temp12 = C[28 + j*lda];
240 temp13 = C[29 + j*lda];
241 temp14 = C[30 + j*lda];
242 temp15 = C[31 + j*lda];
243 for(k = 0; k < 32; k++) {
244 temp0 += A[j*lda + k] * B[16 + k*lda];
245 temp1 += A[j*lda + k] * B[17 + k*lda];
246 temp2 += A[j*lda + k] * B[18 + k*lda];
247 temp3 += A[j*lda + k] * B[19 + k*lda];
248 temp4 += A[j*lda + k] * B[20 + k*lda];
249 temp5 += A[j*lda + k] * B[21 + k*lda];
250 temp6 += A[j*lda + k] * B[22 + k*lda];
251 temp7 += A[j*lda + k] * B[23 + k*lda];
252 temp8 += A[j*lda + k] * B[24 + k*lda];
253 temp9 += A[j*lda + k] * B[25 + k*lda];
254 temp10 += A[j*lda + k] * B[26 + k*lda];
255 temp11 += A[j*lda + k] * B[27 + k*lda];
256 temp12 += A[j*lda + k] * B[28 + k*lda];
257 temp13 += A[j*lda + k] * B[29 + k*lda];
258 temp14 += A[j*lda + k] * B[30 + k*lda];
259 temp15 += A[j*lda + k] * B[31 + k*lda];
260 }
261 C[16 + j*lda] = temp0;
262 C[17 + j*lda] = temp1;
263 C[18 + j*lda] = temp2;
264 C[19 + j*lda] = temp3;
265 C[20 + j*lda] = temp4;
266 C[21 + j*lda] = temp5;
267 C[22 + j*lda] = temp6;
268 C[23 + j*lda] = temp7;
269 C[24 + j*lda] = temp8;
270 C[25 + j*lda] = temp9;
271 C[26 + j*lda] = temp10;
272 C[27 + j*lda] = temp11;
273 C[28 + j*lda] = temp12;
274 C[29 + j*lda] = temp13;
275 C[30 + j*lda] = temp14;
276 C[31 + j*lda] = temp15;
277 }
278 }
279 }
280
281 //--------------------------------------------------------------------------
282 // Main
283 //
284 // all threads start executing thread_entry(). Use their "coreid" to
285 // differentiate between threads (each thread is running on a separate core).
286
287 void thread_entry(int cid, int nc)
288 {
289 coreid = cid;
290 ncores = nc;
291
292 // static allocates data in the binary, which is visible to both threads
293 static data_t results_data[ARRAY_SIZE];
294
295
296 // // Execute the provided, naive matmul
297 // barrier();
298 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
299 //
300 //
301 // // verify
302 // verify(ARRAY_SIZE, results_data, verify_data);
303 //
304 // // clear results from the first trial
305 // size_t i;
306 // if (coreid == 0)
307 // for (i=0; i < ARRAY_SIZE; i++)
308 // results_data[i] = 0;
309 // barrier();
310
311
312 // Execute your faster matmul
313 barrier();
314 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
315
316 #ifdef DEBUG
317 printArray("results:", ARRAY_SIZE, results_data);
318 printArray("verify :", ARRAY_SIZE, verify_data);
319 #endif
320
321 // verify
322 verify(ARRAY_SIZE, results_data, verify_data);
323 barrier();
324
325 exit(0);
326 }
327