Fix build with riscv-gcc version 4.9
[riscv-tests.git] / mt / bb_matmul / matmul_mi.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArrayMT( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109
110 void __attribute__((noinline)) matmul_msi(const int lda, const data_t A[], const data_t B[], data_t C[] ) {
111 int i, j, k;
112
113 for (i = 0; i < lda; i += 2) {
114 for (j = coreid * (lda / ncores); j < (coreid + 1) * (lda / ncores); j += 4) {
115 //for (j = 0; j < lda; j += 4) {
116 register data_t c00 = 0, c01 = 0;
117 register data_t c10 = 0, c11 = 0;
118 register data_t c20 = 0, c21 = 0;
119 register data_t c30 = 0, c31 = 0;
120
121 register data_t a0, a1, a2, a3, b0, b1;
122 for (k = 0; k < lda; k++) {
123 a0 = A[j*lda + k + 0*lda];
124 a1 = A[j*lda + k + 1*lda];
125 a2 = A[j*lda + k + 2*lda];
126 a3 = A[j*lda + k + 3*lda];
127
128 b0 = B[k*lda + i + 0];
129 b1 = B[k*lda + i + 1];
130 /*if (coreid == 0) {
131 printf("i = %d; j = %d; k = %d\n", i, j, k);
132 printf("%d += %d * %d; %d += %d * %d\n", (int)c00, (int)a0, (int)b0, (int)c01, (int)a0, (int)b1);
133 printf("%d += %d * %d; %d += %d * %d\n", (int)c10, (int)a1, (int)b0, (int)c11, (int)a1, (int)b1);
134 printf("%d += %d * %d; %d += %d * %d\n", (int)c20, (int)a2, (int)b0, (int)c21, (int)a2, (int)b1);
135 printf("%d += %d * %d; %d += %d * %d\n", (int)c30, (int)a3, (int)b0, (int)c31, (int)a3, (int)b1);
136 printf("\n");
137 }*/
138
139 c00 += a0 * b0; c01 += a0 * b1;
140 c10 += a1 * b0; c11 += a1 * b1;
141 c20 += a2 * b0; c21 += a2 * b1;
142 c30 += a3 * b0; c31 += a3 * b1;
143 }
144
145 C[i + j*lda + 0 + 0*lda] = c00; C[i + j*lda + 1 + 0*lda] = c01;
146 C[i + j*lda + 0 + 1*lda] = c10; C[i + j*lda + 1 + 1*lda] = c11;
147 C[i + j*lda + 0 + 2*lda] = c20; C[i + j*lda + 1 + 2*lda] = c21;
148 C[i + j*lda + 0 + 3*lda] = c30; C[i + j*lda + 1 + 3*lda] = c31;
149 }
150 }
151 }
152
153 void __attribute__((noinline)) matmul_mi(const int lda, const data_t A[], const data_t B[], data_t C[] ) {
154 int i, j, k;
155
156 int curhalf = coreid;
157 for (i = 0; i < lda; i += 2) {
158 for (j = coreid * (lda / ncores); j < (coreid + 1) * (lda / ncores); j += 4) {
159 register float c00 = 0, c01 = 0;
160 register float c10 = 0, c11 = 0;
161 register float c20 = 0, c21 = 0;
162 register float c30 = 0, c31 = 0;
163
164 register float a0, a1, a2, a3, b0, b1;
165 for (k = curhalf * (lda/2); k < curhalf * (lda/2) + (lda/2); k++) {
166 a0 = A[j*lda + k + 0*lda];
167 a1 = A[j*lda + k + 1*lda];
168 a2 = A[j*lda + k + 2*lda];
169 a3 = A[j*lda + k + 3*lda];
170
171 b0 = B[k*lda + i + 0];
172 b1 = B[k*lda + i + 1];
173
174 c00 += a0 * b0; c01 += a0 * b1;
175 c10 += a1 * b0; c11 += a1 * b1;
176 c20 += a2 * b0; c21 += a2 * b1;
177 c30 += a3 * b0; c31 += a3 * b1;
178 }
179
180 C[i + j*lda + 0 + 0*lda] += c00; C[i + j*lda + 1 + 0*lda] += c01;
181 C[i + j*lda + 0 + 1*lda] += c10; C[i + j*lda + 1 + 1*lda] += c11;
182 C[i + j*lda + 0 + 2*lda] += c20; C[i + j*lda + 1 + 2*lda] += c21;
183 C[i + j*lda + 0 + 3*lda] += c30; C[i + j*lda + 1 + 3*lda] += c31;
184 }
185 }
186
187 barrier(nc);
188 curhalf++;
189 curhalf %= ncores;
190
191 for (i = 0; i < lda; i += 2) {
192 for (j = coreid * (lda / ncores); j < (coreid + 1) * (lda / ncores); j += 4) {
193 register float c00 = 0, c01 = 0;
194 register float c10 = 0, c11 = 0;
195 register float c20 = 0, c21 = 0;
196 register float c30 = 0, c31 = 0;
197
198 register float a0, a1, a2, a3, b0, b1;
199 for (k = curhalf * (lda/2); k < curhalf * (lda/2) + (lda/2); k++) {
200 a0 = A[j*lda + k + 0*lda];
201 a1 = A[j*lda + k + 1*lda];
202 a2 = A[j*lda + k + 2*lda];
203 a3 = A[j*lda + k + 3*lda];
204
205 b0 = B[k*lda + i + 0];
206 b1 = B[k*lda + i + 1];
207
208 c00 += a0 * b0; c01 += a0 * b1;
209 c10 += a1 * b0; c11 += a1 * b1;
210 c20 += a2 * b0; c21 += a2 * b1;
211 c30 += a3 * b0; c31 += a3 * b1;
212 }
213
214 C[i + j*lda + 0 + 0*lda] += c00; C[i + j*lda + 1 + 0*lda] += c01;
215 C[i + j*lda + 0 + 1*lda] += c10; C[i + j*lda + 1 + 1*lda] += c11;
216 C[i + j*lda + 0 + 2*lda] += c20; C[i + j*lda + 1 + 2*lda] += c21;
217 C[i + j*lda + 0 + 3*lda] += c30; C[i + j*lda + 1 + 3*lda] += c31;
218 }
219 }
220 }
221
222 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
223 {
224 matmul_mi(lda, A, B, C);
225 }
226
227 //--------------------------------------------------------------------------
228 // Main
229 //
230 // all threads start executing thread_entry(). Use their "coreid" to
231 // differentiate between threads (each thread is running on a separate core).
232
233 void thread_entry(int cid, int nc)
234 {
235 coreid = cid;
236 ncores = nc;
237
238 // static allocates data in the binary, which is visible to both threads
239 static data_t results_data[ARRAY_SIZE];
240
241
242 // // Execute the provided, naive matmul
243 // barrier(nc);
244 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
245 //
246 //
247 // // verify
248 // verifyMT(ARRAY_SIZE, results_data, verify_data);
249 //
250 // // clear results from the first trial
251 // size_t i;
252 // if (coreid == 0)
253 // for (i=0; i < ARRAY_SIZE; i++)
254 // results_data[i] = 0;
255 // barrier(nc);
256
257
258 // Execute your faster matmul
259 barrier(nc);
260 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
261
262 #ifdef DEBUG
263 printArrayMT("results:", ARRAY_SIZE, results_data);
264 printArrayMT("verify :", ARRAY_SIZE, verify_data);
265 #endif
266
267 // verify
268 verifyMT(ARRAY_SIZE, results_data, verify_data);
269 barrier(nc);
270
271 exit(0);
272 }
273