multithreading tests from 152 lab 5
[riscv-tests.git] / mt / bf_matmul / matmul_mi.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArray( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109
110 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
111 {
112
113 // ***************************** //
114 // **** ADD YOUR CODE HERE ***** //
115 // ***************************** //
116 //
117 // feel free to make a separate function for MI and MSI versions.
118 int j, k;
119 data_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
120 data_t temp8, temp9, temp10, temp11, temp12, temp13, temp14, temp15;
121 if(coreid == 0) {
122 //16*0:16*(0+1) ;; 16*1+16*(1+1)
123 //0:16 ;; 16:32
124
125 //complete Q1
126 for(j = 0; j < 16; j++) {
127 temp0 = C[j*lda];
128 temp1 = C[1 + j*lda];
129 temp2 = C[2 + j*lda];
130 temp3 = C[3 + j*lda];
131 temp4 = C[4 + j*lda];
132 temp5 = C[5 + j*lda];
133 temp6 = C[6 + j*lda];
134 temp7 = C[7 + j*lda];
135 temp8 = C[8 + j*lda];
136 temp9 = C[9 + j*lda];
137 temp10 = C[10 + j*lda];
138 temp11 = C[11 + j*lda];
139 temp12 = C[12 + j*lda];
140 temp13 = C[13 + j*lda];
141 temp14 = C[14 + j*lda];
142 temp15 = C[15 + j*lda];
143 for(k = 0; k < 32; k++) {
144 temp0 += A[j*lda + k] * B[k*lda];
145 temp1 += A[j*lda + k] * B[1+k*lda];
146 temp2 += A[j*lda + k] * B[2+k*lda];
147 temp3 += A[j*lda + k] * B[3+k*lda];
148 temp4 += A[j*lda + k] * B[4+k*lda];
149 temp5 += A[j*lda + k] * B[5+k*lda];
150 temp6 += A[j*lda + k] * B[6+k*lda];
151 temp7 += A[j*lda + k] * B[7+k*lda];
152 temp8 += A[j*lda + k] * B[8+k*lda];
153 temp9 += A[j*lda + k] * B[9+k*lda];
154 temp10 += A[j*lda + k] * B[10+k*lda];
155 temp11 += A[j*lda + k] * B[11+k*lda];
156 temp12 += A[j*lda + k] * B[12+k*lda];
157 temp13 += A[j*lda + k] * B[13+k*lda];
158 temp14 += A[j*lda + k] * B[14+k*lda];
159 temp15 += A[j*lda + k] * B[15+k*lda];
160 }
161 C[j*lda] = temp0;
162 C[1 + j*lda] = temp1;
163 C[2 + j*lda] = temp2;
164 C[3 + j*lda] = temp3;
165 C[4 + j*lda] = temp4;
166 C[5 + j*lda] = temp5;
167 C[6 + j*lda] = temp6;
168 C[7 + j*lda] = temp7;
169 C[8 + j*lda] = temp8;
170 C[9 + j*lda] = temp9;
171 C[10 + j*lda] = temp10;
172 C[11 + j*lda] = temp11;
173 C[12 + j*lda] = temp12;
174 C[13 + j*lda] = temp13;
175 C[14 + j*lda] = temp14;
176 C[15 + j*lda] = temp15;
177 }
178 for(j = 16; j < 32; j++) {
179 temp0 = C[j*lda];
180 temp1 = C[1 + j*lda];
181 temp2 = C[2 + j*lda];
182 temp3 = C[3 + j*lda];
183 temp4 = C[4 + j*lda];
184 temp5 = C[5 + j*lda];
185 temp6 = C[6 + j*lda];
186 temp7 = C[7 + j*lda];
187 temp8 = C[8 + j*lda];
188 temp9 = C[9 + j*lda];
189 temp10 = C[10 + j*lda];
190 temp11 = C[11 + j*lda];
191 temp12 = C[12 + j*lda];
192 temp13 = C[13 + j*lda];
193 temp14 = C[14 + j*lda];
194 temp15 = C[15 + j*lda];
195 for(k = 0; k < 32; k++) {
196 temp0 += A[j*lda + k] * B[k*lda];
197 temp1 += A[j*lda + k] * B[1+k*lda];
198 temp2 += A[j*lda + k] * B[2+k*lda];
199 temp3 += A[j*lda + k] * B[3+k*lda];
200 temp4 += A[j*lda + k] * B[4+k*lda];
201 temp5 += A[j*lda + k] * B[5+k*lda];
202 temp6 += A[j*lda + k] * B[6+k*lda];
203 temp7 += A[j*lda + k] * B[7+k*lda];
204 temp8 += A[j*lda + k] * B[8+k*lda];
205 temp9 += A[j*lda + k] * B[9+k*lda];
206 temp10 += A[j*lda + k] * B[10+k*lda];
207 temp11 += A[j*lda + k] * B[11+k*lda];
208 temp12 += A[j*lda + k] * B[12+k*lda];
209 temp13 += A[j*lda + k] * B[13+k*lda];
210 temp14 += A[j*lda + k] * B[14+k*lda];
211 temp15 += A[j*lda + k] * B[15+k*lda];
212 }
213 C[j*lda] = temp0;
214 C[1 + j*lda] = temp1;
215 C[2 + j*lda] = temp2;
216 C[3 + j*lda] = temp3;
217 C[4 + j*lda] = temp4;
218 C[5 + j*lda] = temp5;
219 C[6 + j*lda] = temp6;
220 C[7 + j*lda] = temp7;
221 C[8 + j*lda] = temp8;
222 C[9 + j*lda] = temp9;
223 C[10 + j*lda] = temp10;
224 C[11 + j*lda] = temp11;
225 C[12 + j*lda] = temp12;
226 C[13 + j*lda] = temp13;
227 C[14 + j*lda] = temp14;
228 C[15 + j*lda] = temp15;
229 }
230 }
231 //16*(2-1) : 16*2 ;; 16*(1-1) : 16*1
232 //16:32 ;; 0:16
233 if(coreid == 1) {
234 //complete Q3
235 for(j = 16; j < 32; j++) {
236 temp0 = C[16+j*lda];
237 temp1 = C[17+j*lda];
238 temp2 = C[18+j*lda];
239 temp3 = C[19+j*lda];
240 temp4 = C[20+j*lda];
241 temp5 = C[21+j*lda];
242 temp6 = C[22+j*lda];
243 temp7 = C[23+j*lda];
244 temp8 = C[24+j*lda];
245 temp9 = C[25+j*lda];
246 temp10 = C[26+j*lda];
247 temp11 = C[27+j*lda];
248 temp12 = C[28+j*lda];
249 temp13 = C[29+j*lda];
250 temp14 = C[30+j*lda];
251 temp15 = C[31+j*lda];
252 for(k = 0; k < 32; k++) {
253 temp0 += A[j*lda + k] * B[16+k*lda];
254 temp1 += A[j*lda + k] * B[17+k*lda];
255 temp2 += A[j*lda + k] * B[18+k*lda];
256 temp3 += A[j*lda + k] * B[19+k*lda];
257 temp4 += A[j*lda + k] * B[20+k*lda];
258 temp5 += A[j*lda + k] * B[21+k*lda];
259 temp6 += A[j*lda + k] * B[22+k*lda];
260 temp7 += A[j*lda + k] * B[23+k*lda];
261 temp8 += A[j*lda + k] * B[24+k*lda];
262 temp9 += A[j*lda + k] * B[25+k*lda];
263 temp10 += A[j*lda + k] * B[26+k*lda];
264 temp11 += A[j*lda + k] * B[27+k*lda];
265 temp12 += A[j*lda + k] * B[28+k*lda];
266 temp13 += A[j*lda + k] * B[29+k*lda];
267 temp14 += A[j*lda + k] * B[30+k*lda];
268 temp15 += A[j*lda + k] * B[31+k*lda];
269 }
270 C[16 + j*lda] = temp0;
271 C[17 + j*lda] = temp1;
272 C[18 + j*lda] = temp2;
273 C[19 + j*lda] = temp3;
274 C[20 + j*lda] = temp4;
275 C[21 + j*lda] = temp5;
276 C[22 + j*lda] = temp6;
277 C[23 + j*lda] = temp7;
278 C[24 + j*lda] = temp8;
279 C[25 + j*lda] = temp9;
280 C[26 + j*lda] = temp10;
281 C[27 + j*lda] = temp11;
282 C[28 + j*lda] = temp12;
283 C[29 + j*lda] = temp13;
284 C[30 + j*lda] = temp14;
285 C[31 + j*lda] = temp15;
286 }
287 //complete Q4
288 for(j = 0; j < 16; j++) {
289 temp0 = C[16 + j*lda];
290 temp1 = C[17 + j*lda];
291 temp2 = C[18 + j*lda];
292 temp3 = C[19 + j*lda];
293 temp4 = C[20 + j*lda];
294 temp5 = C[21 + j*lda];
295 temp6 = C[22 + j*lda];
296 temp7 = C[23 + j*lda];
297 temp8 = C[24 + j*lda];
298 temp9 = C[25 + j*lda];
299 temp10 = C[26 + j*lda];
300 temp11 = C[27 + j*lda];
301 temp12 = C[28 + j*lda];
302 temp13 = C[29 + j*lda];
303 temp14 = C[30 + j*lda];
304 temp15 = C[31 + j*lda];
305 for(k = 0; k < 32; k++) {
306 temp0 += A[j*lda + k] * B[16 + k*lda];
307 temp1 += A[j*lda + k] * B[17 + k*lda];
308 temp2 += A[j*lda + k] * B[18 + k*lda];
309 temp3 += A[j*lda + k] * B[19 + k*lda];
310 temp4 += A[j*lda + k] * B[20 + k*lda];
311 temp5 += A[j*lda + k] * B[21 + k*lda];
312 temp6 += A[j*lda + k] * B[22 + k*lda];
313 temp7 += A[j*lda + k] * B[23 + k*lda];
314 temp8 += A[j*lda + k] * B[24 + k*lda];
315 temp9 += A[j*lda + k] * B[25 + k*lda];
316 temp10 += A[j*lda + k] * B[26 + k*lda];
317 temp11 += A[j*lda + k] * B[27 + k*lda];
318 temp12 += A[j*lda + k] * B[28 + k*lda];
319 temp13 += A[j*lda + k] * B[29 + k*lda];
320 temp14 += A[j*lda + k] * B[30 + k*lda];
321 temp15 += A[j*lda + k] * B[31 + k*lda];
322 }
323 C[16 + j*lda] = temp0;
324 C[17 + j*lda] = temp1;
325 C[18 + j*lda] = temp2;
326 C[19 + j*lda] = temp3;
327 C[20 + j*lda] = temp4;
328 C[21 + j*lda] = temp5;
329 C[22 + j*lda] = temp6;
330 C[23 + j*lda] = temp7;
331 C[24 + j*lda] = temp8;
332 C[25 + j*lda] = temp9;
333 C[26 + j*lda] = temp10;
334 C[27 + j*lda] = temp11;
335 C[28 + j*lda] = temp12;
336 C[29 + j*lda] = temp13;
337 C[30 + j*lda] = temp14;
338 C[31 + j*lda] = temp15;
339 }
340 }
341
342
343
344 }
345
346 //--------------------------------------------------------------------------
347 // Main
348 //
349 // all threads start executing thread_entry(). Use their "coreid" to
350 // differentiate between threads (each thread is running on a separate core).
351
352 void thread_entry(int cid, int nc)
353 {
354 coreid = cid;
355 ncores = nc;
356
357 // static allocates data in the binary, which is visible to both threads
358 static data_t results_data[ARRAY_SIZE];
359
360
361 // // Execute the provided, naive matmul
362 // barrier();
363 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
364 //
365 //
366 // // verify
367 // verify(ARRAY_SIZE, results_data, verify_data);
368 //
369 // // clear results from the first trial
370 // size_t i;
371 // if (coreid == 0)
372 // for (i=0; i < ARRAY_SIZE; i++)
373 // results_data[i] = 0;
374 // barrier();
375
376
377 // Execute your faster matmul
378 barrier();
379 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
380
381 #ifdef DEBUG
382 printArray("results:", ARRAY_SIZE, results_data);
383 printArray("verify :", ARRAY_SIZE, verify_data);
384 #endif
385
386 // verify
387 verify(ARRAY_SIZE, results_data, verify_data);
388 barrier();
389
390 exit(0);
391 }
392