Fix build with riscv-gcc version 4.9
[riscv-tests.git] / mt / bn_matmul / matmul_mi.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArrayMT( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 ///*
93 int i, j, k;
94
95 if (coreid > 0)
96 return;
97
98 for ( i = 0; i < lda; i++ )
99 for ( j = 0; j < lda; j++ )
100 {
101 for ( k = 0; k < lda; k++ )
102 {
103 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
104 }
105 }
106 //*/
107 /*
108 int i, j, k, kk;
109 if (coreid) {
110 for ( i = 0; i < 16; i+=8 )
111 {
112 for ( j = 0; j < 32; j++ )
113 {
114 data_t temp0 = 0;
115 data_t temp1 = 0;
116 data_t temp2 = 0;
117 data_t temp3 = 0;
118 data_t temp4 = 0;
119 data_t temp5 = 0;
120 data_t temp6 = 0;
121 data_t temp7 = 0;
122 for ( kk = 0; kk < 32; kk+=8 )
123 for ( k = kk; k < kk+8; k++ )
124 // for ( k = 0; k < 32; k++ )
125 {
126 data_t tempA = A[j*32+k];
127 temp0 += tempA * B[k*32 + i];
128 temp1 += tempA * B[k*32 + i+1];
129 temp2 += tempA * B[k*32 + i+2];
130 temp3 += tempA * B[k*32 + i+3];
131 temp4 += tempA * B[k*32 + i+4];
132 temp5 += tempA * B[k*32 + i+5];
133 temp6 += tempA * B[k*32 + i+6];
134 temp7 += tempA * B[k*32 + i+7];
135 }
136 C[i+j*32] = temp0;
137 C[i+j*32+1] = temp1;
138 C[i+j*32+2] = temp2;
139 C[i+j*32+3] = temp3;
140 C[i+j*32+4] = temp4;
141 C[i+j*32+5] = temp5;
142 C[i+j*32+6] = temp6;
143 C[i+j*32+7] = temp7;
144 }
145 }
146 } else {
147 for ( i = 16; i < 32; i+=8 )
148 {
149 for ( j = 0; j < 32; j++ )
150 {
151 data_t temp0 = 0;
152 data_t temp1 = 0;
153 data_t temp2 = 0;
154 data_t temp3 = 0;
155 data_t temp4 = 0;
156 data_t temp5 = 0;
157 data_t temp6 = 0;
158 data_t temp7 = 0;
159 for ( kk = 0; kk < 32; kk+=8 )
160 for ( k = kk; k < kk+8; k++ )
161 {
162 data_t tempA = A[j*32+k];
163 temp0 += tempA * B[k*32 + i];
164 temp1 += tempA * B[k*32 + i+1];
165 temp2 += tempA * B[k*32 + i+2];
166 temp3 += tempA * B[k*32 + i+3];
167 temp4 += tempA * B[k*32 + i+4];
168 temp5 += tempA * B[k*32 + i+5];
169 temp6 += tempA * B[k*32 + i+6];
170 temp7 += tempA * B[k*32 + i+7];
171 }
172 C[i+j*32] = temp0;
173 C[i+j*32+1] = temp1;
174 C[i+j*32+2] = temp2;
175 C[i+j*32+3] = temp3;
176 C[i+j*32+4] = temp4;
177 C[i+j*32+5] = temp5;
178 C[i+j*32+6] = temp6;
179 C[i+j*32+7] = temp7;
180 }
181
182 }
183 }
184 */
185 }
186
187
188 #define KC 16
189 #define IC 16
190 #define JC 16
191 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
192 {
193
194 // ***************************** //
195 // **** ADD YOUR CODE HERE ***** //
196 // ***************************** //
197 //
198 // feel free to make a separate function for MI and MSI versions.
199 int i, j, k, ii, jj, kk;
200 if (coreid) {
201 // for ( ii = 0; ii < 32; ii+=IC )
202 for ( jj = 0; jj < 16; jj+=16 )
203 for ( kk = 0; kk < 32; kk+=16 )
204 for ( j = jj; j < jj+16 && j < 16; j++ )
205 // for ( j = 0; j < 16; j++ )
206 {
207 for ( i = 0; i < 32; i+=8 )
208 // for ( i = ii; i < ii + IC && i < 32; i+=8 )
209 {
210 data_t temp0 = C[i+j*32];
211 data_t temp1 = C[i+j*32+1];
212 data_t temp2 = C[i+j*32+2];
213 data_t temp3 = C[i+j*32+3];
214 data_t temp4 = C[i+j*32+4];
215 data_t temp5 = C[i+j*32+5];
216 data_t temp6 = C[i+j*32+6];
217 data_t temp7 = C[i+j*32+7];
218 for ( k = kk; k < kk+16 && k < 32; k++ )
219 // for ( k = 0; k < 32; k++ )
220 {
221 data_t tempA = A[j*32+k];
222 temp0 += tempA * B[k*32 + i];
223 temp1 += tempA * B[k*32 + i+1];
224 temp2 += tempA * B[k*32 + i+2];
225 temp3 += tempA * B[k*32 + i+3];
226 temp4 += tempA * B[k*32 + i+4];
227 temp5 += tempA * B[k*32 + i+5];
228 temp6 += tempA * B[k*32 + i+6];
229 temp7 += tempA * B[k*32 + i+7];
230 }
231 C[i+j*32] = temp0;
232 C[i+j*32+1] = temp1;
233 C[i+j*32+2] = temp2;
234 C[i+j*32+3] = temp3;
235 C[i+j*32+4] = temp4;
236 C[i+j*32+5] = temp5;
237 C[i+j*32+6] = temp6;
238 C[i+j*32+7] = temp7;
239 }
240 }
241 } else {
242 // for ( ii = 0; ii < 32; ii+=IC )
243 for ( jj = 16; jj < 32; jj+= 16 ) {
244 for ( kk = 16; kk < 32; kk+=16 )
245 for ( j = jj; j < jj+16 && j < 32; j++ )
246 // for ( j = 16; j < 32; j++ )
247 {
248 for ( i = 0; i < 32; i+=8 )
249 // for ( i = ii; i < ii + IC && i < 32; i+=8 )
250 {
251 data_t temp0 = C[i+j*32];
252 data_t temp1 = C[i+j*32+1];
253 data_t temp2 = C[i+j*32+2];
254 data_t temp3 = C[i+j*32+3];
255 data_t temp4 = C[i+j*32+4];
256 data_t temp5 = C[i+j*32+5];
257 data_t temp6 = C[i+j*32+6];
258 data_t temp7 = C[i+j*32+7];
259 for ( k = kk; k < kk+16 && k < 32; k++ )
260 {
261 data_t tempA = A[j*32+k];
262 temp0 += tempA * B[k*32 + i];
263 temp1 += tempA * B[k*32 + i+1];
264 temp2 += tempA * B[k*32 + i+2];
265 temp3 += tempA * B[k*32 + i+3];
266 temp4 += tempA * B[k*32 + i+4];
267 temp5 += tempA * B[k*32 + i+5];
268 temp6 += tempA * B[k*32 + i+6];
269 temp7 += tempA * B[k*32 + i+7];
270 }
271 C[i+j*32] = temp0;
272 C[i+j*32+1] = temp1;
273 C[i+j*32+2] = temp2;
274 C[i+j*32+3] = temp3;
275 C[i+j*32+4] = temp4;
276 C[i+j*32+5] = temp5;
277 C[i+j*32+6] = temp6;
278 C[i+j*32+7] = temp7;
279 }
280
281 }
282 for ( kk = 0; kk < 16; kk+=16 )
283 for ( j = jj; j < jj+16 && j < 32; j++ )
284 // for ( j = 16; j < 32; j++ )
285 {
286 for ( i = 0; i < 32; i+=8 )
287 // for ( i = ii; i < ii + IC && i < 32; i+=8 )
288 {
289 data_t temp0 = C[i+j*32];
290 data_t temp1 = C[i+j*32+1];
291 data_t temp2 = C[i+j*32+2];
292 data_t temp3 = C[i+j*32+3];
293 data_t temp4 = C[i+j*32+4];
294 data_t temp5 = C[i+j*32+5];
295 data_t temp6 = C[i+j*32+6];
296 data_t temp7 = C[i+j*32+7];
297 for ( k = kk; k < kk+16 && k < 32; k++ )
298 {
299 data_t tempA = A[j*32+k];
300 temp0 += tempA * B[k*32 + i];
301 temp1 += tempA * B[k*32 + i+1];
302 temp2 += tempA * B[k*32 + i+2];
303 temp3 += tempA * B[k*32 + i+3];
304 temp4 += tempA * B[k*32 + i+4];
305 temp5 += tempA * B[k*32 + i+5];
306 temp6 += tempA * B[k*32 + i+6];
307 temp7 += tempA * B[k*32 + i+7];
308 }
309 C[i+j*32] = temp0;
310 C[i+j*32+1] = temp1;
311 C[i+j*32+2] = temp2;
312 C[i+j*32+3] = temp3;
313 C[i+j*32+4] = temp4;
314 C[i+j*32+5] = temp5;
315 C[i+j*32+6] = temp6;
316 C[i+j*32+7] = temp7;
317 }
318
319 }
320 }
321 }
322 }
323
324 //--------------------------------------------------------------------------
325 // Main
326 //
327 // all threads start executing thread_entry(). Use their "coreid" to
328 // differentiate between threads (each thread is running on a separate core).
329
330 void thread_entry(int cid, int nc)
331 {
332 coreid = cid;
333 ncores = nc;
334
335 // static allocates data in the binary, which is visible to both threads
336 static data_t results_data[ARRAY_SIZE];
337
338
339 // // Execute the provided, naive matmul
340 // barrier(nc);
341 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
342 //
343 //
344 // // verify
345 // verifyMT(ARRAY_SIZE, results_data, verify_data);
346 //
347 // // clear results from the first trial
348 // size_t i;
349 // if (coreid == 0)
350 // for (i=0; i < ARRAY_SIZE; i++)
351 // results_data[i] = 0;
352 // barrier(nc);
353
354
355 // Execute your faster matmul
356 barrier(nc);
357 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
358
359 #ifdef DEBUG
360 printArrayMT("results:", ARRAY_SIZE, results_data);
361 printArrayMT("verify :", ARRAY_SIZE, verify_data);
362 #endif
363
364 // verify
365 verifyMT(ARRAY_SIZE, results_data, verify_data);
366 barrier(nc);
367
368 exit(0);
369 }
370