Updated mt tests
[riscv-tests.git] / mt / br_matmul / br_matmul.c
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student: Benjamin Han
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArrayMT( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109
110 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
111 {
112
113 // ***************************** //
114 // **** ADD YOUR CODE HERE ***** //
115 // ***************************** //
116 //
117 // feel free to make a separate function for MI and MSI versions.
118 int j2, i2, k2, j, i, k;
119 int tmpC00, tmpC01, tmpC02, tmpC03, tmpC04, tmpC05, tmpC06, tmpC07;
120 int tmpC10, tmpC11, tmpC12, tmpC13, tmpC14, tmpC15, tmpC16, tmpC17;
121 int jBLOCK = 32;
122 int iBLOCK = 16;
123 int kBLOCK = 32;
124 static __thread int tB[4096]; //__thread
125 int startInd = 0;
126 int endInd = lda >> 1;
127 if (coreid == 1) {
128 startInd = lda >> 1;
129 endInd = lda;
130 }
131
132 //tranpose B (block?)
133 for (i = 0; i < lda; i += 2) {
134 for (j = startInd; j < endInd; j += 2) {
135 tB[j*lda + i] = B[i*lda + j];
136 tB[(j + 1)*lda + i] = B[i*lda + j + 1];
137 tB[j*lda + i + 1] = B[(i + 1)*lda + j];
138 tB[(j + 1)*lda + i + 1] = B[(i + 1)*lda + j + 1];
139 }
140 }
141 barrier(ncores);
142
143 // compute C[j*n + i] += A[j*n + k] + Btranspose[i*n + k]
144 for ( j2 = 0; j2 < lda; j2 += jBLOCK )
145 for ( i2 = startInd; i2 < endInd; i2 += iBLOCK )
146 for ( j = j2; j < j2 + jBLOCK; j += 2 )
147 for ( k2 = 0; k2 < lda; k2 += kBLOCK )
148 for ( i = i2; i < i2 + iBLOCK; i += 4) {
149 tmpC00 = C[j*lda + i + 0]; tmpC10 = C[(j + 1)*lda + i + 0];
150 tmpC01 = C[j*lda + i + 1]; tmpC11 = C[(j + 1)*lda + i + 1];
151 tmpC02 = C[j*lda + i + 2]; tmpC12 = C[(j + 1)*lda + i + 2];
152 tmpC03 = C[j*lda + i + 3]; tmpC13 = C[(j + 1)*lda + i + 3];
153 //tmpC04 = C[j*lda + i + 4]; tmpC14 = C[(j + 1)*lda + i + 4];
154 //tmpC05 = C[j*lda + i + 5]; tmpC15 = C[(j + 1)*lda + i + 5];
155 //tmpC06 = C[j*lda + i + 6]; tmpC16 = C[(j + 1)*lda + i + 6];
156 //tmpC07 = C[j*lda + i + 7]; tmpC17 = C[(j + 1)*lda + i + 7];
157 for ( k = k2; k < k2 + kBLOCK; k += 4) {
158 tmpC00 += A[j*lda + k] * tB[(i + 0)*lda + k];
159 tmpC01 += A[j*lda + k] * tB[(i + 1)*lda + k];
160 tmpC02 += A[j*lda + k] * tB[(i + 2)*lda + k];
161 tmpC03 += A[j*lda + k] * tB[(i + 3)*lda + k];
162 //tmpC04 += A[j*lda + k] * tB[(i + 4)*lda + k];
163 //tmpC05 += A[j*lda + k] * tB[(i + 5)*lda + k];
164 //tmpC06 += A[j*lda + k] * tB[(i + 6)*lda + k];
165 //tmpC07 += A[j*lda + k] * tB[(i + 7)*lda + k];
166 tmpC10 += A[(j + 1)*lda + k] * tB[(i + 0)*lda + k];
167 tmpC11 += A[(j + 1)*lda + k] * tB[(i + 1)*lda + k];
168 tmpC12 += A[(j + 1)*lda + k] * tB[(i + 2)*lda + k];
169 tmpC13 += A[(j + 1)*lda + k] * tB[(i + 3)*lda + k];
170 //tmpC14 += A[(j + 1)*lda + k] * tB[(i + 4)*lda + k];
171 //tmpC15 += A[(j + 1)*lda + k] * tB[(i + 5)*lda + k];
172 //tmpC16 += A[(j + 1)*lda + k] * tB[(i + 6)*lda + k];
173 //tmpC17 += A[(j + 1)*lda + k] * tB[(i + 7)*lda + k];
174
175 tmpC00 += A[j*lda + k + 1] * tB[(i + 0)*lda + k + 1];
176 tmpC01 += A[j*lda + k + 1] * tB[(i + 1)*lda + k + 1];
177 tmpC02 += A[j*lda + k + 1] * tB[(i + 2)*lda + k + 1];
178 tmpC03 += A[j*lda + k + 1] * tB[(i + 3)*lda + k + 1];
179 //tmpC04 += A[j*lda + k + 1] * tB[(i + 4)*lda + k + 1];
180 //tmpC05 += A[j*lda + k + 1] * tB[(i + 5)*lda + k + 1];
181 //tmpC06 += A[j*lda + k + 1] * tB[(i + 6)*lda + k + 1];
182 //tmpC07 += A[j*lda + k + 1] * tB[(i + 7)*lda + k + 1];
183 tmpC10 += A[(j + 1)*lda + k + 1] * tB[(i + 0)*lda + k + 1];
184 tmpC11 += A[(j + 1)*lda + k + 1] * tB[(i + 1)*lda + k + 1];
185 tmpC12 += A[(j + 1)*lda + k + 1] * tB[(i + 2)*lda + k + 1];
186 tmpC13 += A[(j + 1)*lda + k + 1] * tB[(i + 3)*lda + k + 1];
187 //tmpC14 += A[(j + 1)*lda + k + 1] * tB[(i + 4)*lda + k + 1];
188 //tmpC15 += A[(j + 1)*lda + k + 1] * tB[(i + 5)*lda + k + 1];
189 //tmpC16 += A[(j + 1)*lda + k + 1] * tB[(i + 6)*lda + k + 1];
190 //tmpC17 += A[(j + 1)*lda + k + 1] * tB[(i + 7)*lda + k + 1];
191
192 tmpC00 += A[j*lda + k + 2] * tB[(i + 0)*lda + k + 2];
193 tmpC01 += A[j*lda + k + 2] * tB[(i + 1)*lda + k + 2];
194 tmpC02 += A[j*lda + k + 2] * tB[(i + 2)*lda + k + 2];
195 tmpC03 += A[j*lda + k + 2] * tB[(i + 3)*lda + k + 2];
196 //tmpC04 += A[j*lda + k + 2] * tB[(i + 4)*lda + k + 2];
197 //tmpC05 += A[j*lda + k + 2] * tB[(i + 5)*lda + k + 2];
198 //tmpC06 += A[j*lda + k + 2] * tB[(i + 6)*lda + k + 2];
199 //tmpC07 += A[j*lda + k + 2] * tB[(i + 7)*lda + k + 2];
200 tmpC10 += A[(j + 1)*lda + k + 2] * tB[(i + 0)*lda + k + 2];
201 tmpC11 += A[(j + 1)*lda + k + 2] * tB[(i + 1)*lda + k + 2];
202 tmpC12 += A[(j + 1)*lda + k + 2] * tB[(i + 2)*lda + k + 2];
203 tmpC13 += A[(j + 1)*lda + k + 2] * tB[(i + 3)*lda + k + 2];
204 //tmpC14 += A[(j + 1)*lda + k + 2] * tB[(i + 4)*lda + k + 2];
205 //tmpC15 += A[(j + 1)*lda + k + 2] * tB[(i + 5)*lda + k + 2];
206 //tmpC16 += A[(j + 1)*lda + k + 2] * tB[(i + 6)*lda + k + 2];
207 //tmpC17 += A[(j + 1)*lda + k + 2] * tB[(i + 7)*lda + k + 2];
208
209 tmpC00 += A[j*lda + k + 3] * tB[(i + 0)*lda + k + 3];
210 tmpC01 += A[j*lda + k + 3] * tB[(i + 1)*lda + k + 3];
211 tmpC02 += A[j*lda + k + 3] * tB[(i + 2)*lda + k + 3];
212 tmpC03 += A[j*lda + k + 3] * tB[(i + 3)*lda + k + 3];
213 //tmpC04 += A[j*lda + k + 3] * tB[(i + 4)*lda + k + 3];
214 //tmpC05 += A[j*lda + k + 3] * tB[(i + 5)*lda + k + 3];
215 //tmpC06 += A[j*lda + k + 3] * tB[(i + 6)*lda + k + 3];
216 //tmpC07 += A[j*lda + k + 3] * tB[(i + 7)*lda + k + 3];
217 tmpC10 += A[(j + 1)*lda + k + 3] * tB[(i + 0)*lda + k + 3];
218 tmpC11 += A[(j + 1)*lda + k + 3] * tB[(i + 1)*lda + k + 3];
219 tmpC12 += A[(j + 1)*lda + k + 3] * tB[(i + 2)*lda + k + 3];
220 tmpC13 += A[(j + 1)*lda + k + 3] * tB[(i + 3)*lda + k + 3];
221 //tmpC14 += A[(j + 1)*lda + k + 3] * tB[(i + 4)*lda + k + 3];
222 //tmpC15 += A[(j + 1)*lda + k + 3] * tB[(i + 5)*lda + k + 3];
223 //tmpC16 += A[(j + 1)*lda + k + 3] * tB[(i + 6)*lda + k + 3];
224 //tmpC17 += A[(j + 1)*lda + k + 3] * tB[(i + 7)*lda + k + 3];
225 }
226 C[j*lda + i + 0] = tmpC00; C[(j + 1)*lda + i + 0] = tmpC10;
227 C[j*lda + i + 1] = tmpC01; C[(j + 1)*lda + i + 1] = tmpC11;
228 C[j*lda + i + 2] = tmpC02; C[(j + 1)*lda + i + 2] = tmpC12;
229 C[j*lda + i + 3] = tmpC03; C[(j + 1)*lda + i + 3] = tmpC13;
230 //C[j*lda + i + 4] = tmpC04; C[(j + 1)*lda + i + 4] = tmpC14;
231 //C[j*lda + i + 5] = tmpC05; C[(j + 1)*lda + i + 5] = tmpC15;
232 //C[j*lda + i + 6] = tmpC06; C[(j + 1)*lda + i + 6] = tmpC16;
233 //C[j*lda + i + 7] = tmpC07; C[(j + 1)*lda + i + 7] = tmpC17;
234 }
235 }
236
237 //--------------------------------------------------------------------------
238 // Main
239 //
240 // all threads start executing thread_entry(). Use their "coreid" to
241 // differentiate between threads (each thread is running on a separate core).
242
243 void thread_entry(int cid, int nc)
244 {
245 coreid = cid;
246 ncores = nc;
247
248 // static allocates data in the binary, which is visible to both threads
249 static data_t results_data[ARRAY_SIZE];
250
251
252 // // Execute the provided, naive matmul
253 // barrier(nc);
254 // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
255 //
256 //
257 // // verify
258 // verifyMT(ARRAY_SIZE, results_data, verify_data);
259 //
260 // // clear results from the first trial
261 // size_t i;
262 // if (coreid == 0)
263 // for (i=0; i < ARRAY_SIZE; i++)
264 // results_data[i] = 0;
265 // barrier(nc);
266
267
268 // Execute your faster matmul
269 barrier(nc);
270 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
271
272 #ifdef DEBUG
273 printArrayMT("results:", ARRAY_SIZE, results_data);
274 printArrayMT("verify :", ARRAY_SIZE, verify_data);
275 #endif
276
277 // verify
278 verifyMT(ARRAY_SIZE, results_data, verify_data);
279 barrier(nc);
280
281 exit(0);
282 }
283