multithreading tests from 152 lab 5
[riscv-tests.git] / mt / bt_matmul / matmul.c~
1 //**************************************************************************
2 // Multi-threaded Matrix Multiply benchmark
3 //--------------------------------------------------------------------------
4 // TA : Christopher Celio
5 // Student:
6 //
7 //
8 // This benchmark multiplies two 2-D arrays together and writes the results to
9 // a third vector. The input data (and reference data) should be generated
10 // using the matmul_gendata.pl perl script and dumped to a file named
11 // dataset.h.
12
13
14 // print out arrays, etc.
15 //#define DEBUG
16
17 //--------------------------------------------------------------------------
18 // Includes
19
20 #include <string.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23
24
25 //--------------------------------------------------------------------------
26 // Input/Reference Data
27
28 typedef float data_t;
29 #include "dataset.h"
30
31
32 //--------------------------------------------------------------------------
33 // Basic Utilities and Multi-thread Support
34
35 __thread unsigned long coreid;
36 unsigned long ncores;
37
38 #include "util.h"
39
40 #define stringify_1(s) #s
41 #define stringify(s) stringify_1(s)
42 #define stats(code) do { \
43 unsigned long _c = -rdcycle(), _i = -rdinstret(); \
44 code; \
45 _c += rdcycle(), _i += rdinstret(); \
46 if (coreid == 0) \
47 printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
48 stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
49 } while(0)
50
51
52 //--------------------------------------------------------------------------
53 // Helper functions
54
55 void printArray( char name[], int n, data_t arr[] )
56 {
57 int i;
58 if (coreid != 0)
59 return;
60
61 printf( " %10s :", name );
62 for ( i = 0; i < n; i++ )
63 printf( " %3ld ", (long) arr[i] );
64 printf( "\n" );
65 }
66
67 void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
68 {
69 if (coreid != 0)
70 return;
71
72 size_t i;
73 for (i = 0; i < n; i++)
74 {
75 if (test[i] != correct[i])
76 {
77 printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
78 i, (long)test[i], i, (long)correct[i]);
79 exit(-1);
80 }
81 }
82
83 return;
84 }
85
86 //--------------------------------------------------------------------------
87 // matmul function
88
89 // single-thread, naive version
90 void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
91 {
92 int i, j, k;
93
94 if (coreid > 0)
95 return;
96
97 for ( i = 0; i < lda; i++ )
98 for ( j = 0; j < lda; j++ )
99 {
100 for ( k = 0; k < lda; k++ )
101 {
102 C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
103 }
104 }
105
106 }
107
108
109
110 void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
111 {
112
113 // ***************************** //
114 // **** ADD YOUR CODE HERE ***** //
115 // ***************************** //
116 //
117 // feel free to make a separate function for MI and MSI versions.
118 int i, j, k;
119 int temp0, temp1,temp2,temp3,temp4,temp5,temp6,temp7;
120 int start = coreid*lda/2;
121 int end = start + lda/2;
122 int j_lda;
123 int temp_i;
124 int temp_A0, temp_A1, temp_A2, temp_A3 ;
125
126 for ( i = start; i < end; i+=8){
127 for ( j = 0; j < lda; j++)
128 {
129 j_lda = j*lda;
130 temp0 = C[(i+0) + j_lda];
131 temp1 = C[(i+1) + j_lda];
132 temp2 = C[(i+2) + j_lda];
133 temp3 = C[(i+3) + j_lda];
134 temp4 = C[(i+4) + j_lda];
135 temp5 = C[(i+5) + j_lda];
136 temp6 = C[(i+6) + j_lda];
137 temp7 = C[(i+7) + j_lda];
138
139
140
141 for ( k = 0; k < lda; k+=4)
142 {
143 temp_i = i;
144 temp_A0 = A[j_lda + (k+0)] ;
145 temp_A1 = A[j_lda + (k+1)] ;
146 temp_A2 = A[j_lda + (k+2)] ;
147 temp_A3 = A[j_lda + (k+3)] ;
148
149
150 temp0 += temp_A0 * B[(k+0)*lda + temp_i];
151 temp0 += temp_A1 * B[(k+1)*lda + temp_i];
152 temp0 += temp_A2 * B[(k+2)*lda + temp_i];
153 temp0 += temp_A3 * B[(k+3)*lda + temp_i];
154 temp_i++;
155
156 temp1 += temp_A0 * B[(k+0)*lda + temp_i];
157 temp1 += temp_A1 * B[(k+1)*lda + temp_i];
158 temp1 += temp_A2 * B[(k+2)*lda + temp_i];
159 temp1 += temp_A3 * B[(k+3)*lda + temp_i];
160 temp_i++;
161
162 temp2 += temp_A0 * B[(k+0)*lda + temp_i];
163 temp2 += temp_A1 * B[(k+1)*lda + temp_i];
164 temp2 += temp_A2 * B[(k+2)*lda + temp_i];
165 temp2 += temp_A3 * B[(k+3)*lda + temp_i];
166 temp_i++;
167
168
169 temp3 += temp_A0 * B[(k+0)*lda + temp_i];
170 temp3 += temp_A1 * B[(k+1)*lda + temp_i];
171 temp3 += temp_A2 * B[(k+2)*lda + temp_i];
172 temp3 += temp_A3 * B[(k+3)*lda + temp_i];
173 temp_i++;
174
175 temp4 += temp_A0 * B[(k+0)*lda + temp_i];
176 temp4 += temp_A1 * B[(k+1)*lda + temp_i];
177 temp4 += temp_A2 * B[(k+2)*lda + temp_i];
178 temp4 += temp_A3 * B[(k+3)*lda + temp_i];
179 temp_i++;
180
181 temp5 += temp_A0 * B[(k+0)*lda + temp_i];
182 temp5 += temp_A1 * B[(k+1)*lda + temp_i];
183 temp5 += temp_A2 * B[(k+2)*lda + temp_i];
184 temp5 += temp_A3 * B[(k+3)*lda + temp_i];
185 temp_i++;
186
187 temp6 += temp_A0 * B[(k+0)*lda + temp_i];
188 temp6 += temp_A1 * B[(k+1)*lda + temp_i];
189 temp6 += temp_A2 * B[(k+2)*lda + temp_i];
190 temp6 += temp_A3 * B[(k+3)*lda + temp_i];
191 temp_i++;
192
193
194 temp7 += temp_A0 * B[(k+0)*lda + temp_i];
195 temp7 += temp_A1 * B[(k+1)*lda + temp_i];
196 temp7 += temp_A2 * B[(k+2)*lda + temp_i];
197 temp7 += temp_A3 * B[(k+3)*lda + temp_i];
198 temp_i++;
199
200 }
201
202 C[i + j*lda] = temp0;
203 C[(i+1) + j*lda] = temp1;
204 C[(i+2) + j*lda] = temp2;
205 C[(i+3) + j*lda] = temp3;
206 C[(i+4) + j*lda] = temp4;
207 C[(i+5) + j*lda] = temp5;
208 C[(i+6) + j*lda] = temp6;
209 C[(i+7) + j*lda] = temp7;
210
211 }
212 }
213 }
214
215 //--------------------------------------------------------------------------
216 // Main
217 //
218 // all threads start executing thread_entry(). Use their "coreid" to
219 // differentiate between threads (each thread is running on a separate core).
220
221 void thread_entry(int cid, int nc)
222 {
223 coreid = cid;
224 ncores = nc;
225
226 // static allocates data in the binary, which is visible to both threads
227 static data_t results_data[ARRAY_SIZE];
228
229 /*
230 // Execute the provided, naive matmul
231 barrier();
232 stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
233
234
235 // verify
236 verify(ARRAY_SIZE, results_data, verify_data);
237
238 // clear results from the first trial
239 size_t i;
240 if (coreid == 0)
241 for (i=0; i < ARRAY_SIZE; i++)
242 results_data[i] = 0;
243 barrier();
244
245 */
246 // Execute your faster matmul
247 barrier();
248 stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
249
250 #ifdef DEBUG
251 printArray("results:", ARRAY_SIZE, results_data);
252 printArray("verify :", ARRAY_SIZE, verify_data);
253 #endif
254
255 // verify
256 verify(ARRAY_SIZE, results_data, verify_data);
257 barrier();
258
259 exit(0);
260 }